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Abstract

To reduce the number of implementation errors in the integration phase of a software project,
new software development methods are required. The Analytical Software Design (ASD) method
of the company Verum provides design strategies combined with model-checking to reduce the
number of errors made when developing software.

Currently there is no insight into the performance of a software system, before the implemen-
tation phase of a project has been finished. When a system does not meet the performance
requirements after integration, improving the software speed in this stage of the project is a
very expensive and time consuming process. To provide early stage insight into the perfor-
mance of a software system, adequate performance models and corresponding analysis tools
are needed.

In this thesis a start is made by modelling and analysing the performance of the software gen-
erated by the ASD suite. A hierarchical approach is used to model the whole ASD generated
software. Queuing theory is applied to model the blocks, that are generated by the ASD suite.
Waiting time propagation then composes the model for the whole system from the individual
blocks. The focus of this thesis is on making accurate models, with scalable analysis techniques.

Single ASD blocks are modelled as queueing stations and a case study shows that the analysis
results match the simulation results accurately. To model the dependencies between differ-
ent blocks, phase type distributions are used. Also systems composed of multiple blocks are
analysed and validated using simulation. The analytic results for larger systems deviate sub-
stantially from the simulation, because some dependencies are left out of the model. Recom-
mendations are given to improve the quality of the results in future research. One way to do
this, could be to embedded these dependencies into the model by also using phase type distri-
butions for elements that are currently modelled as negative exponential distributions.
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1 Introduction

Philips has been making X-Ray systems since 1933. A lot of developments have taken place
since 1933, making X-ray useful for applications exceeding the initially limited photographing
of broken bones.

Philips Healthcare (PHC) is a division of Philips and is specialized in medical applications. One
of their current products is the interventional X-Ray (iXR) system, which is constantly devel-
oped to improve and extend its use.

A picture of a current model iXR machine is shown in Figure 1.1. This machine consists of two
connected movable arms and a table on which the patient is lying. On the movable arm the X-
ray tube and detector are mounted. Besides the original photos, this system can even produce
X-ray movies while it rotates the arm to get a clear picture from different angles.

In the Allegio project the software of the iXR systems of Philips Healthcare (PHC) and especially
the software of the cardio vascular (CV) systems will be the topic of a case study.

These cardio vascular systems are X-ray systems, used mostly for angioplasty procedures. This
procedure reopens obstructed blood vessels, which for example can cause a heart attack. Dur-
ing the procedure doctors insert a tool into the body at a vessel in the groin. This tool is moved
through the blood vessels to the place of the obstruction. Doctors use X-ray to track the move-
ment of the tool within the patient’s body and to check if the procedure has been successful.
This method allows an obstructed vessel to be opened without invasive surgery.

Figure 1.1: The iXR machine

The market demands a constant extension of the features of CV systems, making the systems
increasingly complex. Possible new options are the automated tilting of the table as part of the
image acquisition process. The growing complexity to increases the development time of new
versions, while the market requires the “time to market” to become shorter.

1.1 Allegio project
Philips HealthCare (PHC) and the Embedded Systems Institute (ESI) initiated the Allegio project
to find methods to handle the increasing complexity in projects and to shorten the time to
market for their products. The partners in the Allegio project are the Embedded Systems Insti-
tute (ESI), Philips Healthcare (PHC), Verum, the University of Twente, Delft University of Tech-
nology and Eindhoven University of Technology. From the University of Twente the research
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2 Performance analysis for embedded software design

groups DACS1 and DE2 are involved.

The purpose of the Allegio project is the development and evaluation of new methods to de-
velop software for products. For a better understanding of the problem, an overview is given of
the current way of developing new products.

The development of a new product consists of the following four phases:

Requirement definition In this phase the requirements for the new product have to be listed.

Design space exploration Before actually implementing the product, different ways of imple-
mentation have to be evaluated.

System design and implementation The design is split into parts, which are implemented in-
dividually.

Integration and testing All parts are put together to form the complete system. After the inte-
gration is done, the complete system is tested.

The increasing complexity of the software leads to an increasing percentage of the project time
being spend in the testing and integration phase. Without reducing the number of errors per
1000 lines of code and with systems becoming more complex, more problems manifest during
the integration phase. This complexity makes fixing errors more difficult and makes it harder
to find all bugs and errors. To put this trend to a halt, PHC intends to adapt their design and
implementation methods to shorten the test and integrating time.

To achieve this goal, PHC wants to adopt the Analytical Software Design (ASD) method of
the company Verum. Verum claims that their structured design method with build-in model-
checking, reduces the number of errors made by programmers. This method saves time on bug
hunting, shortening test and integration phase. The implementation phase is also shortened
a little, because in this phase parts are already tested and bugs are fixed. In the Allegio project
several aspects of the ASD method will be investigated.

Both the current design method and the ASD method do not take performance into account.
However performance issues can also have a major impact on the duration of the software
development. Performance is part of the requirements of a software system, but is only taken
into account roughly in the design and implementation phase. Only in the integration phase
the performance can be checked with the requirements again.

1.2 Topic of this thesis
After combining all the software parts in the integration phase, for the first time in the project
the performance of the complete system can be analysed. If the performance does not meet
the requirements, modifications in this phase of the project are very time consuming, because
the software is already fully implemented and some parts may have to be rebuild from scratch
again. The problem localization and correction can lengthen the integration process dramati-
cally and disrupt the whole project planning.

To notice performance problems before the integration phase, an early stage performance eval-
uation is necessary. The contribution of the DACS group to the Allegio project will be to de-
velop models that can predict the performance of the generated software in an early stage of
the project. In this master thesis a start is made by analysing the performance of software gen-
erated using the ASD method.

Performance of software is usually expressed in responsiveness, i.e. how quickly the software
reacts to different stimuli. In case of CV systems such a stimulus could be, e.g. the doctor asking

1DACS = Design and Analysis of Communication Systems
2DE = Design Engineering

University of Twente



Introduction 3

for an exam. Every response to such a stimulus is called a task. An example of a task could be:
to prepare all the subsystems for an examination. The time between sending the stimulus and
the system having done all the responses to this stimulus, is called the response time and is the
measure of interest in this thesis. The response time is important because long response times
result in a system that is not user-friendly.

In practice a number of tasks are present in the system at the same time. Hence the handling
and blocking of one task influences the response time of other tasks. For Philips Healthcare the
following measures are interesting on the ASD architecture:
• The mean response times of tasks
• The Worst case response times of tasks
With an accurate model and efficient analysis method the performance of tasks can be eval-
uated on different software architectures, without completely implementing them. Using the
results from the analysis, performance issues can be located in an early stage of the develop-
ment. This makes it possible to incorporate performance in the design decisions of a project.

1.3 Contribution
Within this master project I would like to model the performance of the ASD generated soft-
ware using an analytical approach. Within this model and analysis method a strong hierarchy
is desired to keep the modelling and analysis possible for larger systems. The modelling and
analysis will be build up step by step, to keep the problem manageable. When necessary as-
sumptions or approximations will be to make the modelling and analysis possible. A simulator
(which simulates the working of the ASD generated software) will be build to validate the anal-
ysis results. Using this simulator the analytical results will be validated. Based on the validation
results, extensions will be made to the analysis method.

1.4 Outlook
This thesis is further organized as follows: In Chapter 2 the simplified version of the ASD struc-
ture used for this study is explained. Chapter 3 lists the requirements for the modelling and
analysis method, discusses several modelling and analysis methods for this problem and lists
the required background information for this thesis on queueing theory. In Chapter 4 the mod-
elling of a single ASD block is explained, that is developed in this thesis. The simulator build in
this project to validate the analytic models is presented in Chapter 5. In Chapter 6 the single
block analysis is validated and extended to multiple blocks. Using the results from the vali-
dation, Chapter 7 presents a general algorithm to model ASD structures with multiple blocks.
Finally in Chapter 8 the conclusion and recommendations are given.

Design and Analysis of Communication Systems



4 Performance analysis for embedded software design

2 Case study

In this chapter the simplified ASD structure used in this thesis is discussed. Firstly it is ex-
plained how the ASD method is used to make software (Section 2.1). Secondly, the modelling
structure is detailed out in Section 2.2. In the rest of the chapter the elements of the ASD gen-
erated software (Section 2.3) and their behaviour are denoted in Section 2.4.

2.1 Software design using ASD
PHC uses the design method ASD by Verum[16], which is a software development package with
integrated automatic formal verification possibilities. The software is build using the same
tool that does the formal verification. The ASD suite can check for deadlocks (reaching a state
from which it cannot exit) and life-locks (keeps running in a single loop, without doing normal
operation) in the code.

Developing software using the ASD suite is not just writing lines of code, but is largely based
on state diagrams. The generated software is composed of a number of communicating state
diagrams. These diagrams consist of states and transitions, to which functions can be attached.
The diagrams together with the functions are transformed into a working program by the ASD
suite. The basic idea is displayed in Figure 2.1. The states (the ovals) the program can be in
are displayed with their possible transitions (the arrows). These transitions can be triggered
by calls from other blocks or by the functions themselves. The functions connected to these
transitions are executed when a transition is triggered.

In the example program of Figure 2.1 there are three states: Running, Receiving and Waiting.
When the program is in the Running state, the program can be switched to the Receiving state
by an external call. In the Receiving state, a call can either move the program to the Running-
or to the Waiting state. In the Waiting state an incoming call either makes the program stay in
the Waiting state or move it to the Running state. When the transition from the Waiting state to
the Running state is made the code connected to this transition is executed.

The state diagram structure allows for formal verification, but also provides structure and overview
of the software to the designer. The ASD suite can automatically generate an executable from
these state diagrams and the corresponding functions. This means the diagrams are part of the
code, so they are always up to date. In other design philosophies, where diagrams are only used
for documentation, it often happens that, code is changed, however, updating the correspond-
ing diagrams is forgotten.

Figure 2.1: A state diagram with code connected to it

In this thesis a simplified version of the ASD structure is be used, that will be explained in the
next sections. This simplified version has a stricter structure than the real generated software,
which makes analysis easier.

University of Twente
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2.2 Y-model for ASD
When modelling the performance of the ASD based software, the performance evaluation of
ASD based software can be split up into the following parts:

Architecture This part contains the complete ASD architecture and block as well as the rela-
tions between all ASD blocks. The model of the architecture should closely reflect the
behaviour of the ASD blocks handling calls. The architecture is the basis for the whole
model so errors made in this part could be amplified by the other parts of the mode.

Tasks The performance of the complete task is the measure of interest. A task is, for example,
the reaction the system has to perform when a button is pushed. Each task follows its
own characteristic path through the software architecture. The flow of a task through the
architecture determines which parts of the architecture contribute to the response time
of this task.

Resource mapping The software runs on a computer with its own specifications. To be able
to make an accurate prediction of the performance, the platform on which the software
runs should also be taken into account. The most important influence is the fact that
multiple parts in the architecture share the same processor. Possibly, also the scheduling
mechanism of the operating system has to be incorporated in the model, because of the
performance loss due to switch over times (time to switch between two processes).

Eventually, all these different model parts form the complete model. To avoid enormous calcu-
lation times, a smart composition of the parts has to be found. The different modelling aspects
are modelled as independently as possible and only at the end they are combined to a single
model including all aspects. This, so called Y-model philosophy is displayed in Figure 2.2. In
the Y-model philosophy[6][7] all aspects of a system are handled separately and combined at
the end to model the complete behaviour.

Figure 2.2: Y-model

2.3 ASD block
The state diagram of Figure 2.1 is rather simple, whereas the state diagram of a complete soft-
ware system is enormous. To perform formal verification, the state diagram has to be kept
small enough, otherwise model-checking will take too much time due to the growing number
of states (state space explosion).

To keep the model manageable, the developer splits the state diagram of the complete soft-
ware system into smaller parts. Each part is implemented as a single ASD block. These blocks
have a clearly defined interface. Other blocks only see the interface and consider the block it-
self as a black box. The state space of a single block together with the interfaces of the other
blocks is much smaller than the state diagram of the complete software system, making formal
verification possible. Blocks communicate between each other using calls.

Design and Analysis of Communication Systems
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Transitions in the state diagram of Figure 2.1 can be triggered by calls issued by other blocks.
Two types of calls exist: synchronous calls (S) and asynchronous calls (AS). Synchronous calls
return to their caller when they have been finished, asynchronous calls do not send returns.
The asynchronous calls which an ASD block receives are queued upon arrival. Only one syn-
chronous call can be present in a block at the same time. Asynchronous calls are handled in a
First In First Out (FIFO) order. They have priority over synchronous calls. Only one call can be
handled at a time and calls in progress are not interrupted (pre-empted). Asynchronous calls
have priority over synchronous calls, hence a synchronous call can only be handled when the
asynchronous queue is empty. When a synchronous call is in service, upon the arrival of an
asynchronous call, the asynchronous call has to wait until the processing is done. A schematic
view of a single ASD block is given in Figure 2.3.

Figure 2.3: Schematic picture of an ASD block

All the discussed effects are displayed in the state diagram in Figure 2.4. In this figure, five
different states of an ASD block are shown:

(1) The block is empty: No call in the server and the queues are empty. Both synchronous
and asynchronous calls can arrive in this state.

(2) Only AS calls present: An asynchronous call is in the server and possibly a number of
asynchronous calls are in the queue. Both synchronous and asynchronous calls can ar-
rive in this state.

(3) Only a S call in server, no AS queue: Only a synchronous call is in the server, no asyn-
chronous calls are present in the block. Because there is already a synchronous call
present in he block in this state, only asynchronous calls can arrive in this state.

(4) An S call in server + AS queue: A synchronous call is in the server, but during serving the
synchronous call, one or more asynchronous calls have arrived. Because there is already
a synchronous call present in he block in this state, only asynchronous calls can arrive in
this state.

(5) AS in server, S call waiting + optional AS queue: An asynchronous call is in the server
and optional asynchronous calls are in the queue. A synchronous call is also waiting
for service. In this situation all the asynchronous calls have to be handled before the
synchronous call is served. Because there is already a synchronous call present in he
block in this state, only asynchronous calls can arrive in this state.

University of Twente
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The non-pre-emptive behaviour of the block allows for a synchronous call to be in service,
while one or more asynchronous calls are waiting in the queue.

Figure 2.4: Overall state diagram ASD block

2.4 ASD architecture
One block cannot be large enough to describe the whole program, so programs have to consist
of multiple blocks. But still the formal verification has to hold for the whole program. The
construction of the ASD architecture guarantees that the complete program will be deadlock
free, when all blocks of the program are deadlock free itself.

The generated software will have a certain structure, referred to here as the ASD architecture.
The ASD architecture is a tree structure composed of a number of communicating ASD blocks
as displayed in Figure 2.5. The tree structure determines that every master (parent) can have
multiple slaves (children), but every slave has only one master.

Figure 2.5: ASD tree structure

The ASD blocks can communicate with other blocks using synchronous (S) and asynchronous
calls (AS). The synchronous calls can only go top down in the structure, while the asynchronous
calls only go bottom up. Hence, when a block wants to send a call to its parent this is done via
an AS call, but when it addresses a child, this is done via a S call. This rigid structure is necessary
for formal verification by Verum’s ASD suite.

A new call can be send to one of its children or to its parent, as part of the response. When a
synchronous call is send to another block, the sender remains “blocked” until it has received a
return on the call, just like a function call in a program. This effect is illustrated in Figure 2.6.

Design and Analysis of Communication Systems



8 Performance analysis for embedded software design

In this example a master receives a synchronous call, does some processing (P) and then is-
sues a synchronous call to one of his slaves, which does the same. While a slave is processing,
the master stays blocked (B). The blocking is removed by the synchronous return. Issuing an
asynchronous call however, is non-blocking. The caller does not have to wait until the call has
finished, but just continuous with other work.

Figure 2.6: Timeline of nested synchronous calls

The tree structure together with the blocking ensures that there can only be one synchronous
call at one block, because there is only one master node that can issue a synchronous call to its
slave. As soon as a synchronous call is issued at one of the slaves, the master is blocked, so it
cannot issue any other synchronous calls.

With the asynchronous calls however, the block continuous serving the next call directly after
the previous asynchronous call is served. After finishing service of an asynchronous call, the
call directly goes the next block. Also the input of asynchronous calls does not wait for comple-
tion of the service. So there can be multiple calls present at each block.

2.4.1 Tasks
Eventually, the whole ASD structure forms a complete program, which has to respond to a num-
ber of tasks. Such a task could be, e.g., to configure the X-Ray tube. A task consists of one or
more calls and enters the architecture as synchronous or asynchronous call and then flows
through the architecture according to a predefined path.

The path depends on the type of task, but is always the same for a certain type of task. Tasks,
starting with a synchronous call, can only enter at the top of the tree structure. Tasks, starting
with an asynchronous call can only enter at the bottom of the architecture.

Two examples are given in Figure 2.7; In the left example, a task enters as synchronous call at
the top and flows though the architecture. The order of the issued calls is addressed by the
numbers next to the arrows. From start to end, the top block remains occupied, because it is
either busy or has outstanding synchronous calls. In the right example, a task enters at the
bottom as asynchronous call. In this example no blocking occurs, because only asynchronous
calls take place.

In the previous examples, the tasks consisted of either only synchronous or either only asyn-
chronous calls, but tasks can also consist of both types of calls, as shown in Figure 2.8. The
left example shows how synchronous calls trigger asynchronous calls. The order of the syn-
chronous calls and their returns is given by the numbers next to the arrows. Some of the
synchronous calls generate asynchronous calls. Synchronous call (3) at block D generates an
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Figure 2.7: Two task examples

asynchronous call (4A). This call is put into the queue of block D. The block continues exe-
cution with call 3 and the synchronous return is generated before the asynchronous call 4A is
started. The same happens with call 8A as reaction on call 8 at block C. The synchronous calls
do not wait until the asynchronous calls are started. The asynchronous calls are indicated by
letters, because the exact execution order between the 4X and 8X call series is not defined by
the architecture, but depends on the usage of the blocks by other tasks and their service time.
When the synchronous part is done, the synchronous return (10) is sent. After call 10 has taken
place the block A is available for service again, so call 4D and 8C will arrive also, but due to
the asynchronous handling it is not a priori clear which of them arrives first. In this situation,
the response time of this task is the time it takes between sending call 1 and finishing the last
asynchronous call (either 4D or 8C).

In the right example, asynchronous calls generate synchronous calls. In this case, asynchronous
call number 2 generates a synchronous call at block E (call number 3). Hence, the master (block
B) is blocked until the slave (block E) is finished, although the master (block B) is handling an
asynchronous call. After the return call (number 4), a new asynchronous call is issued at block
A. Finally call 6 finishes the task. So in this example,the order of the calls is predefined, despite
the fact asynchronous calls are involved.

