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1 Introduction 
In this section an introduction is given to car-to-car communication networks and Adaptive Cruise Control 
(ACC) and Cooperative-ACC (CACC). Furthermore, a more specific background related to the project is 
provided, which includes the problem statement and the research questions.  
 

1.1 General Background 

Every day, our cars are using more computing technologies, primarily for safety reasons. As one of the pioneers, 
the UCLA Vehicular Network Lab was established to turn cars into wireless network nodes facing the traffic 
problems in LA City [Escu08].  
 
Car-to-car communication changes the role of vehicles from mere transportation means to ―smart objects‖.  
According to [EiSc06]: ―Car-to-car communication enables many new services for vehicles and creates 
numerous opportunities for safety improvements‖. For example, it can be used to realize driver support and 
active safety services like collision warning, up-to-date traffic and weather information or active navigation 
systems. With such benefits, researchers are motivated to study the behaviours of vehicles and vehicular 
networks. Car-to-car communication networks are also denoted as vehicular networks. Two types of vehicular 
networks can be distinguished. Vehicle to Vehicle (V2V) and Vehicle to infrastructure (V2I). V2I is related to the 
communication between vehicles and a fixed communication infrastructure and V2V is related to the 
communication between vehicles. VANET is representing (1) the communication between vehicles Vehicle to 
Vehicle (V2V) and (2) the communication between vehicles and road side units (RSUs) when they are using the 
same ad-hoc wireless technology, such as IEEE 802.11p [IEEE802.11p-2010]. An RSU is a fixed base station 
that is located along the side of roads. The vehicle module that is supporting the communication of a vehicle 
with (1) other vehicles, (2) with RSUs and (3) with the infrastructure is denoted as OBU (On Board Unit). Figure 
1 shows a scenario, where a car accident occurred in an intersection, and where VANET is used as a V2V 
communication network to inform vehicles in the neighbourhood about this accident.   
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Figure 1: Example of accident in Intersection with VANET, copied from [POSTECH] 

VANET turns every participating car into a wireless router or node, allowing cars approximately 100 to 300 
meters of each other to connect and, in turn, create a network with a wide range. As cars fall out of the signal 
range and drop out of the network, other cars can join in, connecting vehicles to one another so that a mobile 
Internet is created.   
 

1.2 Project-specific Background   

   
The traffic density on the roads of most industrialized countries keeps increasing. This increase in traffic density 
is also increasing the traffic congestion on the roads, which will have a significant negative effect on travel time, 
traffic safety air pollution, and energy consumption. A possible solution to this problem is to use the Adaptive 
Cruise Control (ACC) concept. Initially, ACC was developed to increase user comfort, but research activities 
have shown that ACC could indeed have a positive impact on traffic safety and efficiency [WiKl07]. By 
extending the Cruise Control system with a radar sensor, ACC allows a vehicle to maintain a preset speed, as 
well as to adapt its speed to the speed of its predecessor in order to keep a minimum distance from its 
predecessor. In order to maintain these conditions a vehicle may accelerate when the preceding vehicle is 
increasing its speed and it slows down when it is approaching a vehicle that is driving with a lower speed than its 
own. An enhancement on