Figure 2.8: Two more complex task examples

Design and Analysis of Communication Systems



10 Performance analysis for embedded software design

3 Performance analysis and queueing models

The purpose of this thesis is to find a suitable modelling formalism together with an efficient
analysis method to model and analyse the ASD structure. Before going into detail, firstly the
requirements for the solution have to be stated in Section 3.1. Secondly, different modelling
formalisms together with their analysis techniques are discussed in Section 3.2. Starting in
Section 3.3 the required background information about already existing techniques is listed.

3.1 Requirements for performance analysis
An adequate model has to be made together with an usable analysis method for the perfor-
mance analysis. To be useful in practice a number of requirements have to be met:

Scalability The whole software system will be huge (approximately 17 million lines of code).
Based on the earlier systems designed at Philips, it can be assumed that the complete
system will consist of up to 1000 blocks. The model and the analysis algorithm have
to be able to handle these sizes within a reasonable calculation time. This means, the
modelling formalism and the analysis technique have to be scalable.

Accurate The results of the model should reflect the reality close enough to make useful de-
sign decisions. The problem is that more accuracy results in longer calculation time, so
approximations have to be made. The challenge is to choose the right approximations,
so the model is accurate enough to be useful and small enough to obtain results quickly.

The primary measure of interest is the response time. Besides that also waiting time and service
time are interesting, because information on waiting time and service time can help to find the
bottleneck in the system.

3.2 Related work
When looking at the available modelling and analysis methods, there are a few useful ap-
proaches. These methods are listed below with a short description. More detail is given in
later chapters.

3.2.1 Waiting time propagation
This method is based on queueing theory. A single ASD block is modelled as a queueing sta-
tion, but the block cannot be modelled totally independent. Due to the blocking, the response
time of the parent depends on the response time of the children. The bottom blocks have no
children, so they do not have these dependencies and their response time can be calculated im-
mediately. Their response times then influence the response time of their parents and hence is
propagated upwards.

With this method the performance of several blocks sharing one processor cannot easily be
analysed, because the load of every block influences the performance of all the others. Then,
simple waiting time propagation is not possible anymore. Assigning fixed time shares can be
used to overcome this. The propagation method works only with exponentially distributed
processing times.

This thesis focusses on the waiting time propagation method.

3.2.2 Discrete event simulation
When a process is event based, it can be simulated efficiently using a discrete event simulator.
In contrast to a discrete time simulator used for, e.g. simulating differential equations, this
event simulator only processes the events and skips the parts where no events happen.
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In the processes of this thesis the inter-event times are randomly distributed. However, the
distribution of these variables is defined. Due to this defined distribution, several measures
(like queue length) have expected values.

The simulator is used to derive these expected values. In order to do so, for each randomly
distributed variable, it picks random numbers according to the specified distribution using a
random number generator. When a lot of events have been simulated, the estimated average
values approach the expected values. The simulator is used to validate the expected values de-
rived from the analysis. In order to obtain accurate estimations, long simulations are required,
making discrete event simulation only useful to analyse models of small systems. Typical values
to validate are response time of calls.

The discrete event simulation will be used to validate the waiting time propagation method.

3.2.3 Modular performance analysis
The basic idea of modular performance is that different parts in a system have their own char-
acteristic performance curves [2][17]. These curves are typically described as mathematical
functions. Each element in the chain modifies the input curve with its own curve and sends
the resulting output curve to the next component. With only a forward path, this technique
can be used nicely to estimate best and worst case latencies of the system under investigation.
This technique is often applied to perform jitter analysis on real-time systems. Because all the
system properties are described as curves, any distribution can be evaluated. When circular
dependencies occur in the model, as with processor sharing, this analysis technique has diffi-
culties, because the calculus behind the propagation of the performance curves cannot handle
cyclic dependencies. A way to solve this is to assign fixed time shares to each block on front.

In this thesis modular performance analysis will not be used, however, it could be evaluated in
a future project.

3.3 Background
The concept of waiting time propagation is based on queueing theory. The following sec-
tions provide the necessary background information on existing queueing theory and is based
on [9]. First the queues are introduced together with some important properties in Sections 3.4
upto 3.9. Next several analysis techniques are discussed for the presented queues (Sections 3.10
upto 3.13).

3.4 Queueing station
A queueing station consists of a queue and a server and is used by customers. A graphical
representation of a queueing station is given in Figure 3.1. Customers arrive to the queue and
wait there before they are put into service. They are handled, e.g., in a first come first served
order and leave the server when their service is completed. When a customer arrives, it is either
handled directly in case the server is free or it is put in the queue if the server is occupied.

  

   

Figure 3.1: Graphic representation of a queueing system

The time the customer spends in the server is denoted as service time. The inter-arrival time
is the time between the arrival of two succeeding customers. A graphical representation of the
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inter-arrival time is given in Figure 3.2. In this example, the inter-arrival times (IA1 and IA2)
are not identical, which is the case when there is variance in the inter-arrival times. Queueing
occurs because inter-arrival times are shorter than the service times. When the system is long
term stable (average inter-arrival times are longer than the average service times), variance in
the service and inter-arrival times can make queueing occur. In general it holds that the larger
the variance in the inter-arrival and service time, the more queueing occurs.

   

IA1 IA2

Figure 3.2: Visualisation of inter-arrival times

The time between entering the queue and leaving the server is called the response time. This
response time (R) is composed of the waiting time (W), i.e. the time the customer spends in
the queue, and the service time (S), i.e. the time the customer spends in the server. Hence, for
their expected values (E [. . .]) Equation 3.1 holds:

E [R] = E [W ]+E [S]. (3.1)

3.5 Kendall notation
To compactly describe a queueing station, the Kendall Notation is used. This notation consists
of the following 6 identifiers separated by vertical bars,

Arrivals | Service | Servers | Buffersize | Population | Scheduling.

“Arrivals” describes the customer arrival process. “Service” indicates the service process. The
“Servers” tells how many servers there are and “Population” denotes the size of the customer
population. “Scheduling” describes the scheduling scheme that is applied.

Often, buffer size, population and scheduling method are not listed in the description of a
queueing station, as with an M|M|1 queue. In that case the buffer size and population are
assumed to be infinite. When the scheduling method is not listed, the scheduling scheme is
first come first serve (FCFS).

The “Arrivals” and “Service” may have different values. The most common value is M (Mem-
oryless or Markovian): the inter-arrival or service times are random according to the negative
exponentially distribution. Also the G (General) is used when the times may have an arbitrary
distribution.

In this chapter the focus is on the M|M|1 queue, meaning:
• Negative exponentially distributed inter-arrival times
• Negative exponentially distributed service times
• One server
• Infinite buffer size
• Infinite population
• FCFS scheduling scheme

3.6 Little’s law and utilisation
Assuming that on average λ customers arrive per time-unit at a queueing station and that a
customer spends on average E [R] time in the systems, during this period on average λ×E [R]
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customers arrive. According to Little’s law [11], the average number of customers in the system
is E [N ] =λE [R].

Variants to this law hold for the average number of customers in the queue E [Nq ] =λE [W ] and
for the average number of customers in the server E [Ns] =λE [S].

Assuming that there is only one server, E [Ns] lies on the interval [0,1] (between empty and
busy). E [Ns] also indicates the probability that the server is busy. Therefore E [Ns] is often
called the utilisation and is denoted as ρ =λE [S].

There are some important remarks to make for Little’s Law:
• This law only expresses the relation between the average values for the arrival rate, residence

time and number of customers in the system.
• It holds for arbitrary distribution of the arrivals or service time.
• This law holds for single queueing stations but also for networks of queueing stations.
For finite queues a different version of Little’s law exists, but this is not discussed here.

3.7 The Markov property
Little’s law is based on average values, but more advanced analysis methods need to take the
distributions into account.

A queueing station can also be seen as a continuous-time and discrete-state stochastic process.
A stochastic process is a collection of random variables {X (t ) | t ∈R+}, where X (t ) can take any
value of the so-called state space I . In case of a countable infinite population and buffer, the
state space equals I = {0,1,2, . . .}.

In case of the M|M|1 queueing station the state space is discrete, because only whole customers
are allowed. The state space is also infinite, because the queue has an infinite size. The time
t ∈R+ is continuous, because customers can arrive and be served at any instant in time.

When both the inter-arrival and service times are negative exponentially distributed, a special
property holds called the Markov property. The Markov property states that the next state of the
stochastic process only depends on the current state and is independent of the past. In case of
an M|M|1 queue this means, that the time until the next customer arrives does not depend on
the time that has elapsed since the last customer has arrived. The only continuous distribution
that satisfies this memoryless property is the negative exponential distribution.

Because both, service times and inter-arrival times, are negative exponentially distributed in
the M|M|1 queue, the time it takes to have n customers in the queue only depends on the
current number of customers in the queueing station.

The Markov property in continuous time states that for non-negative times t0 < t1 < . . . < tn+1 ∈
R+ and the corresponding states x0, x1, . . . , xn+1 ∈I Equation 3.2 holds:

Pr{X (tn+1) = xn+1 | X (t0) = x0, . . . , X (tn) = xn} = Pr{X (tn+1) = xn+1 | X (tn) = xn} . (3.2)

This equation states that the probability to be in state xn+1 (at time tn+1), only depends on the
current state of the queueing station xn at time tn and not on what happened before time tn .

3.8 The PASTA property
For queueing stations with negative exponentially distributed inter-arrival times, the number
of arrivals in a given interval is Poison distributed. For such an arrival process the so called
PASTA property holds. PASTA abbreviates Poison Arrivals See Time Averages and states that
when a new customer arrives, it sees the queue as in equilibrium. Hence, if a customer arrives
according to a Poison arrival process, he experiences the average queue length.
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3.9 CTMC
A continuous time and discrete state space stochastic process, for which the Markov property
holds, is called a Continuous Time Markov Chain (CTMC). The CTMC can be graphically dis-
played as state transition diagram. In Figure 3.3, the state transition diagram of the CTMC
underlying an M|M|1 queueing station is displayed. In this diagram, the states are displayed
as vertices and the edges show the transitions from state i to j . The edges indicated with λ,
model the arrival of customers, while serving of customers is modelled by edges equipped with
µ. The rates of the edges (λ and µ) are parameters of the negative exponential distribution. In
this CTMC state 0 stands for an empty system and state i means there are i customers in the
system, i.e. there are i −1 customers in the queue.

Figure 3.3: The CTMC of an M|M|1 queue

Besides the graphical representation of Figure 3.3, the CTMC of the M|M|1 system can also be
described by its generator matrix Q. This matrix contains the same information as the figure,
where in general row i indicates the ingoing rates into the other states contributed by state i .
Element qi , j indicates the rate for a transition from i to j . The sum of each row has to be zero.

The first row in the Q matrix (Equation 3.3) represents the outgoing transitions from state 0.
Element [0,1] in the matrix is λ because there is a transition from state 0 to state 1 with rate λ.
The element [0,0] is −λ because total sum of outgoing rates from state 0 is λ, so as incoming
rate this becomes −λ. The second row lists the outgoing transitions from state 1. Element [1,0]
is µ due to the transition of rate µ from state 1 to state 0. The transition with rate λ from state 1
to 2 causes element [1,2] to be λ. The sum of outgoing rates is λ+µ, so element [1,1] is −(λ+µ).

Q =


−λ λ 0 0 0 · · · 0
µ −(λ+µ) λ 0 0 · · · 0
0 µ −(λ+µ) λ 0 · · · 0
0 0 µ −(λ+µ) λ · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

 (3.3)

The state of a system is a random variable, hence, the system can be evaluated using probabil-
ities. A vector ~p(t ) can be defined, which indicates for every state i as pi (t ) the probability of
being in that state at time t . The complete vector is shown in Equation 3.4.

When the system starts empty p0(0) = 1 and the probabilities of being in other states are zero, .
While time evolves, the change of the state is defined by differential Equation 3.5. The changing
behaviour of the state probability vector ~p over time is called transient behaviour. When the
system is stable, eventually, it will reach a steady-state. In steady-state, the state probability

vector does not change any more, resulting in: ∂
~p(t )
∂t = 0.

~p(t ) = [
p0(t ) p1(t ) p2(t ) . . . p∞(t )

]
(3.4)

∂ ~p(t )

∂t
= ~p(t )Q (3.5)

The steady-state probabilities can be used to calculate the expected waiting times E [W ] and
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all kind of related measures. The steady state probabilities can be calculated by solving Equa-
tion 3.6 under the condition of Equation 3.7 (the sum over all probabilities equals 1).

~p(t )Q =~0 (3.6)
∞∑

i=0
pi = 1 (3.7)

3.10 Non-preemptive priority scheduling
The queues discussed so far cannot handle classes of customers differently. In practice how-
ever different priorities are often applied to different classes. With non-preemptive priority
scheduling customers with higher priority are always handled before customers of lower pri-
ority levels, but the work on the customer in service is never interrupted (= non pre-emptive).
A graphical representation of the non-pre-emptive priority scheduling is given in Figure 3.4.
In the queueing systems each priority level has his own queue, corresponding arrival rate and
service rate, but they share a single server.

Figure 3.4: Different priority levels using a single server

For non-pre-emptive priority scheduling systems, where customers (at each priority level) have
negative exponential distributed inter-arrival times and an arbitrary distributed service time
(M|G|1) an analysis method for the waiting times of each priority is available. The waiting time
for a customer, arriving to priority level r is composed of the following parts:
• The work that has to be done on the customer that is currently in service.
• The time needed to serve the customers already in the queues with higher or equal priorities

k = 1, . . . ,r when the customer arrives.
• The time needed to serve the customers with higher priorities k = 1, . . . ,r − 1 which arrive

during the waiting period of this customer.
This can be written into the following equation:

Wr = TP +
r∑

k=1
T ′

k +
r−1∑
k=1

T ′′
k . (3.8)

In this equation Wr is the waiting time for a customer of priority level r . TP is the remaining
service time of the customer in service when this customer arrives. T ′

k is the time needed to
serve the customers of priority k that are already in the queue when this customer arrives. T ′′

k
is the time it takes to serve the customers of priority k that arrive while this customer waits for
service. Equation 3.8 can be rewritten into Equation 3.9 to find the expected values,
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E [Wr ] = E [TP ]+
r∑

k=1
E [T ′

k ]+
r−1∑
k=1

E [T ′′
k ]. (3.9)

To actually compute the values for E [Wr ], the terms of Equation 3.9 have to be filled in. As
the inter-arrival times are negative exponentially distributed, the PASTA property holds. This
means that each arriving customer finds all queues to be in equilibrium.

E [TP ]: The remaining service time of the customer in service depends on the type of customer
and the probability of having a customer of this class in the queue, which is ρr . The remaining
processing time for a class r customer is E [S2

r ]/2E [Sr ]. By combining these two expressions,
the remaining service time of the customer in service is given by Equation 3.10,

E [TP ] =
P∑

k=1
ρk

E [S2
k ]

2E [Sk ]
= 1

2

P∑
k=1

λk E [S2
k ]. (3.10)

E [T ′
k ]: Lists the amount of work an arriving customer of class k finds in front of him. Because

of the PASTA property, an arriving job sees the queues in equilibrium. Using Little’s Law the
number of customers in the queue can be calculated as follows: E [Nq,k ] = λk E [Wk ]. These
customers require on average E [Sk ] = 1/µk service, resulting in:

E [T ′
k ] = E [Nq,k ]

µk
= λk E [Wk ]

µk
= ρk E [Wk ]. (3.11)

E [T ′′
k ]: Represents the time it takes to process the work that arrives in queue k, while a customer

of lower priority waits for service. During the waiting time of a class r customer, on average
λk E [Wr ] customers arrive in queue k, where each customer requires on average 1/µk service.
This results in Equation 3.12:

E [T ′′
k ] = λk E [Wr ]

µk
= ρk E [Wr ]. (3.12)

By substitution these results into Equation 3.9, Equation 3.13 is obtained.

E [Wr ] =
P∑

k=1

λk

2
E [S2

k ]+
r∑

k=1
ρk E [Wk ]+

r−1∑
k=1

ρk E [Wr ]

=
P∑

k=1

λk

2
E [S2

k ]+
r−1∑
k=1

ρk E [Wk ]+
r∑

k=1
ρk E [Wr ]

=
P∑

k=1

λk

2
E [S2

k ]+
r−1∑
k=1

ρk E [Wk ]+E [Wr ]

(
r∑

k=1
ρk

)
(3.13)

By bringing E [Wr ] outside the equation, this becomes Equation 3.14. When σr = ∑r
k=1ρk is

used, Equation 3.15 is acquired.

E [Wr ] =
∑P

k=1
λk
2 E [S2

k ]+∑r−1
k=1ρk E [Wk ]

1−∑r
k=1ρk

(3.14)

=
∑P

k=1
λk
2 E [S2

k ]+∑r−1
k=1ρk E [Wk ]

1−σr
(3.15)

For the queue with the highest priority (r = 1) this is Equation 3.16, for r = 2 (second priority)
this results in Equation 3.17. The generalized version is Equation 3.18.
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E [W1] = E [TP ]

1−σ1
= E [TP ]

1−ρ1
=

∑P
k=1λk E [S2

k ]

2(1−ρ1)
(3.16)

E [W2] = E [TP ]+ρ1E [W1]

1−σ2
= . . . = E [TP ]

(1−σ2)(1−σ1)
(3.17)

E [Wr ] = E [TP ]

(1−σr )(1−σr−1)
(3.18)

Equation 3.18 is called Cobham’s formula [3], [4]. Using this function for non-pre-emptive pri-
ority scheduled M|G|1 queue, the waiting time for each priority class can be derived, based on
the first and second moment of the service times and the arrival rates.

3.11 Quasi birth-death processes
Recall the CTMC model of an M|M|1 queue as displayed in Figure 3.3. In an M|M|1 queue cus-
tomers enter the system with rate λ and leave the system at rate µ. This process is also denoted
birth-death process. The state-space of the M|M|1 queue is infinite, but it is very regular, as
each state only has transitions to its direct neighbours. As shown in the generator matrix Q of
the M|M|1 queue in Equation 3.19, except for the first column, the next row is just a shifted
version of the previous one. This regular structure makes it possible to derive the steady state
probabilities, although the system has an infinite state space.

Q =


−λ λ 0 0 0 · · · 0
µ −(λ+µ) λ 0 0 · · · 0
0 µ −(λ+µ) λ 0 · · · 0
0 0 µ −(λ+µ) λ · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

 (3.19)

This regularity can be generalized and extended to more complex CTMCs. The states of an
M|M|1 queue can be extended to levels, each level consisting of more then one state. Tran-
sitions are still only allowed to neighbouring levels and to states within the same level, this
process is called a quasi birth death (QBD) process. Quasi birth death (QBD) processes have a
starting level 0 and repeating levels i ∈ N . QBD processes are infinite in one dimension and
have a finite size in the other dimension.

Because each level consists of multiple states, scalar values for the transition rates between
levels do not work, instead matrices have to be used and also transitions within a level have
to be defined. A block schematic view of the levels and corresponding transitions is displayed
in Figure 3.5. The levels are displayed as blocks, the text with the arrow states the name of the
corresponding transition matrix. The leftmost level has a different structure and is called the
boundary level. All the other levels have the same structure and continue to infinity and are
therefore called repeating levels.

Figure 3.6 shows the possible states and transitions within a level. In the level the states of
the CTMC (circles) with the transitions (arrows) are shown. The ovals behind the transitions
indicate in which matrix these transitions are described. To keep the image clear only the tran-
sitions on the right are marked, but on the left side this marking holds as well. So the transi-
tions (arrows in the figure) indicated by an oval with dotted lines are described by matrix A0,
transitions indicated by with ovals with solid lines are described by matrix A1 and transitions
indicated by ovals with dashed lines are described by matrix A2.

For a QBD process a generator matrix Q and a state probability vector ~p can be defined. Each
level has its own state probability sub-vector ~zi . The state vector of the complete CTMC is
composed of all these state vectors, as displayed in Equation 3.20. The generator matrix Q of
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Figure 3.5: QBD level transitions

Figure 3.6: QBD level transitions

the QBD process consists of the matrices that describe the transitions within the levels and
between the levels. The composition of the generator matrix is displayed in Equation 3.21.

~p = [
~z0 ~z1 ~z2 . . . ~zi ~zi+1 . . . ~z∞

]
(3.20)

Q =


B00 B01 0 0 0 · · · 0
B10 A1 A0 0 0 · · · 0

0 A2 A1 A0 0 · · · 0
0 0 A2 A1 A0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

 (3.21)

For the levels i ≥ 1, the size of the state vector is the same. The size of the state vector for level
0 could deviate from that. Hence, matrices B01 and B10 may be rectangular instead of square
and B00 may be of different size then A1. Matrices A0, A1 and A2 always have to be square and
of the same size, because the state vectors they operate on are all of the same size.

When the M|M|1 is interpreted as QBD and the state sub-vectors are ~zi = pi , the matrices take
the following form:
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B00 = [−λ],

B01 = [λ],

B10 = [µ],

A0 = [λ],

A1 = [−(λ+µ)],

A2 = [µ].

3.11.1 Matrix geometric solution
In this thesis the steady-state probabilities of a QBD process are required. For finite state-space
CTMC the steady-state probabilities can be derived by solving equations 3.6 and 3.7. For QBD
processes, Equation 3.6 cannot be solved straigth forward, because both ~p and Q are infinite in
size.

To derive the steady-state probabilities for a QBD process, the matrix geometric method [14]
exists. This method is the matrix version of the scalar one, used to calculate the infinite sum of
a geometric series.

For the matrix geometric solution a matrix R is defined as in Equation 3.22. The matrix R relates
the steady-state probabilities of two neighbouring levels. This equation holds for all levels i ≥ 2.
The boundary matrices B00, B01 and B10 influence level 0 and 1 and therefore sub-vectors ~z0

and ~z1 have to be treated differently.

~zi = ~zi−1R (3.22)

By using the definition of the Q matrix in Equation 3.21, Equation 3.23 can be derived for all
levels i ≥ 2. Together with Equation 3.22 this can be rewritten into Equation 3.24 and further
into Equation 3.25. When R is brought to the other side of the equal sign, this becomes Equa-
tion 3.26. As the resulting equation is not linear, solving Equation 3.26 is not straight forward.
The easiest way is to use successive substitution [10], which solves it by iterating Equation 3.27.
As intial value R(0) = A0 A1

−1 can be taken.

~zi A0 + ~zi+1A1 + ~zi+2A2 =~0 (3.23)

~zi A0 +~zi RA1 +~zi R2A2 =~0 (3.24)

~zi (A0 +RA1 +R2A2) =~0 (3.25)

R = (A0 +R2A2)A1
−1 (3.26)

R(k +1) = (A0 +R2(k)A2)A1
−1 (3.27)

Next the steady-state probabilities have to be derived. When the steady state sub-vectors ~z0

and ~z1 are known, the other probabilities can easily be calculated using equation 3.22. From
Equations 3.21, Equations 3.28 and 3.29 can be derived.

[
~z0 ~z1

] ·[ B00

B10

]
=~0 (3.28)

[
~z0 ~z1 ~z2

] ·
 B01

A1

A2

=~0 (3.29)

Equation 3.29 can be rewritten into Equation 3.30, because ~z2A2 = (~z1R)A2.
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[
~z0 ~z1

] ·[ B01

A1 +RA2

]
=~0 (3.30)

Combining equations 3.28 and 3.30, Equation 3.31 can be constructed.

[
~z0 ~z1

] ·[ B00 B01

B10 A1 +RA2

]
= [

~0 ~0
]

(3.31)

To derive ~z0 and ~z1 Equation 3.31 has to be solved. Because this equation originates from the
Q matrix, it does not have a unique solution. Therefore, an additional equation is needed. So
the equation

∑∞
n=1 pi = 1 is added to find a unique solution, which is written as function of R,

~z0 and ~z1 in Equation 3.32. The derivation is based on the standard closed-form for the infinite
sum of a geometric series.

∞∑
i=0

~zi~1 = ~z0~1+
∞∑

i=1
~zi~1 = ~z0~1+ ~z1

( ∞∑
i=0

Ri

)
~1 = ~z0~1+ ~z1(I−R)−1~1 = 1 (3.32)

Matrix R has a rank one fewer than the number of rows. Since matrix R is derived using itera-
tion, the linear relations might be distorted, due to small approximation errors, resulting in a
rank equal to the number of rows. To reduce the influence for these errors, ~z0 and ~z1 can be
calculated in a robust way using Equation 3.33. In this equation B+ is the pseudoinverse of B.

[
~0 ~0 1

] ·[ B00 B01 ~1
B10 A1 +RA2 (I−R)−1~1

]+
= [

~z0 ~z1
]

(3.33)

Since the steady-state probabilities can be derived for ~z0 and ~z1, the steady-state probabilities
for ~zi where i ≥ 2 can be derived, using Equation 3.34;

~zi = ~z1R(i−1). (3.34)

Stability
The matrix geometric solution is based on calculating the R matrix, which is computed by it-
eration. However, iteration only works when the matrix converges to a unique solution. This
matrix only converges when the CTMC, to which the matrix geometric solution is applied, is
stable. An unstable or marginally stable system does not have steady-state probabilities.

A test for the stability is described by Nelson [14]. This test calculates a steady-state vector
~π based on the generator matrix A = A0 +A1 +A2, by solving the equation ~πA =~0 under the
condition that

∑
i πi = 1. When the system is stable the average flow from level i to i +1 should

be smaller then the flow from i to i −1. Hence, for a stable system~πA0~1 <~πA2~1 holds.

3.12 Phase-type distributions
The analysis methods presented earlier rely on the Markov property, which holds for the neg-
ative exponential distribution. A generalisation of the negative exponential distribution is the
phase-type distribution. In Figure 3.7 a CTMC is shown with a single absorbing state (a state
with no outgoing transitions). When the initial probability distribution is p(0) = [1,0], the time
until the absorbing state 1 is reached is negative exponentially distributed.

When this CTMC is generalized by replacing state 0 by multiple states, the time until the ab-
sorbing state is reached is phase-type(PH) distributed. A graphical representation of a general
phase-type distribution is shown in Figure 3.8. For this CTMC the state space is defined as
I = {1, . . . ,m,m+1}, where state m+1 is the absorbing state and states 1 to m are transient. For
this generalized CTMC a generator matrix Q can be defined as in Equation 3.35;
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Figure 3.7: The exponential distribution as phase-type

Q =
[

T ~T0
~0 0

]
. (3.35)

Where the transition matrix T of size m ×m and ~T0 is a column vector with only non-negative
elements. To make Q a proper generator matrix the sum of the rows has to be 1, i.e. T·~1+~T0 =~0.
Hence, T itself is not a proper generator matrix and vector ~T0 can be derived from matrix T. The
initial state vector is given by (~a, am+1) and has to sum up to 1.

A phase-type distribution is fully described by ~a and T. Both ~T0 and am+1 can be derived from
them.

Figure 3.8: Graphical representation of a general phase-type distribution

3.12.1 Manipulation and properties
The i -th moment of a PH-distribution is given by Equation 3.36,

E [X i ] = (−1)i i ! (~a T−i~1). (3.36)

Phase-type distributions can be combined to form a new replacing phase-type distribution.
The first basic combination is convolution (two distributions after each other), as schematically
shown in Figure 3.9(a). The second denoted is mixture (choosing one of two distributions), as
schematically shown in Figure 3.9(b).

(a) Convolution (b) Mixture

Figure 3.9: Combining phase-type distributions

When considering two phase-type distributions (~a1,T1) and (~a2,T2), the convolution of these
distributions (~a,T) can be calculated using Equations 3.37 and 3.38.
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~a = [
~a1, (1− ~a1~1)~a2

]
(3.37)

T =
[

T1 −T1~1 ~a2

0 T2

]
(3.38)

To calculate the mixture, also the probability p of taking phase 1 has to be taken into account.
The mixture of both distributions can be calculated using Equations 3.39 and 3.40.

~a = [
p~a1, (1−p)~a2

]
(3.39)

T =
[

T1 0
0 T2

]
(3.40)

3.13 Moment matching
Real systems are often very large and analysis is therefore computationally complex. Simplify-
ing this structure by analysing one part at a time can speed up the analysis. When these systems
consists of several sub-systems doing event handling, the response time of the event handling
by a sub-system has an own distribution. Due to queueing, this experienced response time can
have a complex distribution.

In the systems, investigated in this thesis, all basic random variables are assumed to be negative
exponentially distributed. Hence, compositions of these random variables result in phase-type
distributions. Although, considering a sub-system as a complex distribution, can reduce the
complexity of the total system, analysis with complex distributions remains difficult. To speed
up the analysis sacrificing a little accuracy, the distribution can be simplified.

At first the exact distribution has to be specified. The exact distribution is often hard to derive,
deriving the moments (first (E [X ]), second (E [X 2]) , third (E [X 3]), ... ) is often much easier. The
simplified phase-type distribution has to match these moments. A number so called moment
matching algorithms exist for this task. In this thesis the algorithm of Osogami [15] is used.

This algorithm matches a fixed CTMC structure as shown in Figure 3.10, to the provided mo-
ments. This CTMC structure is . The (1−p) path goes directly to the absorbing state represent-
ing a waiting time of zero. With probability p an Erlang part is started. This Erlang phase is used

to make the distribution fit the provided moments when the ratio E [X 2]
E [X ]2 is small. The last part

is a 2-phase Coxian distribution, which is used to give the distribution the right ratio between
E [X 2] and E [X 3].

Figure 3.10: Phase structure for the moment matching, source: [15]

The matching algorithm finds values for λX 1, λX 2, λY , pX and the number of phases in the
Erlang part (n) to fit the phase-type distribution of Figure 3.10 have the same moments as the
moments provided. The algorithm outputs the distribution that is found as a phase-type dis-
tribution with a vector ~a and a matrix T.
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When considering the waiting time of an M|M|1 queue, there is a positive probability of having
a waiting time of zero (when the server is empty). This behaviour cannot be derived from the
moments, as a zero waiting time does not add to the moments. To increase the accuracy of the
matching, the probability of having having to wait can be added to the matched distribution by
setting the value for p.

The advantages of this moment matching algorithm are:
• It has been proven that the number of required phases by this algorithm is at most 1 more

than the minimum number of required phases to match the original distribution.
• It is well explained and documented.
• It uses 3 moments, where some other algorithms use only 2 moments, resulting in higher

accuracy.
Detailed information on the matching algorithm can be found in [15].
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4 Single block analysis

An ASD based system has to execute different tasks. An example of a task can be the response of
a system to someone pushing a button. The performance of the system is characterised by the
time it takes for the system to respond to such a task. The response time of a task is specified as
the time between starting it and finishing it completely.

This chapter starts with an introduction to the behaviour of an ASD block in Section 4.1. Then
the analysis of a single block is discussed in Sections 4.2 and 4.3. The chapter ends with the
method developed for derivation of waiting times for different calls to be executed on the same
block in Sections 4.4 and 4.5.

4.1 Single ASD block characteristics
As listed in the previous section, the response time of a task is composed of the response times
of multiple blocks. Therefore, the response time of each block is required.

A program generated by ASD consists of several ASD blocks. Each type of task follows its own
characteristic path through the ASD structure. An example of the timeline of a task is shown
in Figure 4.1. The task starts with a synchronous call at block A in an ASD architecture. After
finishing at block A, a synchronous call is done on block B, after this one has returned, it is
followed by a synchronous call at block C. The return of block C initiates a synchronous call to
be processed on block B.

Figure 4.1: Path through the architecture

Figure 4.1 gives the path the tasks takes through the architecture, but in this thesis we are more
interested in the response time of the task. Therefore a timeline of the situation is shown in Fig-
ure 4.2. In this figure for each block a line in present with the events happening at a block. The
blocks with a “P” indicate processing that is going on, the blocks with a “B” indicate blocking.
As long there is no block between two events, no time elapses, i.e., no time elapses between the
return indicated by 5 and the call indicated by 6.

So the task starts with processing on block A, next block B starts processing and block A is
blocked. While block C starts processing, block A remains blocked, but block B is free again
and after block B has done the final processing the task finishes. However the blocking may
interfere with other task, from this timeline it can be seen that the processing at the individual
blocks determines to response time.

By stripping all the elements that not contribute to the response time, the timeline of Figure 4.2
can be simplified to the time line of Figure 4.3, which only indicates the processing parts.

This thesis only discusses the analysis of tasks consisting of either synchronous or asynchronous
calls. Combinations of asynchronous calls and synchronous calls within one task are not inves-
tigated yet, to start simple.
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Figure 4.2: Timeline of the path of Figure 4.1

Figure 4.3: Composition of the response time of a task

4.1.1 Structural behaviour
As discussed in Chapter 2, synchronous calls introduce blocking. When a block issues a syn-
chronous call to its slave, the block itself is blocked until the slave block has finished processing
the call.

Asynchronous calls however, do not cause blocking. As soon as a block finishes processing an
asynchronous call and issues a call to another block, the block is free to process new calls.

These effects are illustrated in Figure 4.4. A task with only synchronous calls is currently pro-
cessed at the grey block. The parent node is blocked until the execution at the grey block fin-
ishes. Meanwhile an asynchronous call arrives at the grey block, which belongs to another task.

The bottom blocks in the tree, as shown in Figure 4.4, cannot be blocked, because they have no
slaves to issue synchronous calls to. In this chapter a model is build that does not incorporate
blocking. So the results of this chapter only adequately model the behaviour of the bottom
blocks in the tree.

4.1.2 Block behaviour
The behaviour of an ASD block can be modelled as a special queueing system, as displayed
in Figure 4.5. Both types of calls, synchronous and asynchronous, have their own queue and
asynchronous calls have priority over synchronous calls. The asynchronous calls arrive at the
top queue (the black jobs), that is modelled to be infinite, according to a Poisson process with
a specified rate. If the server is busy jobs are queued, otherwise they are served immediately.
When their service is finished they leave the block.

In the queuing station the synchronous calls are shown in grey. The queueing station can only
hold one synchronous job, that is either waiting for service, in service, or experiencing its think
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Figure 4.4: Blocking with synchronous calls

time. Hence, this is modelled as a closed system. The think time models the time it takes
between the finishing of a synchronous call and the arrival of the next synchronous call. Think
time represents the time the user “thinks” between the moment a synchronous call finishes
and a new synchronous call is put into the system. Making the think time 0 would make the
system always busy. When modelling multiple blocks, this think time can also represent the
service time of other blocks.

Figure 4.5: Queue representation of a single ASD block

Since at a single block there cannot be more than one synchronous call present, the inter-arrival
time of a synchronous call consists of three parts: The think time, waiting time and service time.
This is graphically shown in Figure 4.6. At the top line the inter-arrival time of a synchronous
call is shown, which consists of its think time, the time it has to wait for all asynchronous calls
to be processed and its service time. The later is shown in the second line of the figure.
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Figure 4.6: Timeline for the synchronous calls

4.1.3 M|G|1 with vacations
At first sight the behaviour of the asynchronous calls appears to match the M|G|1 model with
vacations [5], in which the server takes vacations when the queue is empty. During this vaca-
tion, the server is unavailable. The duration of the vacations has a certain distribution. When
mapping this to the ASD block, the vacations would model the behaviour of the synchronous
calls.

There are two main types of these vacation systems, which are described in more detail [5]
and [9]:

M|G|1 with multiple vacations A server that returns from vacation and finds the server empty
takes another vacation.

M|G|1 with a single vacations When the server finds the queue empty, it takes only one vaca-
tion. When it returns from its vacation and finds the server still empty it does not take
another vacation.

Both variants of the vacation model do not completely resemble the behaviour of a single ASD
block. The first assumes that two synchronous calls can follow each other directly with zero
think time, which is not true in an ASD block. The single vacation model is also not modelling
the behaviour of the ASD block correctly, since with a low arrival rate for the asynchronous
calls it is possible that multiple synchronous calls (vacations) have to be processed between
two asynchronous calls.

4.1.4 Outlook on the applied analysis methods
The analysis of the queuing station of Figure 4.5 is based on Cobham’s formula as discussed
in Section 3.10, which can handle an arbitrary distributed service time. Cobham’s formula as-
sumes Poisson arrivals, however this is not the case in our model of an ASD block due to the
think time and the restricted population of one synchronous call. To overcome this problem,
several measures have to be derived from the underlying CTMC, which can only be derived
when all the transitions are negative-exponentially distributed.

Therefore the service times of the calls is assumed to be negative exponentially distributed.
Also inter-arrival time for the asynchronous calls is assumed to be negative exponentially dis-
tributed. For the synchronous calls the think time (the time between leaving the server and
re-entering the block again) is assumed to be negative exponentially distributed.
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The think and service times of the synchronous call are negative exponentially distributed.
However, the waiting time of the synchronous calls is phase type distributed, as it consists of
the service times of the asynchronous calls, which are negative exponentially distributed. The
inter-arrival times for synchronous calls is than a convolution of the think time, waiting time
and service time distributions, which results in another phase type distribution. The expected
inter-arrival time for the synchronous calls E [I As] (Equation 4.1) is the sum over the expected
think time E [Zs], the expected waiting time E [Ws] and the expected service time E [Ss].

E [I As] = E [Zs]+E [Ws]+E [Ss] (4.1)

4.2 Waiting time analysis
To calculate the total waiting time for the two categories of calls, the basic equation for non-
pre-emptive priority scheduling [3] can be used, given in Equation 3.9. Adjustments will be
made to this formula to cope with the arrival distribution of the synchronous calls.

Asynchronous calls have the highest priority, so they only have to wait for asynchronous calls
in the queue. Calls that are already in service are not interrupted. So when a synchronous call
is in the server upon arrival of an asynchronous call, it has to wait until the processing of the
synchronous call is finished.

The waiting time for the asynchronous calls can be derived by filling in the terms E [TP ],
∑r

k=1 E [T ′
k ]

and
∑r−1

k=1 E [T ′′
k ] of Equation 3.9.

The term E [TP ] accounts for the work in the server when an asynchronous call arrives. At the
arrival of an asynchronous call, either a synchronous or an asynchronous call can be in the
server. According to Equation 3.10 the contribution by the asynchronous calls is 1

2λasE [S2
as] =

λas

µ2
as

and the synchronous calls contribute ρs
E [S2

s ]
2E [Ss ] = 1

E [I As ]µ2
s
. The remaining service time is then

given by E [TP as], which is the weighted sum as displayed by Equation 4.2,

E [TP as] = ρas · 1

µas
+ρs · 1

µs
= λas

µ2
as

+ 1

µ2
s ·E [I As]

. (4.2)

The second term
∑r

k=1 E [T
′
k ] describes the work an arriving call finds in the queues of the same

and higher priority. Since, the asynchronous calls have the highest priority, they only have to
wait for the processing of calls from their own class. This is given by Equation 4.3,

r∑
k=1

E [T
′
k as] = ρas ·E [Was]. (4.3)

As asynchronous calls have the highest priority, no jobs of higher priority can arrive while an
asynchronous call waits for service. Meaning

∑r−1
k=1 E [T

′′
k ] = 0 in this case.

The waiting time of an asynchronous call is expressed as Equation 4.4, which is derived by
filling in the derived terms in Equation 3.9. This results in the waiting time for the asynchronous
calls given by Equation 4.5.

E [Was] = λas

µ2
as

+ 1

µ2
s ·E [I As]

+ρasE [Was] (4.4)

E [Was] =
λas

µ2
as
+ 1
µ2

s ·E [I As ]

(1−ρas)
(4.5)

Because the inter-arrival time of the asynchronous calls is exponentially distributed, the PASTA
property holds. So for the expected utilization and queue length at arrival, the time average can
be taken.
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The synchronous calls have low priority, so when a call arrives at a block it has to wait until
the block is empty, before it goes into service. Because each block contains at most one syn-
chronous call, it only has to wait for the service of asynchronous calls currently present and
those arriving during waiting.

The waiting time for the synchronous calls can also be derived by filling in the elements of
Equation 3.9.

Upon the arrival of a synchronous call, only an asynchronous call can be in the server, be-
cause the ASD structure only allows one synchronous call at a block. The remaining process-
ing time of an asynchronous call at an arbitrary moment during processing is described by
E [S2

as]/2E [Sas], which equals 1/µas . Multiplying this by the probability of finding the server
busy at arrival, the contribution of the current call in the server to the waiting time can be ob-
tained.

For synchronous calls the PASTA property does not hold, because the inter-arrival times are
not negative exponentially distributed. This means the arriving calls do not see the queue in
equilibrium. Hence, the probability of finding a call in service at the arrival of a new call, is
no longer equal to the utilization. The probability of an arriving synchronous call finding the
server busy, has to be calculated otherwise and will be called ras , resulting in Equation 4.6 for
E [TPs]. Because the PASTA property does not hold, this ras is not equal to the time average
utilization ρas . The derivation of ras will be discussed later on.

E [TPs] = ras ·
E [S2

as]

2E [Sas]
= ras

µas
(4.6)

A remark has to be made when using Equation 4.6 in case E [Sas] is much larger than E [Zs]. In
Equation 4.6 the remaining work is given by E [S2

as]/2E [Sas]. This formula is based on the inde-
pendence between the moment of arrival of a synchronous call and the moment at which the
processing of an asynchronous call started. However, depending on the parameter choices, the
assumption of independence may not be correct. After a synchronous call is served, two things
happen; (i) the first asynchronous call from the queue is put into service, and (ii) the think time
of the synchronous call is initiated. In case the expected service time of an asynchronous call
is much greater than the think time of a synchronous call E [Sas] À E [Zs], this dependency is
strong. This is because, upon arrival of the next synchronous call, the remaining service time
of the asynchronous call is larger than the average value E [S2

as]/2E [Sas]. Otherwise, the error
induced by assuming this independence is negligible.

Next, the expected amount of work which an arriving synchronous call finds in the queues
of equal and higher priority has to be derived. Recall, that the PASTA property does not hold
for synchronous calls, the system is not in equilibrium at the arrival of a synchronous call, so
the queue length at the arrival of a synchronous call E [Nq A] is not equal to the time average.
Therefore E [Nq A] is not so easy to calculate and its computation will be discussed later on. By
assuming E [Nq A], the time required to process the queue that is found upon the arrival of a
synchronous call can be calculated using Equation 4.7.

r∑
k=1

E [T
′
k ] = E [Nq A] ·E [Sas] = E [Nq A]

µas
(4.7)

Since asynchronous calls have priority over synchronous calls, any asynchronous call arriving
while the synchronous call waits for service, is processed before the synchronous call goes into
service. While a synchronous call is waiting, on average λasE [Ws] asynchronous calls arrive.
These calls will require each E [Sas] processing time composing Equation 4.8.
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r−1∑
k=1

E [T
′′
k ] =λasE [Ws]E [Sas] = ρasE [Ws] (4.8)

All these components combined lead to Equation 4.9, which can be rewritten into Equation 4.10.

E [Ws] = ras

µas
+ E [Nq A]

µas
+ρasE [Ws] (4.9)

E [Ws] = ras +E [Nq A]

µas(1−ρas)
(4.10)

For the expected inter arrival time (E [I As]), synchronous waiting time (E [Ws]) and asynchronous
waiting time (E [Was]) equations are derived, but none of them can be calculated while values
for ras and E [Nq A] are missing. These values can be derived from the underlying CTMC, as
explained in the next section.

4.3 CTMC model of an ASD block
The underlying CTMC of the queue representation of a single ASD block (c.g. Figure 4.5) is
displayed in Figure 4.7.

In the states of the CTMC, the first number denotes the amount of synchronous calls in the
queue and the second number the amount of asynchronous calls in the queue. The letters AS
mean, that there is an asynchronous call in the server, S that means a synchronous call is in the
server and an E denotes the empty server.

The first row (states 0,n,S) lists all states with a synchronous call in the server, the second row
(states 0,n,AS and 0,0,E) describes the states without a synchronous call present in the block
and the bottom row (states 1,n,AS) lists the states with a synchronous call waiting. The columns
denote the amount of asynchronous calls present in the block. In the first column (level 0), no
asynchronous call is present in the block and in the i -th column (level i −1) i −1 asynchronous
calls are present the block. The CTMC is infinite as the buffer of asynchronous calls is assumed
to be infinite.

In this CTMC the following transition rates are used:

zs = 1
E [Zs ] The think rate for synchronous calls.

µs = 1
E [Ss ] The service rate for synchronous calls.

λas = 1
E [I Aas ] The arrival rate for asynchronous calls.

µas = 1
E [Sas ] The service rate for asynchronous calls.

In case the system is empty (state 0,0,E) either a synchronous call can arrive (transition with
rate zs) or an asynchronous call can arrive with rate λas , this is represented by the outgoing
transitions. In case a synchronous call is in service and the asynchronous queue is empty (state
0,0,S), either an asynchronous call can arrive with rateλas or the service of the synchronous call
is finished (transition with rate µas).

In general, if there is no synchronous call in the system, a new one can arrive with rate zs and
when it is in the server is can be served with rate µs . In every state a new asynchronous call can
arrive with rate λas and when an asynchronous call is currently in the server it can be served
with rate µas .

From this CTMC directly an expected waiting time can be calculated, however this requires
the CTMC to be finite. In Section 4.5 a method of calculating the expected waiting time for syn-
chronous calls and the second and third moments for waiting time of synchronous calls directly
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Figure 4.7: ASD CTMC levels

from this CTMC is discussed in Section 4.5. The adapted version of Cobham’s formula allows
analysis based on the infinite CTMC’s and is therefore used as the algorithm to calculate the
expected waiting time for synchronous calls. Section 4.4 explains how the required measures
for this formula (ras and E [Nq A) can be calculated from the CTMC. The adjusted Cobham’s for-
mula does not give the second and third moments, so these are directly computed from the
CTMC.

4.4 Deriving measures of interest
The values for ras and E [Nq A] can be obtained from the CTMC model of a single ASD block. The
probability that there is an asynchronous call in service and no synchronous call in the system,
i.e. the utilization ras , can be calculated from the steady state probabilities. In the following the
steady state probabilities are denoted as ~p, with entries p0,n,S for states in the upper row of the
CTMC, entries p0,n,AS and p0,0,E for the middle row and entries p1,n,AS for the lower row. Note
that n ∈N .

To apply the matrix geometric method, first the levels in the CTMC have to be defined. The
division into levels of the CTMC of an ASD block is shown in Figure 4.7. Except for level 0 all
other levels have the same structure.

For this CTMC the state sub-vectors for the different levels are defined by Equation 4.11 and 4.12.
Together they form the complete steady state vector ~p, as shown in Equation 4.13.

~z0 = [
p0,0,S p0,0,E

]
(4.11)

~zi = [
p0,i ,S p0,i−1,AS p1,i−1,AS , i > 0

]
(4.12)

~p = [
~z0 ~z1 ~z2 . . . ~zi ~zi+1 . . . ~z∞

]
(4.13)
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The corresponding block matrices can be derived from the CTMC and listed are below. To-
gether they form the Q matrix as displayed in Equation 3.21.

B00 =
[ −(λas +µs) µs

zs −(λas + zs)

]
B01 =

[
λas 0 0

0 λas 0

]

B10 =
 0 0

0 µas

µas 0



A0 =
 λas 0 0

0 λas 0
0 0 λas



A1 =
 −(λas +µs) µs 0

0 −(λas +µas + zs) zs

0 0 −(λas +µas)



A2 =
 0 0 0

0 µas 0
0 0 µas



Matrix B00 describes the transition within level 0. The A1 matrix describes the transitions within
the repeating levels. Block matrix A0 describes the transitions to the next level and matrix A2

the transitions to the previous level. Because z0 and zi do not necessarily have the same size,
matrices B01 and B10 describe the transitions from level 0 to level 1 and back.

Looking at the B00 matrix the upper left term is −(λas +µs), because from state p0,0,S their are
two outgoing transitions with rates λas and µs . The µs goes to state p0,0,E as listed in the top
right element of this matrix. The λas transition goes to the next level, to state p0,1,S and is listed
in the top left element of the B01 matrix. With the bottom row of the B00 matrix this goes in an
almost similar way.

Using the matrix geometric method, the steady state probabilities for this CTMC can be de-
rived. This method outputs the steady state probability sub-vectors ~z0 and ~z1 and the matrix
R. From these results, all other the steady state probability sub-vectors can be calculated using
Equation 3.34.

Once, the steady state probabilities are known, the measures needed for the calculation of the
waiting times (ras and E [Nq A]) and can be derived. First the probability that there is no syn-
chronous call in the system is needed (the probability of being in the middle row in the CTMC).
This can be calculated using Equation 4.14. In the first step of this derivation all relevant steady
state probabilities are accumulated. They are then expressed in terms of the steady state sub-
vectors in the second step. Using the recursive relationship between successive sub-vectors, as
in Equation 3.34, this is rewritten using the R matrix. By applying the sum over the geometric
series, finally Equation 4.14 is derived.
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Pr(no S call in system) = p0,0,E +
∞∑

n=0
p0,n,AS

= ~z0

[
0
1

]
+

∞∑
i=1

~zi

 0
1
0



= ~z0

[
0
1

]
+ ~z1

( ∞∑
i=0

Ri

) 0
1
0



= ~z0

[
0
1

]
+ ~z1 (I−R)−1

 0
1
0

 (4.14)

The probability that an arriving synchronous call finds the server busy (ras) can be calculated
by dividing the steady state probability of having an asynchronous call in the server by the
probability of having no synchronous call in the block. As shown in Equation 4.15, the first is
computed by accumulating the steady state probabilities of all states p0,n,AS for n ∈N . Because
of the denominator that ensures that no synchronous is present, only states from the second
row have to be taken into account. Hence, the equation can be rewritten to the second line as
the counter probability of having an empty server under the same condition. The steady state
probability of having an empty server can be rewritten, using the sub-vector ~z0. This results in
Equation 4.16.

ras =
∑∞

n=0 p0,n,AS

Pr(no S call in system)
(4.15)

= 1− p0,0,E

Pr(no S call in system)

= 1−
~z0

[
0
1

]
Pr(no S call in system)

(4.16)

The expected number of asynchronous calls in queue an arriving synchronous call sees (E [Nq A])
can be calculated using Equation 4.17. The derivation starts by multiplying the number of cus-
tomers n by the probability n asynchronous calls in the queue under the condition of having
no synchronous calls in the block. This is written as function of ~zi in the second line. Next it is
split in two, making it a function of ras .
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E [Nq A] =
∞∑

n=0
n · p0,n,AS

p(no S call in system)

=

∑∞
i=2(i −1) ·~zi

 0
1
0


Pr(no S call in system)

=

(∑∞
i=1 i ·~zi

) 0
1
0


Pr(no S call in system)

−

(∑∞
i=1~zi

) 0
1
0


Pr(no S call in system)

=
~z1(I−R)−2

 0
1
0


Pr(no S call in system)

− ras (4.17)

More details on the last step in the derivation are given in Equation 4.18.

∞∑
i=1

i ·~zi = ~z1

( ∞∑
i=1

i Ri−1

)

= ~z1

( ∞∑
i=1

∂

∂R
Ri

)

= ~z1
∂

∂R

( ∞∑
i=1

Ri

)

= ~z1
∂

∂R

(
(I−R)−1 − I

)
= ~z1(I−R)−2 (4.18)

Since the values for ras and E [N q A] have been derived, the adjusted Cobham’s formula can
be applied to calculate the expected waiting times of a single ASD block. These formula’s are
applied and validated in Section 6.1.

4.5 Moments of the waiting time distribution
In later analysis, not only the expected waiting time for the synchronous calls (E [Ws]) is re-
quired, but also the second and third moment (E [W 2

s ] and E [W 3
s ]) are required. Cobham’s

formula only provides an expression for the first moment of the waiting time. The second and
third moment have to be derived differently.

First, we follow the path that is taken by a synchronous call in the CTMC model, from arrival
until it enters the server. In Figure 4.8 the CTMC model of an ASD block is shown.

A synchronous call enters the system with rate zs , modelled by a transition to the third row.
The CTMC then remains in the lowest row until all asynchronous calls are served and the syn-
chronous call is put into the server. This is modelled the transition to state (0,0,S) (grey in the
figure), that is equipped with rate µa s.

When a synchronous call arrives, the server is either empty or busy. In case the synchronous
call arrives to an empty system, its waiting time is zero and hence, does not contribute to the
second and third moment E [W 2

s ] and E [W 3
s ].

A synchronous call that arrives at a busy server, is modelled by a transition in the CTMC from
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the middle row to the bottom row (transition with rate zs has taken place). The call has to wait
until the asynchronous queue becomes empty, i.e. the CTMC being in state [0,0,S] (grey state).

Figure 4.8: Waiting trajectory of a synchronous call in the CTMC

To compute the higher moments of the synchronous waiting time, only the part of the CTMC
involved in the waiting process of a synchronous call has to be taken into account. This part is
shown in Figure 4.9.

Figure 4.9: CTMC part involved in the waiting time of a synchronous call

This CTMC represents a phase type distribution with an infinite number of phases. The values
ai indicate the state of the asynchronous queue when the the synchronous call arrives, which
is the initial distribution in this CTMC. This ai is calculated as the probability of having i asyn-
chronous calls in the queue under the condition that no synchronous call is currently in the
system, as listed in Equation 4.19.

ai =
p0,i ,AS

p(no S call in system)
(4.19)

Using Equation 3.36, the i -th moment of a phase type distribution can be calculated from the
vector ~a and the matrix T. In this case both the ~a vector and the T matrix are of infinite size,
however Equation 3.36 can only deal with finite matrices and vectors.

By truncating the CTMC as shown in Figure 4.10, the size of the~a vector and the T matrix is lim-
ited, i.e. limiting the number of asynchronous calls that can be in the queue. When the number
of phases taken into account is sufficient, the error made by the truncation is neglectable. More
information on the required number of phases is given in Section 4.5.1.

The truncated T matrix is given by Equation 4.20. The first row starts with −λas −µas indicat-
ing the outgoing transitions from state (1,0,AS). With rate λas new tasks arrive resulting in a
transition to state (1,1,AS). Note, that T is not a proper probability matrix as it does not take
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Figure 4.10: Truncated CTMC of synchronous waiting times

into account the absorbing state (0,0,S). This reflected in the diagonal element of the first row,
which does not equal the negative row sum.

For the other states expect for state (1,n, AS), there is a rate of λas going to the next state and
µas going to the previous state. The number of phases is truncated, so no calls can arrive in
the last state (1,n, AS), therefore in the last row there is only transition to the previous state
possible.

T =



−λas −µas λas 0 0 0 0
µas −λas −µas λas 0 0 0

0 µas −λas −µas λas 0 0

0 0
. . .

. . .
. . . 0

0 0 · · · µas −λas −µas λas

0 0 · · · 0 µas −µas


(4.20)

From Equation 3.36 the equations 4.21, 4.22 and 4.23 for the waiting time moments E [Ws],
E [W 2

s ] and E [W 3
s ] can be derived.

E [Ws] = −~aT−1~1 (4.21)

E [W 2
s ] = ~aT−2~1 (4.22)

E [W 3
s ] = −~aT−3~1 (4.23)

When E [Ws] is calculated using Equation 4.21, the effect of the truncation can be analysed
by comparing it with the E [Ws] acquired using the steady state analysis. The error caused by
the truncation is larger in the calculation of E [W 2

s ] and E [W 3
s ], because in these cases the T−2

respectively T−3 are used instead of T−1.

4.5.1 Required number of phases
In the graph of Figure 4.11 a comparison is presented between the waiting times produced by
Cobham’s formula and the results by truncated phase-type approach. Cobham’s formula does
not use truncation, so it results are independent on the number of phases, which results in a
horizontal line. The phase type version however, becomes better as the number of included
phases increases. For this graph, the following values are used: zs = 0.1, µs = 0.5, µas = 0.333
and for λas three different values are used (resulting in three line sets): 0.1, 0.2 and 0.35. The
corresponding utilizations are 0.42, 0.60 and 0.83.

Besides the first moment, the second and third moments are also calculated using the trun-
cation method. Under the same conditions as used with Figure 4.11, the second and third
moments are plotted against the number of phases taken into account in Figure 4.12 and Fig-
ure 4.13.

All graphs show that as the number of phases taken into account becomes larger, the estimated
moments of the waiting times by the truncation method approach a certain asymptote, repre-
senting the values with an infinite number of phases. From these graphs it can be seen that the
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Figure 4.11: Waiting times calculated using Cobham versus phase-type

Figure 4.12: Second moment waiting times using phase-type
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Figure 4.13: Third moment waiting times using phase-type

number of phases required to get a good estimate for the moments, is dependant on the uti-
lization. Also the estimation of the third moments requires more phases to approach the final
value as the estimation for the first moment.

For the number of phases required to get a good estimate for the moments the following rule
of thumb can be derived:
Estimate the number of phases required for the expected waiting time to approach the value ob-
tained using adapted Cobham’s formula within a predefined margin and multiply this number
of phases by a factor 3.

4.5.2 Related and alternative methods
The phase type method for the calculation of the second and the third moment of the waiting
time, as presented in this section is not the only available method for deriving moments of the
waiting time. Several other methods are presented in [10], to calculate the first passage times in
quasi birth death process, which resembles the expected waiting times in this situation. These
methods can be adapted to deliver the second and third moments as well.

Although these techniques work based on QBD processes, they only deliver the time it takes to
travel from level i ∈N to level j ∈N . Hence only a finite number of starting levels can be taken
into account, which also truncates the CTMC in a certain way, resulting in an approximation.
Nevertheless these techniques are probably faster to calculate, although they are harder to im-
plement. So if fast analysis is important, these techniques can be used instead of the phase
type approach, as presented here.

There also exists a technique called the “uniformization method” [8] to calculate not only the
moments of a distribution, but the complete probability density function of a distribution. In
this thesis the distribution is not required, so it would only be used to calculate the moments.
For this purpose the “uniformization method” is not a good option, because it is an approxi-
mation and only works for a finite number of phases, where the phase type method is faster to
calculate and delivers exact results.
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5 Simulation

To validate the results acquired using analysis, a discrete-event simulator has been built. This
simulator should behave like a real ASD-generated software. To be able to simulate the com-
plete system, the blocks and their structure together with a number of tasks are inserted into
the simulator. A model for processor scheduling is also built in, but can be switched off to
validate the analytical results.

This chapter starts with the explanation of actual simulator in Section 5.1. Then the calcula-
tion of the confidence interval based on the simulation results is presented in Section 5.2, fol-
lowed by the random number generator in Section 5.3. Finally, the implementation processor
scheduling together with its validation test is discussed in Section 5.4.

5.1 Simulator description
For this thesis a dedicated simulator has been build. This simulator contains a virtual ASD
system according to the specification of the simplified ASD structure as listed in Sections 2.3
and 2.4. The ASD-architecture is currently configured by directly changing the source code of
the simulator. The architecture is then described by denoting for each block what its children
are, as presented in Figure 5.1. By denoting for all the blocks what their children are, the com-
plete architecture is described. In this figure Block A has two children, which are Block B and C.

Figure 5.1: Children allocation

This virtual system is fed with several tasks, that are also configured by changing the source
code of the simulator. A task is defined by an object, with the structure as shown in Figure 5.2.
Each task contains the arrival / think rate and a list of calls the task consists of. Each call is of a
certain type (synchronous or asynchronous), has an expected service time and states the block
it has to be executed on. Although each call can be synchronous or asynchronous, the simula-
tor can only simulate tasks either consisting completely of synchronous call or either only from
asynchronous calls, because combinations would introduce parallelism, which makes simula-
tion and analysis more difficult.

In the model the following entities are random variables:
• Think time of synchronous tasks
• Inter-arrival time of asynchronous calls
• Service time of synchronous calls
• Service time of asynchronous calls.
These variables are, as in the analytical model negative exponentially distributed, where the
rate of the distribution is defined by the task or the call.

Since the system is fully defined now, the simulation can be performed. The simulation starts
with an empty system and the tasks are scheduled for arrival. For the asynchronous tasks this is
done by picking a sample from a negative exponential distribution with rate equal to the arrival
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Figure 5.2: Task definition

rate.

For the synchronous tasks however, this is more complicated, because only one synchronous
call can arrive. First the task to arrive has to be chosen. The probability of being chosen as task
(pi ) is given by its think rate divided by the sum over the think rate of all synchronous tasks,
as displayed in Equation 5.1. To decide which synchronous task has to arrive, first the interval
[0,1] is divided into segments. Each segment corresponds to a task and has the size of the
probability of being chosen for arrival pi . Second a uniform-distributed value between 0 and 1
is picked and it determined in which segment the picked value lies, as displayed in Figure 5.3.
In this example Task 2 is chosen to arrive as first task.

pi = zi∑k
j=1 z j

(5.1)

Figure 5.3: Implementation probabalistic choise

The think for this synchronous task is determined by drawing a sample from a negative expo-
nential distribution with as rate the sum of all think rates.

Since the moment of arrival of the tasks is determined, the simulation can start. The simulator
is implemented as a discrete-event simulator, meaning it processes the events according to
their order and jumps between events, as displayed in Figure 5.4. The bend arrows in this figure
indicate jumps in time which the simulator takes, as it only processes the events.

Figure 5.4: Discrete event simulator
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To carry out the actual simulation, the simulator has to process these events and handle them
in the right way and right order. To keep track of all the events, the simulator contains a list
of all events and their moment of occurrence. Each type of event requires a different reaction.
The different events and the required response are described below.

Arrival of an AS task The task arrives with its first call at a certain block. If the block is idle and
not blocked, the call is directly put into service, otherwise it is queued. Also a new in-
stance of this task is scheduled for arrival, as described in the initiation. This new arrival
is added to the list of events.

Arrival of a S task The first call of this task arrives at a certain block, and if the block is empty,
the call is directly put into service, otherwise it is queued. Note that: No new synchronous
task is scheduled for arrival, as this is only done at the completion of a synchronous task.

Processing of an AS call finishes The call finishes at a certain block. From the task description
it is determined if a call to another block has to be done or if the task is finished. At the
block the new call has to be a “Arrival of next call” function is called. A “process next call”
function is executed on the current block to fill the server again.

Processing of a S call finished This event requires a more complex reaction and is therefore
explained by pseudo code in Listing 5.1. The reaction is dependant on the whether the
next call has to be executed by a parent of this block or by a child of this block.

� �
i f (new S c a l l in task ? ) {

i f (new S c a l l to child of t h i s block ? } {
This block i s blocked u n t i l further notice .

} else {
i f (new S c a l l to t h i s block ? ) {

Execute a ‘ ‘ A r r i v a l of next c a l l ’ ’ function on t h i s block
} else {

Remove blockade of t h i s block
Execute a ‘ process next c a l l ‘ function on t h i s block
S t a r t the same sequence at the parent block with the question :

‘new S c a l l to child of t h i s block ? ‘
}

}
} else {

Remove blockades issued by t h i s c a l l
Execute a ‘ process next c a l l ‘ function at a l l the blocks that where previously blocked
Schedule the a r r i v a l of a new S task

}� �
Listing 5.1: Pseudo code: “Processing of a S call finished” event

Because some event may have to execute the same procedure, these procedures are described
once by the following functions:

Process next call If there are still AS calls in the queue, the first call is put into service, oth-
erwise a S call can enter service. When both queues are empty, the block does nothing.
When a call goes into service, it is removed from the queue and its service time is de-
termined by picking a sample from a negative exponential distribution with according
to the specification for this call. Using this service time, the moment this call finishes is
calculated and listed in the event list.
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Arrival of next call Directly after finishing the previous call of a task the new call of this task
arrives at the next block. When this new call arrives at a block it is directly put into service
if the block is idle and not blocked. The procedure of putting a call into service is more
detail described by function “Process next call”. When the block is not idle or blocked,
the new call tasks place in the queue of its type of task.

The simulation continues until the simulated time (the time a real system would encounter)
reaches a predefined end value. The occurrence times of the events are logged for statistical
analysis in the end.

5.2 Statistical measures
To compare the simulation results with the analytical results, some statistical measures have to
be calculated. The statistics obtained during the simulation are:
• Average waiting time per block for both asynchronous and synchronous calls
• Average queue length of asynchronous calls, upon arrival of a synchronous call
• Utilisation per block
• Response time of a complete task
• Arrival rate of tasks
Because of the large number of dependencies, the simulation is started with an empty system,
as already mentioned earlier. The computation of statistical measures only starts after a prede-
fined simulated time. Hereby the impact of the start-up effect on the statistics is reduced. The
information as summarized in this section is discussed in more detail in [9].

With these statistical measures, a confidence interval is needed (a window in which the real
expected value will be with a certain probability). The confidence interval is obtained, by run-
ning the complete simulation multiple times. For each run the measures listed above are de-
termined and saved. The results are assumed to be Student-n −1 distributed, where n is the
number of measurements.

The normal distribution is a special form of the Student distribution i.e. the normal distribution
is the Student distribution for an infinite number of runs, so these distributions are very similar.
A sketch of the probability density function (PDF) of the unit Student-10 distribution is shown
in Figure 5.5. This graph shows the values on the x-axis and the corresponding probability
density on the y-axis. The exact shape and PDF depends on the number n, but this sketch is
made for n = 10.

Figure 5.5: Sketch of the PDF of the Student distribution

The distribution obtained by simulation is never the unit Student distribution, but a trans-
formed variant, as displayed in Figure 5.6. This PDF has a mean X and is stretched by a factor
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S in the horizontal direction. Because this is a PDF, the area under the function should be 1,
hence in the vertical direction the function is shrinked by a factor S.

Figure 5.6: Real distribution based on the Student distribution

For further analysis, a the distribution of the simulation results should be mapped onto the
unit Student-n distribution, therefore the average (X̃ ) and sample variance (S̃) need to be cal-
culated from the obtained simulation results. The sample variance S̃n−1 is calculated using
Equation 5.2. In this equation, n is the number of samples and Xi , is the obtained value from
simulation run number i .

S̃2
n−1 =

1

n −1

n∑
i=1

(
Xi − X̃

)2
(5.2)

Using the sample variance and average, a value a from the real distribution can be mapped
onto a corresponding value Z in the unit Student-n distribution as displayed in Equation 5.3.

Z = X̃ −a

S̃n−1/
p

n
(5.3)

A confidence interval is described by the values zmi n and zmax , where zmi n = −zmax . When
a confidence interval of 90% is required, zmi n and zmax have to be chosen such that the area
under graph between zmi n and zmax equals 0.9. Mapping a confidence interval to the Student
distribution is displayed in Figure 5.7

Direct calculation of zmi n and zmax is not possible, but zmax can be derived using the cumula-
tive probability function (CDF) of the unit Student distribution. The CDF describes the proba-
bility (β) of having a value smaller than z, as shown in Equation 5.4. In a graphical perspective,
the CDF gives the area under the graph of the PDF up to value z as shown in Figure 5.8.

Pr {|Z | ≤ z} =β (5.4)

The confidence interval does not contain the left part that is contained in the CDF, as can be
seen by comparing Figure 5.7 and 5.8. Due to the symmetry in the PDF the value for β required
to get the zmax with a given confidence interval(conf) is calculated by β = 1−conf

2 + conf = 1
2 +

1
2 conf.

Figure 5.7: Confidence window expressed in the unit PDF
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Figure 5.8: Cummalative probability density function

Normally, the values for z for a given value β are obtained using look-up tables. To fully au-
tomate the process, the simulator uses the Colt library [1] to calculate this z value for a given
value for β. This Colt library is made for Java by the researchers of CERN. It contains a lot of
mathematical functions, that are not standard available with Java. It contains functions for cal-
culations with matrices and several functions for statistical analysis, including random number
generators.

By transforming this z value from the unit distribution to the original distribution based on
Equation 5.4, the confidence interval can be calculated, using Equation 5.5 and 5.6. Together
these describe the confidence interval [ami n , amax ].

ami n = X̃ − z · S̃/
p

n (5.5)

amax = X̃ + z · S̃/
p

n (5.6)

Finally the measures as listed at beginning of this section together with their confidence win-
dows are required. After the simulation is performed 10 times, for each run the measures of
interest are determined. After 10 runs 10 values have been obtained for each measure. From
these 10 values the confidence window is constructed as detailed out above. For each measure
of interest the method of calculation is listed below:

Average waiting time per block for both asynchronous and synchronous calls For each call at
a block account waiting time by taking the difference between the moment of arrival at
that block and the moment it goes into service. Sort these waiting times by call type and
take the average per type.

Average queue length of asynchronous calls, upon arrival of a synchronous call When a syn-
chronous call arrives at a block, store length of the queue for asynchronous calls. Take
the average over all these queue lengths to calculate the average.

Utilisation per block Sum (per block) up all the time the block is empty (sum over all times
between becoming empty and start working again) and divide it over the total simulation
length.

Response time of a complete task For each task calculate the time between arrival and finish-
ing the last call. Finally take the average over all these times.

Arrival rate of tasks Account for each task the number of arrival during a simulation and di-
vide it by the simulation time.

5.3 Random number generator
The random number generator used in the simulator is the Mersenne Twister [13]. Again, the
implementation of the Colt library [1] is used. This random number generator uses a large
period of 219937 −1(= 106001) and passes many stringent statistical tests.

To seed the random number generator a random value is used, that is generated by the Java
random number generator. The Java random number generator is seeded by Java itself.
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5.4 Processor scheduling
The real ASD generated software will run on a computer with a limited number of processors.
However in the generated software multiple processes can be active at the same time. The
scheduler of the operating system will handle this by assigning turn by turn the processor to
one process.

While it is very hard to incorporate all effects caused by the scheduler into the analysis, it can be
easily incorporated into the discrete event simulator. The effects of scheduling are built into the
simulator using a simplified model, having only one processor. The application of scheduling
can be switched on and off easily for validation of the analysis results. When the scheduling is
switched off, each process is simulated as it runs on its on own “processor”. Two scheduling
models have been implemented; round robin-scheduling (RR) and processor sharing (PS).

In a normal computer, each process receives a small amount of processor time. This is closely
modelled by the Round Robin (RR) scheduling. With RR-scheduling, when a task is selected
for service, all other tasks are postponed till the end of the window. At the end of the window,
the next task is selected for service. This scheduling mechanism is displayed in Figure 5.9(a),
in which the time is on the horizontal axis and the two tasks are indicated with the different
patterns. A task obtains the full processor, while the other wait again for its turn. When looking
on a large scale it looks like everyone gets a certain share.

The implemented algorithm for RR-scheduling has a variable window size and is given in pseudo-
code below.

� �
/ / a function to handle the windowed processor sharing
void updateWindow ( ) {

activeTask = selectNextTask ( ) ;

/ / get the window size , stop when a task f i n i s h e s
windowSize = min( tasks [ activeTask ] . f i n i s h − Tglobal ,

C_WINDOW_SIZE ) ;

/ / walk a l l other the tasks
foreach task {

i f ( task ! = tasks [ activeTask ] ) {
task . f i n i s h = task . f i n i s h + windowSize ;

}
}

}� �

With the processor sharing model, each task gets a share of the processor, that is equally divided
over the number of active tasks, as if they can use only a part of the processor and can run
simultaneously. PS is displayed in Figure 5.9(b). In this case the two tasks (different patterns)
run in parallel each using half the processor, each getting only half of the processing power.
When one task has finished, the other one can use the full processor.

The RR-scheduling generates many events, which need to be handled by the simulator. This
makes the time the simulation takes longer, especially when the window size becomes small.
To overcome this problem, processor sharing is also implemented in the simulator. With PS
all the active tasks receive an equal amount of calculation time, hence a task runs besides two
others, receives one third of the normal processor time, lengthening its calculation time by
a factor three. The shares have to be newly allocated every time a new call enters service or
finishes, which generates much less events as RR-scheduling.
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(a) Round robin scheduling (b) Processor sharing

Figure 5.9: Round Robin scheduling versus processor sharing

5.4.1 Validation of PS versus RR scheduling
In theory the round robin scheduling and processor sharing should provide the same results
when the window size approaches zero. This is in fact the case with the simulator.

This is validated using a case, which is presented in Figure 5.10. In this case a synchronous task
will go downwards and an asynchronous task will go upwards. The corresponding parameters
are given in Table 5.1. Both calls indicated with A are executed on block A and the call indicated
with B at block B. This means that the different tasks have to share blocks.

Figure 5.10: Case pro-
cessor sharing task flow

Task number Arrival / think rate Expected service time

1 zs = 0.1
E [Ss A] = 3
E [SsB ] = 2

2 λas = 0.2
E [SasB ] = 2
E [Sas A] = 1

Table 5.1: Case processor sharing task definition

The simulation is performed for a simulated time of 107 and all results before time 106 are
not taken into account in the average values, to reduce the influence of the start-up. The 90%
confidence window is constructed from 10 runs. Both a processor sharing (PS) run is done and
RR-scheduling run, with a window of 0.1.

The results of these runs are presented in Table 5.2. The Min and Max in this table are the upper
and lower bounds of the confidence window. In the simulation the utilization of block A is 0.723
(including time blocked, waiting for block B), and of block B the utilization is 0.636.

The PS provides a slightly higher response time for both tasks. With task 1 the confidence win-
dows do overlap, but the averages are not within each others confidence windows. For the
second task however, the averages do lie within each others confidence windows. So the RR-
scheduling and processor sharing simulator give almost similar results for small window sizes.

The minor differences in both simulations are probably because both simulations are not per-
formed with the same set of generated random numbers. Running the simulation multiple
times would probably give a result where the windows do overlap.

Task number Task response Difference
Full PS Windowed PS = 0.1

Min Avg Max Min Avg Max %
1 11.983 11.994 12.005 11.999 12.008 12.018 0.12
2 15.485 15.501 15.517 15.478 15.505 15.531 0.02

Table 5.2: Case PS task responses
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6 Validation

Using the discrete-event simulator, it is possible to validate the analytical results against the
simulation results. A number of test cases are used to validate the analytical results. For all the
simulations in this and the next chapter, the following settings have been used: The simulation
is run until t = 107 and the values obtained before t = 106 are not used to calculate the average
values, to suppress the start-up effects. The simulation is run ten times to compute a 90%
confidence interval based on the average values of each run.

This chapter starts with the validation of the single block analysis in Section 6.1. Next, combi-
nations of multiple blocks are discussed in Sections 6.2, 6.3 and 6.4.

6.1 Case 1: A single ASD block
In this case the modelling of a single ASD block is validated. This block receives both a syn-
chronous and an asynchronous task. A schematic view is given in Figure 6.1. The parameters
for the tasks are defined in Table 6.1. The expected service time for a synchronous call at block
A is denoted as E [Ss A]. The expected the service time for an asynchronous call at block A is
given by E [Sas A]. The think rate for the synchronous task is listed as zs and the arrival rate for
an asynchronous task is notated as λas .

Figure 6.1: Single ASD block

Task number Arrival / think rate Expected service time
1 zs = 0.1 E [Ss A] = 3
2 λas = 0.4 E [Sas A] = 2

Table 6.1: Case 1 task definition

In Figure 6.2 the simulation results of the task response times have been plotted with the con-
fidence window acquired, using simulation. The lines indicate the analytical results and the
confidence window is indicated using error bars. The lowest line indicates the response time
for AS calls. The second line the response time for synchronous calls and the upper line indi-
cates the utilization, for which the scale is on the second vertical axis.

The utilization plotted here, is the analysis result and the non-linearity is caused by the think
time of the S calls. Due to this think time, the waiting time of the S calls is part of the inter-
arrival time. So when the utilization increases, the waiting time for S calls increases, enlarging
the inter-arrival time for S calls, “reducing” the utilization.

Since the simulation has a tight confidence window, the error bars plotted with the response
times can hardly be distinguished in the plot, but all the results are well within the confidence
window. To give a more detailed view, we zoom in on the response time of an asynchronous
call for arrival rate of 0.2, in Figure 6.3.

In Table 6.2 task response times of the simulation and analysis are listed next to each other.
The “min” and “max” listed with the simulation results are the upper and lower bound of the
confidence window. The comparison has been performed for several values of λas . The results
from Table 6.2 also show that the analysis results lie well within the confidence windows, as
obtained by simulation. This also holds for high utilizations.
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Figure 6.2: Waiting times against arrival rate

Figure 6.3: Zoom of Figure 6.2

Parameter Simulation results Analytical results
Response time AS Response time S Response time

min max min max AS S
λas = 0.1 3.321 3.326 3.655 3.660 3.324 3.659
λas = 0.4 11.382 11.458 21.215 21.351 11.437 21.312
λas = 0.45 21.387 21.613 47.278 47.817 21.563 47.586

Table 6.2: Case 1 results
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6.2 Multiple blocks
In the previous section only a situation with a single block has been analysed. Real systems
consist at least of multiple blocks. To start with the analysis of multiple blocks, first two cases
will be analysed, where only one task runs in the system.

In Figure 6.4 the task of first example is shown. This task has only synchronous calls, which
have to be processed each on a different block. The expected service time at each block is
listed in Table 6.3. In Figure 6.5 the task of the second example is shown. This task fully consists
of asynchronous call, each to be executed on a different block. The corresponding expected
service times are listed in Table 6.4.

Figure 6.4: Task structure

Task number Think Rate Expected service time

1 zs = 0.1
E [Ss A] = 3
E [SsB ] = 2
E [SsC ] = 4

Table 6.3: Multiple blocks task definition 1

Figure 6.5: Task structure

Task number Arrival rate Expected service time

1 λas = 0.1
E [Sas A] = 4
E [SasB ] = 2
E [SasC ] = 3

Table 6.4: Multiple blocks task definition 2

Analysis of both examples is straightforward. For synchronous calls, the specification of ASD
guarantees a maximum of one synchronous call to be at each block, so no waiting occurs.
Therefore the response time of the task in example 1 is just the sum over all service times,
which is 9. This is graphically shown in Figure 6.6. In this graph the analytical result is plot-
ted as a line and the acquired confidence window with error bars. The utilization of block A
(including blocking time) is also plotted, which is calculated with the analysis. As shown from
the graph the analysis and simulation match on the response time. The utilization is strongly
non-linear, because the utilization is not only dependant on the think rate (which is varied on
the horizontal axis), but also on the response time (which is fixed).

The analysis with the asynchronous calls is done by analysing each block using the single block
analysis and accumulating the response times of each block. This is possible, because the
blocks do not have dependencies. The analysis results and simulation results are shown in
Figure 6.7, in a similar way as the previous example. This graph also shows that the analysis
and simulation match for the response time. With this graph clearly a linear relation between
the arrival rate and utilization can be seen, because the utilization is only dependent on the ar-
rival rate, which is varied on the horizontal axis. Also the analysis results for the response time
lie within the confidence window obtained using simulation.

These two examples were rather simple, however when combinations of tasks have to be anal-
ysed, more complicated analysis is required. Combining multiple blocks does not influence the
handling of asynchronous calls, because they are handled per block and do not influence the
operation of other blocks. However, synchronous calls induce blocking, i.e, they do influence
the operation of other blocks.

To illustrate the behaviour of a task in time, the situation of Figure 4.4 is shown here. In this
figure a synchronous call is being processed at the grey block and its hierarchical parents are
blocked, because they have issued a synchronous call, which is in progress. At the grey block
also an asynchronous call is arriving.
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Figure 6.6: Only synchronous calls

Figure 6.7: Only asynchronous calls
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The flow of the task containing synchronous calls is illustrated in the time diagram of Figure 6.8,
which shows the status of the three involved blocks at each step. The task first (step 1) arrives
at block A. Then block A calls block B (step 2), block B starts processing and block A is blocked
(step 3). The same holds for block C (step 4). When block C finishes, block B is processing again
(step 5). After block B ended, it is free again and block A finishes the task (step 6).

Figure 6.8: Time diagram of call flow

From a modelling perspective, the blocking means, that the time spend waiting for the called
blocks, is actually part of the service time of the caller. Hence, the experienced service time of
block B (E [S∗

sB ]) is the time it actually does service by itself (E [SsB ]) plus the time the call waits at
block C (E [WsC ]) plus the time it is served by block C (E [SsC ]). This is denoted in Equation 6.1.

E [S∗
sB ] = E [SsB ]+E [WsC ]+E [SsC ] (6.1)

To fully embed the influence of block C on block B, the CTMC of block C should be a part of the
CTMC of block B. For two blocks this is already quite challenging to solve, because this results
in a CTMC that is infinite in two dimensions. For even more blocks this becomes even more
complex, so a different analysis method is required.

To keep the CTMC’s small enough, we analyse them separately and propagate their influence
to the influenced blocks. This methods keeps the state-space smaller, but is clearly is less ac-
curate. At first only the expected values for waiting and service time will be propagated to the
other blocks.

6.3 Case 2: Two calls, multiple blocks
Since the analysis matches the simulation for a single block, the results when combining mul-
tiple blocks can be reviewed. For this purpose a new case is defined as in Figure 6.9. The pa-
rameters for this case are denoted in Table 6.5. In this case a task enters the system with a
synchronous call at block A and does a call to block B next. Another task enters the system as
an asynchronous call at block A.

To calculate the response times, first block B is modelled as single block, then the service time
at block A for the synchronous calls is adapted to include the response time of block B using
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Equation 6.2. In this case the waiting time at block B is 0. Because block B only handles syn-
chronous calls, there cannot be other calls in the block when a call arrives, resulting in a waiting
time of 0. Therefore the experienced service time at block A is just the sum of both expected
service times and becomes E [Ss A∗] = 5. Using the existing single block model, the service-time
of block A and B and the waiting time at block B are together modelled as a single negative ex-
ponential distribution with an expected value of 5, although this combination is not negative
exponential distributed.

Figure 6.9: Structure case 2

E [S∗
s A] = E [Ss A]+E [WsB ]+E [SsB ] (6.2)

Task number Arrival / Think Rate Expected service time

1 zs = 0.1
E [Ss A] = 3
E [SsB ] = 2

2 λas = 0.4 E [Sas A] = 2

Table 6.5: Case 2 task definition

In Figure 6.10 the analytic task response times are plotted with lines and the confidence window
of the simulation results with the error bars. From this graph it is clear that the analysis results
are not within the confidence window of the simulation. In Table 6.6 also both the analysis and
simulation results for the response times of the tasks of case 2 are displayed. The columns indi-
cated with “min” and “max” represent the lower and upper bounds of the confidence interval.
Looking at these measures, it clearly shows that the analysis over estimates the response times
of both tasks and the results do not lie within the confidence interval obtained by simulation.
This is only a simple example, enlarging the case could lead to even larger differences. So a
further analysis is required to find the source of the problem.

Figure 6.10: Task response times for case 2
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Parameter Simulation results Analytical results
Response time AS Response time S Response time

min max min max AS S
λas = 0.1 4.000 4.008 5.787 5.796 4.477 5.8108
λas = 0.4 12.456 12.509 28.001 28.130 13.220 28.8197
λas = 0.45 22.649 22.838 60.991 61.488 23.431 62.857

Table 6.6: Case 2 results

To provide more insight into the problem, a number of internal values retrieved from the simu-
lation are listed in Table 6.7 with the situation of λas = 0.4. To keep overview confidence inter-
vals are not given here. From these values it can be seen that especially the expected number
of asynchronous call at the arrival of a synchronous call (E [Nq A]) deviates a lot, which is 5.5%
in this situation. This deviation is caused by the incorrect assumption in the analytical model,
that the experienced service time of block A is negative exponentially distributed. In fact the
experienced service time of block A models two connected blocks, so the experienced service
time of the sychronous calls at block A is hypo-exponentially distributed (convolution of two
negative exponential distributions). This hypo-exponential distributions has two phases, the
first phase is the service at block A, the second phase is the service time of block B.

Parameter Simulation results Analytical results
E [I A] f or S 38.168 38.75
E [Nq A]@A 1.571 1.658

Table 6.7: Case 2 results

To incorporate this hypo-exponential distribution, the CTMC model of block A has to be adapted.
Also the first and second moments of the service times have to be calculated differently. This
means that the Equation 4.2 used for calculation of the remaining time of a call in service is not
true anymore, because this equation is also based on negative exponentially distributed service
times.

Figure 6.11: Adapted CTMC for block A of case 2

The adapted CTMC for block A is displayed in Figure 6.11, where a complete new row of states
is introduced, with respect to the standard CTMC of an ASD block as displayed in Figure 4.7.
This new CTMC, explicitly models the two phases of the service for the synchronous call. Also
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all the matrices for the matrix geometric solution have to be derived again, which has not been
displayed here. The states used to calculate the ras (the probability of an arriving synchronous
call, finding the server busy) and the E [Nq A] (the expected queue length at the arrival of a syn-
chronous call) do not change and are indicated with the rectangle on the background in the
CTMC in Figure 6.11.

To calculate the second moment of the service time of the synchronous call for block A Equa-
tion 6.3 has to be used. This is the applied version of the second moment of the hypo-exponential
distribution. A proof for this equation is given in Appendix B.

E [S2
s ] = 2

µ2
A

+ 2

µ2
B

+ 2

µA ·µB
(6.3)

After applying this new CTMC together with the adapted second moment, the analytic task re-
sponse times as displayed in Figure 6.12 (with a think rate zs is 0.1) and Table 6.8 lie within
the confidence interval retrieved from the simulation. The simulation values are the same as
in Table 6.6. Figure 6.12 shows that the analytic and simulation results are close together and
Table 6.6 confirms that the analytic results are within the confidence window obtained by sim-
ulation.

Figure 6.12: Case 2: Task responses using hypo-exponential service time

Parameter Simulation results Analytical results
Response time AS Response time S Response time

min max min max AS S
λas = 0.1 4.000 4.008 5.787 5.796 4.004 5.791
λas = 0.4 12.456 12.509 28.001 28.130 12.495 28.078
λas = 0.45 22.649 22.838 60.991 61.488 22.668 61.220
λas = 0.1

6.248 6.256 6.230 6.234 6.252 6.231
zs = 10

Table 6.8: Case 2 results adapted algorithm
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6.4 Case 3: Two calls, multiple blocks, oriented differently
Since case 2 can be modelled and analysed well, lets look at a slightly different case as presented
in Figure 6.13 and Table 6.9. The only difference with case 2 is that the asynchronous task arrive
in this case at block B instead of block A. In this case, a task starts with a the synchronous call
at block A, after it is served, it issues a synchronous call at block B. Hence, the think time for
the synchronous calls at block B is no longer negative exponentially distributed, but is hypo-
exponentially distributed.

Figure 6.13: Structure case 3

Task number Arrival / Think rate Expected service time

1 zs = 0.1
E [Ss A] = 3
E [SsB ] = 2

2 λas = 0.4 E [SasB ] = 2

Table 6.9: Case 3 task definition

In case 2 block B also had an hypo-exponentially distributed think time, but because block B
did not have any waiting time, no error in the response time of the tasks was made by mod-
elling this think time incorrectly. When the think time is modelled as negative exponential, the
experienced think time (E [Z∗

sB ]) for block B can be calculated using Equation 6.4, which accu-
mulates, the task think time E [ZsT ], the waiting time for synchronous calls at block A and the
service time of the synchronous call at block A.

E [Z∗
sB ] = E [ZsT ]+E [Ws A]+E [Ss A] (6.4)

In Table 6.10 the resulting task responses are listed when modelling all parts as negative expo-
nentially distributed. The “min” and “max” columns in this table indicate the lower and upper
bound of the confidence interval. These results have also been plotted with think rate (zs) of
0.1 in Figure 6.14. As visible in the table, the analytical results lie only slightly out of the con-
fidence window when modelling the think rate as negative exponential, so this is also barely
visible in Figure 6.14. A rather extreme case (λas = 0.1 and zs = 10) is taken to show that in
certain conditions both response times fall out of the confidence window.

Parameter Simulation results Analytical results
Response time AS Response time S Response time

min max min max AS S
λas = 0.1 2.817 2.822 5.604 5.611 2.821 5.598
λas = 0.4 10.590 10.633 22.789 22.870 10.620 22.236
λas = 0.45 20.573 20.834 48.740 49.145 20.694 47.600
λas = 0.1

3.380 3.385 5.559 5.562 3.261 5.568
zs = 10

Table 6.10: Case 3 results

To get the analytical results to match the simulation, the hypo-exponential distributed think
time has to be incorporated in the model. The new CTMC (in which this hypo-exponential
think time is included) is displayed in Figure 6.15. In this CTMC the states with the “+” symbol
indicate that no synchronous call is in block B, but there is one in block A. These states have to
be used to calculate the ras and the E [N q A].
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Figure 6.14: Case 3: Task response

Figure 6.15: Adapted CTMC for block B of case 3
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Using the CTMC from Figure 6.15 for the analysis, the new analytical results together with the
same simulation results as shown in Table 6.11. These results are also plotted in the plot in
Figure 6.16. From the graph it is clear that with the hypo-exponential think time, the simula-
tion and analysis results for the response times are close together and the table shows that the
analytic results lie within the confidence window.

Figure 6.16: Case 3: Task response with hypo-exponential think times

Parameter Simulation results Analytical results
Response time AS Response time S Response time

min max min max AS S
λas = 0.1 2.817 2.822 5.604 5.611 2.820 5.607
λas = 0.4 10.590 10.633 22.789 22.870 10.610 22.816
λas = 0.45 20.573 20.834 48.740 49.145 20.679 48.913
λas = 0.1

3.380 3.385 5.559 5.562 3.383 5.561
zs = 10

Table 6.11: Case 3 results adapted algorithm

Design and Analysis of Communication Systems



58 Performance analysis for embedded software design

7 Generalizing analysis of multiple ASD blocks

A method to manually construct the analysis with multiple blocks has been presented in Chap-
ter 6. For practical use, this process has to be automated. This automated analysis method
should construct the complete model from a list of tasks and the block architecture. This chap-
ter presents this automated approach.

The chapter starts with a global overview of the developed waiting time propagation algorithm
to model multiple block in Section 7.1, next Section 7.2 presents a method to acquire the de-
pendencies between blocks. In Section 7.3 the changes to the analysis methods of Chapter 6,
required to analyse systems with multiple blocks. In Sections 7.4 and 7.5 the automated algo-
rithm is applied to cases and compared with simulation results. Section 7.6 states a method to
determine the required number of iterations for the waiting time propagation. Finally a sum-
mary of all the cases and algorithms presented is listed in Section 7.7.

7.1 Waiting time propagation: an iterative approach
The analysis should output the expected response time of all the tasks. To derive these values
the following steps have to be taken:

1. Investigate per block which tasks have to be processed. With this accounting action for
each block two lists are made, one for all synchronous tasks and one for all asynchronous
tasks using the block.

Repeat until the changes in waiting times are small enough (Section 7.6)

(a) Build the phase-type distributions for the service time of synchronous calls and the
think time for synchronous calls. More information on this process is given in Sec-
tion 7.2.

(b) (Re)compute the waiting times per block based on the determined phase-type dis-
tributions. This process is explained in Section 7.3 .

Until

2. Add the waiting and service times of the calls to calculate the expected response time of
a task.

7.2 Building cross block distributions
Before building phase-type distributions including influences between blocks, these influences
are discussed more in detail. This will be explained according to an example as shown in Fig-
ure 7.1. In this example block A sends synchronous calls to block B, which is also handling
asynchronous calls. Due to the presence of asynchronous call, the synchronous calls may have
to wait at block B.

Since the asynchronous calls do not induce blocking, they do not influence the waiting time at
other blocks directly. Blocking as induced by synchronous calls is studied in more detail. The
flow of the task containing the synchronous calls in the example, is displayed in Figure 7.2. The
task starts at block A, then goes to block B. After it finishes at block B, it returns a call to block
A, but does not need any more processing at block A. Hence, directly after block B finishes, the
think stage of this task starts. After the think stage, the new task arrives at block A.

During the entire time of the task being executed at block A and B, block A cannot perform
other activities. Firstly it is processing a call, secondly it is blocked while block B is processing.
Therefore the experienced service time of block A consists of the service time at block A, the
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Figure 7.1: Example of two influencing blocks

Figure 7.2: Synchronous cycle

waiting time at block B and the service time at block B. Projected on the entire task cycle, the
experienced service time is shown by the dashed rectangle in Figure 7.3(a). The other part of
the cycle will be the think time as shown in Figure 7.3(b).

(a) Service time block A (b) Think time block A

Figure 7.3: Contribution of the parts of the synchronous task to block A

This means that the experienced service time at block A is given by Equation 7.1, which adds
the service times for the synchronous calls of both blocks and the waiting time for synchronous
calls at block B.

E [S∗
s A] = E [Ss A]+E [WsB ]+E [SsB ] (7.1)

The situation around block A is detailed out, lets look at the situation at block B. Block B has
to process both synchronous and asynchronous calls. The asynchronous calls are arriving with
a known inter-arrival distribution, which does not depend on any other distribution. How-
ever, the synchronous calls only arrive after block A has processed them. After arrival, the syn-
chronous call is processed at block B and then processing has finished. In the perspective of
think and service time, the service time at block B is just the processing it does by itself as shown
by the dashed rectangle in Figure 7.4(a). The think time at block B includes the think time of
the task and the processing at block A, as shown in Figure 7.4(b).

So at block B, the think rate is no longer negative exponential distributed, because it consists of
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(a) Service time block B (b) Think time block B

Figure 7.4: Contribution of the parts of the synchronous task to block B

two phases. One phase is the think time of the task, with rate zsT , the second the service time
at block A, with rate µs A .

This means that the experienced value for the think time at block B (E [Z∗
sB ]) is given by Equa-

tion 7.2. This equation which accumulates the task think time, expected waiting time for syn-
chronous calls at block A and the service of this task at block A.

E [Z∗
sB ] = E [ZsT ]+E [Ws A]+E [Ss A] (7.2)

In general Equations 7.2 and 7.1 cannot be solved directly, because they influence each other
by the waiting time. The think rate at block B depends on the waiting time of block A, which
on its turn depends on the waiting time of block B, which depends on the think rate at block B.
Using iteration a good approximation for the waiting times is computed.

In this case E [Ws A] = 0, because at block A only synchronous calls are processed, so iteration
is not needed in this situation.

When looking at Figures 7.4 and 7.3, a general modelling rule can be determined for tasks with
blocking calls:
All the parts handled while not blocked (except for the waiting time at this block) contribute to
the experienced think rate z∗

s . All the parts during the blocked time contribute to the experienced
service time S∗

s .

In the previous section the combined behaviour of multiple blocks is analysed. To perform ad-
equate analysis, also the distribution of the influences has to be taken into account. Because all
the basic transitions are negative exponentially distributed, combined transitions will become
phase type.

The experienced synchronous service of block A (S∗
s A) illustrates the application of phase-type

distributions. This experienced service time consists of tree parts:
• The actual service time of the synchronous call at block A
• The waiting time for synchronous calls at block B
• The service time at of the synchronous call at block B
When a phase-type distribution for all of these elements is known, the combined distribution
of the experienced synchronous service at block A can be constructed using convolution.

First the phase-type distributions for each of the parts mentioned above, are needed. The ser-
vice times for synchronous calls of both block A and B are assumed to be negative exponentially
distributed, resulting in phase-type distributions, as given by Equations 7.3 and 7.4. The ma-
trix T has only one element, meaning there is only one phase. Because the value of the matrix
T represents the rate at which the distribution ends, in this situation −µs A or −µsB . The vector
~a indicates the initial distribution of the phase-type distribution. Because it is 1, it means the it
always starts with the phase represented in matrix T.
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Tµs A = [−µs A
]

and ~aµs A = 1 (7.3)

TµsB = [−µsB
]

and ~aµsB = 1 (7.4)

The phase distribution of the waiting time for block B is much harder to derive. This distribu-
tion is approximated using the moment matching algorithm and using the first, second and
third moments of the waiting time. Recall, that a detailed description of the moment matching
algorithm is given Section 3.13.

Using convolution for phase-type distributions (Section 3.12.1) a combined phase-type dis-
tribution is acquired. This combined phase-type distribution, represented by T∗

µs A and ~a∗
µs A ,

approximates the experienced service time distribution.

The examples of Sections 6.3 and 6.4 only considered one synchronous task, but in reality, mul-
tiple tasks can be using the same block. To derive the experienced think times and service times
the following steps have to be carried out for each block:

1. Collect all tasks with synchronous calls at this block.

2. Determine for each call, what part of the task contributes to the think rate and what part
to the service time is and derive phase type distributions for them.

3. Combine the distributions of multiple tasks using the mixture operation for phase type
transitions, with the expected inter arrival time as measure.

For asynchronous calls, a similar strategy is used. The arrival rates of all tasks are modelled by
a single negative exponential distribution with as rate the sum over all arrival rates. The dis-
tribution for the asynchronous service time is derived as a mixture of all negative exponential
transitions, with the arrival rates as weights.

7.3 Adapting modelling and analysis methods
The analysis methods in Chapter 4 are all based on negative exponentially distributed transi-
tions. These transitions have to be replaced by phase-type transitions and the analysis method
has to be adapted, to cope with the analysis of multiple blocks.

So every transition in the CTMC as shown in Figure 4.7 must be replaced by a phase-type tran-
sition. As shown in Section 3.12, a phase-type transition is described by the matrix T and vector
~a. Because a phase-type transition itself contains a number of states, when replacing negative
exponential transitions by phase type transitions, the state space grows.

Firstly, two simple examples are shown on how to derive the transition matrices based on
phase-type distributions. In Figure 7.5 a simple CTMC is shown. When the transitions with
rates zs and µs are replaced by phase-type transitions, the corresponding generator matrix Q is
shown in Equation 7.5.

In the left upper section of the matrix the sub-matrix Tµs is located, which describes the transi-
tions within the states of the phase-type distribution. The process of going to the terminating
state of this phase-type transition is described by vector ~T 0

µs (upper right part). To initiate
the second phase-type transition, this vector is multiplied by the initiating vector ~azs . Now the
sub-matrix Tzs (lower right part) describes the movements within this distribution. Leaving of
this phase-type distribution is described by vector ~T 0

zs (lower left part), which is multiplied by
the~aµs to initiate the µs phase again. This completes the generator matrix, which is now of size
(nzs +nµs) by (nzs +nµs).

This generator matrix Q looks very similar to the convolution rules for phase-type transitions
(Section 3.12.1), only in this situation

∑
~a = 1 has to hold (no positive probability of having a
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duration of 0). If this would not hold, matrix Q should be different and would become much
more complex.

Figure 7.5: CTMC example 1

Q =
[

Tµs
~T 0

µs ~azs
~T 0

zs ~aµs Tzs

]
(7.5)

In this first example, from each state only one transition is possible. In the second example
there are multiple transitions possible from each state, as shown in Figure 7.6. The correspond-
ing generator matrix Q is given by Equation 7.6. In this matrix the ordering of rows and columns
corresponds to the state set numbering in the CTMC (A, B, C and D).

The left upper sub-matrix describes the transitions within A. This sub-matrix is build from the
T matrices of both outgoing transitions. The tensor sum makes that both phases get an inde-
pendent state dimension, which is needed, because they are independent. More information
on tensor sums and products is given in Appendix A. This means that this term becomes a
(nµs ·nλas)×(nµs ·nλas) matrix, because for each state of one phase, the complete state space of
the other phase involved is needed. This independence makes that the state space grows fast
when the number of phases increases.

The second sub-matrix in the row models going from A to B. This sub-matrix terminates the
phase-type distribution, replacing the transition with rate µs (vector ~T 0

µs) and initiates the
phase-type distribution replacing transition µs (vector ~azs), but does not influence the distri-
bution, replacing the transition with rate λas (sub-matrix Iλas). The Iλas matrix is an identity
matrix with the same size as the Tλas matrix. The order of the tensor product should be used
consistently throughout the complete matrix, otherwise the phases of different transitions will
be mixed up. The third sub-matrix in the row terminates the distribution, replacing the tran-
sition with rate λas , initiates the distribution, replacing the transition with rate µas , and does
not influence the distribution, replacing the transition with rate µs . The fourth sub-matrix in
the row is zero because there is no possibility of moving from state set A to D. The next rows of
the generator matrix are constructed in a similar way. The total matrix width and height is then
(nµs +nzs) · (nλas +nµas). Note that, only the diagonal elements in the matrix have to be square
matrices, the other elements may be rectangular.

Figure 7.6: CTMC example 2
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Q =


Tµs ⊕Tλas

~T 0
µs ~azs ⊗ Iλas Iµs ⊗ ~T 0

λas ~aµas 0
~T 0

zs ~aµs ⊗ Iλas Tzs ⊕Tλas 0 Izs ⊗ ~T 0
λs ~aµas

Iµs ⊗ ~T 0
µas ~aλas 0 Tµs ⊕Tµas

~T 0
µs ~azs ⊗ Iµas

0 Izs ⊗ ~T 0
µas ~aλas 0 Tzs ⊕Tµas

 (7.6)

7.3.1 Extending the single block analysis with phase-type transitions
To replace the negative exponential transitions of the single block analysis with phase-type
distributions, the matrices B00, B01, B10, A0, A1 and A2 have to be adapted. The new matrices
have the same state set ordering as the ones with negative exponential distributions as shown
in Chapter 4.

On the diagonal of the B00 and A1 matrix all the possible transitions in that state set are rep-
resented by a T matrix in the form of a tensor sum, so the operating phases are independent.
The states where the transitions go, need to have a ~T 0 vector to exit the phase. When a new
phase is started in that state set, a ~a vector initiates that phase. Phases that are not affected by
the phase ending are represented with an identity matrix I of the right size. In some cases, a
column times row vector multiplication is used, which has the same effect as a tensor product
with those vectors.

The new matrices, that describe the quasi birth death process of the ASD block with phase-type
distributions, are listed by Equations 7.7 till 7.12.

B00 =
[

Tµs
~T 0

µs ~azs
~T 0

zs ~aµs Tzs

]
⊕Tλas (7.7)

B01 =
[

Iµs ⊗ ~T 0
λas ~aλas 0 0

0 Izs ⊗ ~T 0
λas ~aλas ⊗~aµas 0

]
(7.8)

B10 =

 0 0

0 Izs ⊗ Iλas ⊗ ~T 0
µas

Iλas ⊗ ~T 0
µas ~aµs 0

 (7.9)

A0 =

 Iµs ⊗ ~T 0
λas ~aλas 0 0

0 Izs ⊗ ~T 0
λas ~aλas ⊗ Iµas 0

0 0 ~T 0
λas ~aλas ⊗ Iµas

 (7.10)

A1 =

 Tµs ⊕Tλas
~T 0

µs ~azs ⊗ Iλas ⊗~aµas 0

0 (Tzs ⊕Tλas)⊕Tµas
~T 0

zs ⊗ Iλas ⊗ Iµas

0 0 Tλas ⊕Tµas

 (7.11)

A2 =

 0 0 0

0 Izs ⊗ Iλas ⊗ (~T 0
µas ~aµas) 0

0 0 Iλas ⊗ (~T 0
µas ~aµas)

 (7.12)

For the analysis, the state probabilities of the asynchronous queue upon the arrival of a syn-
chronous call are required. To select these probabilities from the steady-state sub-vectors, a
selection matrix is required. These selection matrices are build using a normalize ~T 0

zs vector
and the identity matrices of the other phase-type distributions, to get the situation at arrival,
but not influence the other distribution. The selection matrix for ~z0 becomes V0 as in Equa-
tion 7.13, the selection matrix for ~z1 becomes V1 as in Equation 7.14.

By applying ~z0 ·V0 (steady-state probability sub-vector times the selection matrix) the steady-
state probability sub-vector of the empty asynchronous queue, upon arrival of a synchronous
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call, is calculated. The distributions of the replaced transitions λas and µas are phase-type, so
the resulting steady state vector may consist of multiple elements. By using ~zi ·V1 the steady-
state probability sub-vector when having i calls in the asynchronous queue, upon the arrival of
a synchronous call, is calculated.

V0 =
 ~T 0

µs ·0
~T 0

zs∑ ~T 0
zs

⊗ (Iλas ·~1) (7.13)

V1 =


~T 0

µs ·0(
~T 0

zs∑ ~T 0
zs

)
⊗ (Iµas ·~1)

Iµas ·~0

⊗ (Iλas ·~1) (7.14)

7.3.2 Analysis
Although the distributions have become phase-type, using the selection matrices, the analysis
as presented in Chapter 4 can still be used.

Using this analysis only systems where tasks have at most one block in common, can be mod-
elled adequately. When the same tasks have multiple blocks in common, they do not only in-
fluence their service times, but also their arrivals become dependant. This dependence is not
incorporated in this model and not modelling this dependence results in severe errors between
analysis and simulation.

7.4 Case 4: Applying Moment matching
To validate the functioning of the analysis algorithm with the moment matching, a new case
has been defined as presented in Figure 7.7. In this case a task consisting of two synchronous
calls (Task 1) has first a call at block A, next a call at block B. Besides this task, two other tasks
are using the blocks. Task 2 consists of a single asynchronous call, that has to be executed at
block B, task 3 also consists of a single asynchronous call, which has to be processed on block
A. In Table 7.1 the expected service times, think rates and arrival rates for each task are defined.

Task 1, consists of multiple synchronous calls, both blocks the calls have to be processed on,
have asynchronous calls arriving, which induces waiting time for the synchronous calls. So in
the analysis of a single block, the waiting time at the other block has to be taken into account,
therefore moment matching has to be applied in this case, to model the influence of waiting
time at other blocks.

Figure 7.7: Structure
case 4

Task number Arrival / Think Rate Expected service time

1 zs = 0.1
E [Ss A] = 3
E [SsB ] = 2

2 λas = 0.4 E [SasB ] = 2
3 λas = 0.3 E [Sas A] = 1

Table 7.1: Case 4 task definition

In Figure 7.8 the results of the analysis using moment matching are displayed. In this graph,
the analysis results are plotted with the lines. The confidence window is plotted with error bars
and a dot indicating the average value obtained using simulation.

From this graph, it is visible that the analytical results are very close to the simulation results
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Figure 7.8: Case 4: Analysis versus simulation with zsT 1 = 0.1

or even within the confidence window. In this graph only the expected response time of Task
1 computed using analysis is outside the confidence window of the simulation results, at an
arrival rate for Task 2 (λasT 2) of 0.4. Besides the expected response time of the tasks, also the
utilization of block A is plotted, to give an indication on the utilization of the system. Figure 7.9
shows a similar graph as displayed in Figure 7.8, but now with a think rate for Task 1 (zsT 1) of 1.

To provide a more detailed view, in Table 7.2 both the analytical determined response times
and the simulation results are listed for different values of the think rate for Task 1 and the
arrival rate for Task 2. The columns “min” and “max” indicate the upper and lower bound of
the confidence intervals. In the column “Difference” only percentages are displayed, when the
analytical results are out of the confidence window of the simulation. From these results it
clear that the analysis and simulation for this case match well, only minor differences occur
with high utilizations by asynchronous calls. This is probably caused by the approximation
made by applying moment matching instead of an exact distribution.

Parameter Task Simulation Analytical Difference (%)
numbers response time response time

min avg max
zsT 1 = 0.1 1 6.2747 6.2778 6.2810 6.2769 -
λasT 2 = 0.05 2 2.4921 2.4949 2.4977 2.4953 -

3 3.2601 3.2621 3.2640 3.2619 -
zsT 1 = 0.1 1 32.4335 32.5341 32.6347 31.8604 -2.0
λasT 2 = 0.4 2 10.4410 10.4764 10.5118 10.4868 -

3 51.3058 51.7149 52.1240 51.2567 -0.9
zsT 1 = 1 1 29.8648 29.9404 30.0161 30.0660 0.4

λasT 2 = 0.4 2 10.6240 10.6485 10.6731 10.6590 -
3 55.2111 55.5041 55.7971 55.2507 -

Table 7.2: Case 4 results

As listed in Section 7.1 the generalized approach (waiting time propagation) for analysis of mul-
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Figure 7.9: Case 4: Analysis versus simulation with zsT 1 = 1

tiple ASD block is based on iteration. Therefore the number of iterations used, influences the
results of the analysis. In Figure 7.10 the influence of the number of iterations on the response
times of the tasks and the utilization of the blocks is plotted. In this plot a think rate for Task 1
(zsT 1) of 0.1 and an arrival rate for Task 2 (λasT 2) of 0.4 are used. The left vertical axis provides
the scale for all the response times, the right axis defines the scale for the utilizations.

In this graph it is shown that after two iterations the response times and utilizations are already
quite close to the final value and after 6 iterations, the measures of interest do not noticeably
change any more, therefore for this case 10 iterations is sufficient.

The plot shows a strong increase in the utilization for Block A with the second iteration. This
strong increase is, because in the second iteration the waiting time of Task 1 at Block B is in-
corporated in the utilization of Block A, because the utilization includes the time the block is
blocked. Since this results is an high utilization, the response time for Task 3 grows strongly.
The increased utilization also results in an increased response time for Task 1, which increases
the inter-arrival time for Task 1, because the response time is part of the inter-arrival time for
synchronous tasks. This increased inter-arrival time results in a slight decrease in the utiliza-
tion for Block B. This decrease is too small to have visible effect on the response time of Task
2.
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Figure 7.10: Case 4: Effect of number of iterations on response times

7.5 Case 5: Interference of tasks
The situation for this case is sketched in Figure 7.11. In this case one task (Task 1) consists of
only synchronous calls going down trough the structure and the other task (Task 2) consists
of asynchronous calls going upwards, using the same blocks, taking the opposite path. The
corresponding task specifications are given in Table 7.3.

Figure 7.11: Case 5: Interfering
tasks

Task Arrival / Think Expected service
number Rate time

1 zs = 0.1
E [Ss A] = 3
E [SsB ] = 2

2 λas = 0.3
E [SasB ] = 2
E [Sas A] = 1

Table 7.3: Case 5: task definition

In Figure 7.12 the analytically derived expected task response times are plotted together with
the simulation results. The lines indicate the analysis results, the confidence window obtained
using simulation is displayed by the error bars, with a dot indicating the average value. The uti-
lization of block A plotted in this graph is obtained from the analysis and includes the blocking
time. From this graph, it is shown that the analysis under estimates the task response times,
but comes close to the confidence interval.

To give a more detailed view, in Table 7.4 the with analysis computed expected response times
of the tasks are compared with the expected response times acquired by simulation. To provide
more insight into the differences between the analytical results and the simulation results the
waiting times and the utilization at each block are listed in Table 7.5. As well as in the previous
tables the columns indicated with “min” and “max” indicate the upper and lower bounds of the
confidence interval.
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Figure 7.12: Case 5: Task response times

When looking at the task response times, the analytical results are not within the confidence
interval. For this case the error in the response times is about 10 %, however when looking at
the utilization of the blocks, they are almost the same. Despite this small deviation in utization,
the waiting times at block A deviate almost 20 %.

Task number Task response Difference
Simulation results Analytical results

min average max %
1 13.34 13.37 13.39 12.96 -3.1
2 18.17 18.21 18.25 16.06 -11.8

Table 7.4: Case 5: Task responses

Block number Simulation results Analytical results Difference
min average max %

Expected waiting time for synchronous calls
A 2.592 2.596 2.601 2.271 -12.5
B 5.753 5.768 5.782 5.689 -1.3

Expected waiting time for asynchronous calls
A 11.747 11.779 11.812 9.625 -18.3
B 3.420 3.428 3.437 3.455 0.8

Utilization per block
A 0.761 0.761 0.761 0.766 0.6
B 0.685 0.686 0.686 0.687 0.2

Table 7.5: Case 5: Various measures

The error in the expected response times is probably caused the opposite paths of the tasks (the
synchronous task first does Block A then Block B, where Task 2 first does block B, then block
A). The analysis for each block assumes negative exponentially distributed inter-arrival times
for asynchronous calls. At block B asynchronous calls interfere with synchronous calls, which
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have a different inter-arrival distribution. Therefore the inter-release time of asynchronous
calls at block B, i.e., the inter-arrival times of the asynchronous calls at block A are not negative
exponentially distributed. This effect is not incorporated in the model, introducing errors and
further research is required to improve the accuracy in these cases.

Also in this case the results are acquired using iteration. The influence of the number of itera-
tion on the task response time and the utilization is displayed in Figure 7.13. This plot is made
with a arrival rate for Task 2 (λas) of 0.4. As in the previous case, in this case the results are
close to their final values after 2 iterations and after 6 iterations no notable change is visible
any more, therefore 10 iterations are sufficient for this example.

When looking at the utilization, the utilization of Block A increases significantly after 1 itera-
tion, because in the second iteration, the waiting time Task 1 at Block B is embedded in the
utilization of block A (due to the blocking, which is part of the utilization). This results in a
longer response time of Task 1, which reduces the arrival rate of Task 1 (because the response
time also determines the arrival rate), which reduces the utilization of Block B. Since the uti-
lization at Block A has come close to 1, the waiting time for asynchronous calls at block A is
increased strongly, lengthening the response time for Task 2.

Figure 7.13: Case 5: Influence of iterations on measures of interest

7.6 Required number of iterations
As shown by the graphs of Figure 7.10 and 7.13, the iterative method used for propagating the
dependencies between blocks converges for small cases rather quick close to the final solution.
For larger cases however more iterations might be required.

A way of estimating the required number of iterations is to calculate the total change in ex-
pected waiting times between iterations and do iterations until this estimate is smaller then an
allowed error. This condition is mathematically written down in Equation 7.15. For every block
i take the absolute value of the current interation’s ( j ) expected waiting time for synchronous
calls minus the expected waiting time of the previous iteration ( j −1) and sum them. Then add
the same for the expected waiting time for asynchronous calls. If the result is smaller then the
allowed error εi ter , enough iterations have been done.
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∑
i

∣∣E [Ws]i ( j −1)−E [Ws]i ( j )
∣∣+∑

i

∣∣E [Was]i ( j −1)−E [Was]i ( j )
∣∣< εi ter (7.15)

7.7 Discussion
In Chapters 6 and 7 several ASD systems have been analysed and the obtained results have
been compared with the simulation results. A summary of all results is listed in Table 7.6. In
this table, for each type of ASD structure that has been studied, the analysis method is listed
and the corresponding accuracy is indicated.

Nr System Analysis method Accuracy Section
1 Single block Uses steady state probabili-

ties of the underlying CTMC
to compute the expected re-
sponse times

++ 6.1

2 One task, multiple blocks,
either only synchronous or

only asynchronous calls

Accumulation of single
block response times

++ 6.2

3 Two tasks (asynchronous
and synchronous) sharing

at most one block

Replace think and service
transitions by phase-type
distribution to incorporate
dependencies

++ 6.3 and 6.4

4 Multiple tasks (one
synchronous with multiple

asynchronous), where
asynchronous tasks only

interfere with the
synchronous task at their

last call

Replace think and ser-
vice transitions by phase
type transitions derived
with moment matching to
incorporate dependencies

+ 7.4

5 Multiple tasks (one
synchronous with multiple

asynchronous), where
asynchronous tasks only

interfere with the
synchronous task at

multiple calls

„ + / - 7.5

6 Multiple tasks, where each
task consists either of only

synchronous or only
asynchronous calls

„ indication -

7 Multiple tasks, where each
task consists of

combinations of
synchronous and

asynchronous calls

No method available yet N/A -

Table 7.6: Case comparison table
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As can be seen in this table a good start has been made by modelling a simplified version of
the ASD structure and deriving the performance analytically. For the first three cases of Ta-
ble 7.6 the proposed analytical methods produce very accurate results. The methods used in
these cases have been generalized to a technique called waiting time propagation that uses mo-
ment matching. This implementation of the waiting time propagation algorithm can also deal
with first three cases and gives the same results as the simple techniques presented. The wait-
ing time propagation in combination with moment matching algorithm works well for these
smaller problems and is a promising approach for future work.

As presented in Section 7.5 (number 5 in the table), the analysis for the opposite paths of tasks
only gives an indication of the performance. When a asynchronous task shares a block with
synchronous calls, the assumption of negative exponentially distributed inter-arrival times is
no longer true for this task at further blocks, because of the non-preemptive priority scheduling
discipline of the ASD blocks. To incorporate this effect in the analysis, the inter-arrival time of
asynchronous calls could be modelled as a phase type distribution using the moment matching
algorithm. Since the current analysis method is based on negative exponentially distributed
inter-arrival times for asynchronous calls, this also has to be adapted.

Even though the experienced think time is already modelled using a phase type distribution, a
closer look is required on the situation with multiple synchronous tasks, to improve the results
with case number 6 in Table 7.6. Since only one synchronous task can be in the system at a
time, the response time of a tasks becomes part of the experienced think time of other tasks.
This phenomenon is not yet incorporated in the analysis method.

The current modelling and analysis methods are already capable of analysing a lot of different
ASD systems well. With these proposed extensions probably even much larger systems can be
analysed analytically. Although there is a long way to go before the system is applicable to real
ASD systems, the results obtained using the current analytical algorithm are promising.
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8 Conclusion

In Section 8.1 the conclusion on this thesis are given. Thereafter Section 8.2 presents some
recommendations to improve the models and the corresponding analysis.

8.1 Conclusion
The Analytical Software Design (ASD) suite is one of the products of the company Verum. In
this master project, performance models for software generated with the ASD suite have been
developed. To keep the problem manageable, only a simplified version of the ASD structure
has been modelled. To analyse the ASD structure, a bottom-up approach is applied. Single ASD
blocks are modelled as queueing stations and analysed using queueing theory and measures,
which has been derived from the underlying Continuous Time Markov Chain (CTMC).

To validate the analysis for the simplified ASD architecture, a discrete event simulator has been
implemented. For a given ASD architecture and pre-defined tasks, the simulator can compute
the average response times and their confidence intervals from the simulation results.

Using the simulator, the analysis of a single ASD block is validated and the analytically derived
expected waiting times lie well within the confidence interval. The simulation results are the
basis for extensions made to the single block ASD model to analyse systems with multiple ASD
blocks. After manually constructing models for a number of cases with multiple blocks, a gen-
eralized method based on moment matching is developed, which adequately models simple
systems with multiple ASD blocks. Although this method works well for simple systems with
multiple blocks, with more complex systems the analysis is not accurate any more, because
some dependencies that are in the ASD generated software are not incorporated in the model.
Recommendations are presented to address this problem.

Several assumptions have been made about the ASD generated software, to make modelling
and analysis possible. The structure of the ASD generated software as used in this thesis does
not contain all constructions allowed by the ASD suite, because at the time of the start of this
thesis no more details where available on the exact behaviour of the ASD generated software.
Although deviations from the presented structure are allowed by the ASD suite, these software
constructions can often not be formally verified by the ASD suite, so keeping close to the sim-
plified structure may be a good practice and is recommended to Philips Healthcare.

Besides the assumption about the structure, also several entities (service times, inter-arrival
times etc.) have been assumed to be negative exponentially distributed. This probably does
not resemble the distribution in a real system. To closely mimic the behaviour of a real sys-
tem, these distributions can be replaced by phase type distributions that can be configured to
approximate the distribution of the entity in a ASD generated system. Replacing the negative
exponentially distribution by phase-type distributions will result in a larger state-space of the
underlying problem. However this does not pose any problem for the presented technique.

All together, a good start has been made in this master project by modelling the performance of
a simplified version of the ASD structure. Quite complex configurations can be handled using
analytical models. Extensions are required before the models can be applied in practice, but
the results using the moment matching algorithm look promising.
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8.2 Recommendations
Not all aspects of the ASD structure have been covered yet, the following list gives suggestions
for new projects and improvements:

Organization The purpose of this master project was to model the performance as part of the
Allegio project. Due to ambiguity about the funding of the Allegio project, the project had
not started jet, so no case studies were available. Therefore it was a challenge to identify
a reasonably simple problem to start the analysis on. The goal of this master project was
to take an analytical approach, that is why the simplified ASD structure deviates from the
real ASD structure. For future projects a real case study would be very useful.

Arrival rate of asynchronous calls Section 7.7 gives an overview of the quality of the tech-
niques with different systems. The results start to deviate when asynchronous and syn-
chronous tasks cross at multiple blocks. Propagating the effect of interfering synchronous
calls on the inter-arrival time of asynchronous calls can probably help to improve the
quality of the results.

MPA In this thesis, only the self developed method of waiting time propagation is studied. The
Modular Performance Analysis (MPA) could also be suited to model this problem, but ap-
plying this method was out of the scope of this project. This method is probably easier to
adapt to the real ASD structure and also offers methods to model the processor sharing,
which is not implemented in this project. However the MPA has difficulties modelling
cyclic dependencies, which occur with the synchronous calls. In some cases MPA will be
easier to use, but it probably will not solve all problems.

Simulate more When a real case study is available the modelling could start by implementing
modelling decisions in a simulator. Implementing these in an analytical model is usually
much more difficult and time consuming than implementing them in a simulator. This
way the impact of modelling decisions can be examined in an early stage and no time is
waisted by implementing decisions that result in large modelling errors.
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A Tensor sum and products

When composing CTMCs out of phase type transitions often tensor products and sums (also
called Kronecker products and sums) are used.

The tensor product (⊗) with input matrices A and B of size na ,ma and nb ,mb results in a matrix
of size na ·nb ,ma ·mb . The product is performed by replacing each element in the first matrix,
by the second matrix multiplied by the replaced element. An example with matrices A and B
(Equation A.1) results in Equation A.2. The order of the operation is determining the outcome
as shown in the differences between Equations A.2 and A.3. So when actually applying the
tensor product to compose a CTMC, the order should be consistent, otherwise a wrong CTMC
is obtained.

A =
(

a b
c d

)
and B =

 1 2
3 4
5 6

 (A.1)

A⊗B =



a 2a b 2b
3a 4a 3b 4b
5a 6a 5b 6b
c 2c d 2d

3c 4c 3d 4d
5c 6c 5d 6d

 (A.2)

B⊗A =



a b 2a 2b
c d 2c 2d

3a 3b 4a 4b
3c 3d 4c 4d
5a 5b 6a 6b
5c 5d 6c 6d

 (A.3)

When composing a CTMC with phase type transitions often also the tensor sum operation is
needed. Take two phase type distributions, characterized by their square matrices Q1 and Q2.
In the calculations the identity matrices Iq1 (identity matrix, same size as matrix Q1) and Iq2

(identity matrix, same size as matrix Q2) are used. The tensor sum (⊕) is shown in Equation A.4.
The order of the tensor sum is also affecting the outcome because this operation is based on
the tensor product.

Qt = (Q1 ⊗ Iq2)+ (Q2 ⊗ Iq1) = Q1 ⊕Q2 (A.4)

More information on tensor algebra can be found in [12].
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B Probability functions and their properties

B.1 Random variable
A variable with an uncertain value is called a random variable (RV). Two types of random vari-
ables exist, discrete and continuous. An example of a discrete random variable is the outcome
of the throw of a dice. The result can be either 1, 2, 3, 4, 5 or 6. Besides the possible outcomes
also the distribution is know. When using a fair dice, the probability of each outcome is equal
to 1

6 .

An example of a continuous random variable is the temperature at noon tomorrow. The tem-
perature is a continuous variable, because is can have every value i.e. the number of values is
uncountable and infinite. This means the probability of having a value of exact 0.000. . .◦ C is
0. However the probability of having a temperature between −0.05◦C and 0.05◦C may have a
value larger than 0.

B.2 Probability functions of continuous random variable
As seen in the previous section, a random variable may have a known distribution. For a con-
tinuous random variable X this distribution is often defined by a probability density function
(PDF), or in mathematical notation fX (x). This function describes for each value the contri-
bution to the probability. Using this function fX (x), a cumulative density function (CPF) can
be defined as shown in Equation B.1. This function takes into account the contribution to the
probability of all the values smaller than x, so the CDF describes the probability of having a
value smaller or equal to x (Pr(X ≤ x) = FX (x)).

FX (x) =
∫ x

−∞
fX (u)du (B.1)

The probability of having any value is equal to 1 (by definition), so the integral over the contri-
butions by every value (PDF) should equal 1. This is shown in Equation B.2.

Pr(X ≤∞) = FX (∞) =
∫ ∞

−∞
fX (u)du = 1 (B.2)

B.3 Moments of a random variable
Not for every application the complete PDF of a random variable is required, but knowledge
about the moments of a distribution suffices. The most well known moment is the first moment
or mean value. The mean value is often determined over a large number of values, but in the
context of a random variable a misleading term, because a random variable is only one value.
Therefore the term expected value (E [· · · ]) is used when talking about random variables.

With discrete RV’s the expected value is calculated by summing over all possible outcomes
times their probability. This way the expected value of throwing a dice is calculated using Equa-
tion B.3

E [dice throw] = 1 · 1

6
+2 · 1

6
+3 · 1

6
+4 · 1

6
+5 · 1

6
+6 · 1

6
= 3.5 (B.3)

With continuous random variables the expected value has to be calculated using an integral
function over all the values times their probability density as shown in Equation B.4.

E [X ] =
∫ ∞

−∞
x · fX (x) d x (B.4)

Besides the expected value, also other moments can be calculated. The calculation of the i -th

Design and Analysis of Communication Systems



76 Performance analysis for embedded software design

moment of a RV X , is done by taking the infinite integral over xi times the probability density
at x. So the i -th moment (E [X i ]) can be calculated using Equation B.5.

E [X i ] =
∫ ∞

−∞
xi · fX (x) d x (B.5)

B.4 Negative exponential distribution
The negative exponential distribution is one of the basic continious distributions. A random
variable that is negative exponentially distributed can only have values larger than 0. The PDF
of the negative exponential distribution is given by Equation B.6 and its CDF by Equation B.7.
These functions have a parameterλ> 0, which determines the exact shape and are only defined
for x > 0. As an example, the PDF and CDF are plotted for several values of λ in Figure B.1.

fX (x) =λe−λx (B.6)

FX (x) = 1−e−λx (B.7)

(a) PDF (b) CDF

Figure B.1: The PDF and CDF of the negative exponential distribution

This distribution has a special property that it is memoryless. This property is discussed in
detail in Section 3.7.

Using the definition of the moments, the expected value can be calculated using Equation B.8.
Without the intermediate steps the second moment of the negative exponential distribution is
given by Equation B.9.

E [X ] =
∫ ∞

0
x · fX (x)d x =

∫ ∞

0
x ·λe−λx d x

=
[
−xe−λx

]∞
0
−

∫ ∞

0
−e−λx d x = 0−

[
1

λ
e−λx

]
=−0−− 1

λ
= 1

λ
(B.8)

E [X 2] =
∫ ∞

0
x2 · fX (x)d x =

∫ ∞

0
x2 ·λe−λx d x = 2

λ2 (B.9)

B.5 Erlang distribution
Another well known distribution is the Erlang distribution. The Erlang-n distribution is con-
structed from a series of n independent negative exponential distributions with all the same
λ. Since the Erlang distribution is totally composed of negative exponential distributions, the
Erlang distribution is a phase type distribution.
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The process behind the Erlang distribution is given in Figure B.2. The process starts in state 0
and the time it takes to go to the next state is negative exponentially distributed with parameter
λ. The time is takes to reach state n starting from state 0 is Erlang-n distributed.

Figure B.2: Composition of the Erlang distribution

The PDF and CDF of the Erlang distribution are given by Equation B.10 and Equation B.11
respectively. These functions only hold for x > 0 and n ∈ N +. The functions are plotted with
three different values for n and λ in Figure B.3. The values for n are chosen and the value for λ
is adjusted to keep the expected values equal.

fX (x) = λ(λx)n−1

(n −1)!
e−λx (B.10)

FX (x) = 1−e−λx
n−1∑
j=0

(λx) j

j !
(B.11)

(a) PDF (b) CDF

Figure B.3: The PDF and CDF of the Erlang distribution

The Erlang-1 distribution is actually a negative exponential distribution. When n becomes
larger, the PDF gets a totally different shape and becomes a peak. The higher the n the nar-
rower the peak around the expected value. This peak results in a sudden steep slope in the CDF
graph. This effect makes the the Erlang behave like a deterministic distribution. The larger the
n, the Erlang distribution resembles a deterministic distribution.

This deterministic behaviour allows the use of Erlang distributions to approximate determinis-
tic variables. Since Erlang distributions are based on negative exponential distributions, analy-
sis methods based on the Markov property (that cannot be used with deterministic transitions)
can be used in this situation.

The expected value of the Erlang distribution is n
λ and the second moment is n(n+1)

λ2 .
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B.6 Hypo-exponential distribution
The hypo-exponential distribution is the generalized form of the Erlang distribution. Where the
Erlang distribution has for each negative exponential distribution it is based on the same λ, the
hypo-exponential distribution has for each phase a differentλ. For a 2 phase hypo-exponential
distribution with values λ1,λ2 > 0, the PDF and CDF for x > 0 are given by Equations B.12
and B.13.

fX (x) = λ1λ2

λ2 −λ1

(
e−λ1x −e−λ2x

)
(B.12)

FX (x) = 1− λ2

λ2 −λ1
e−λ1x + λ1

λ2 −λ1
e−λ2x (B.13)

The expected value of a hypo-exponential distribution is
∑

i
1
λi

, which is de sum of the expected
values for each negative exponential distribution it consists of. The second moment is more
difficult, because the calculation of the second moment is non-linear, simply adding the sec-
ond moments of the components is not allowed.

Therefore, the second moment has to be calculated from scratch using Equation B.5. Instead
of using the PDF for the two stage hypo-exponential distribution of Equation B.12, the PDF
of each stage its negative exponential distribution is used. By combining these two functions,
this becomes Equation B.5. In this equation x1 is the result of the first negative exponential
distribution and x2 of the second. Their sum is the result of the two phase hypo-exponential
distribution. Both distributions are independent, so both PDFs can be multiplied.

In Equation B.15 the first and third term are the second moment of the exponential distribution
i.e. (2/λ2

x ). The second part is two times the multiplication of the mean values of the exponen-
tial distributions (1/λi ).

E [X 2
2 ] =

∫ ∞

0

∫ ∞

0
(x1 +x2)2λ1e−λ1x1λ2e−λ2x2 d x1d x2 (B.14)

=
∫ ∞

0

∫ ∞

0

(
x2

1 +2x1x2 +x2
2

)
λ1λ2e−λ1x1−λ2x2 d x1d x2 (B.15)

= 2

λ2
1

+2 · 1

λ1
· 1

λ2
+ 2

λ2
2

Based on this result, for prove using induction, suppose that for E [X 2
n] (the second moment of

a hypo-exponential distribution with n stages) Equation B.16 holds.

E [X 2
n] =

n∑
i=1

(
1

λ2
i

+
n∑

j=1

1

λiλ j

)
(B.16)

Using Equation B.17 prove that Equation B.16 also holds for n +1.

(a +b) = a2 +2ab +b2 (B.17)
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E [X 2
n+1] =

∫ ∞

0
· · ·

∫ ∞

0
(x1 +·· ·+xn+1)2λ1e−λ1x1 · · ·λn+1e−λn+1xn+1 d x1 · · ·d xn+1

= E [X 2
n]

∫ ∞

0
λn+1e−λn+1xn+1 d xn+1 +

2E [Xn]
∫ ∞

0
xn+1λn+1e−λn+1xn+1 d xn+1 +∫ ∞

0
x2

n+1λn+1e−λn+1xn+1 d xn+1 ·
n∏

i=1

∫ ∞

0
λi e−λi xi d xi

= E [X 2
n] ·1+2E [Xn]

1

λn+1
+ 2

λ2
n+1

·
n∏

i=1
1

=
n∑

i=1

(
1

λ2
i

+
n∑

j=1

1

λiλ j

)
+2 · 1

λn+1
·

n∑
i=1

1

λi
+ 1

λ2
n+1

=
n+1∑
i=1

(
1

λ2
i

+
n+1∑
j=1

1

λiλ j

)

Hereby using induction it is proven that Equation B.16 is true.
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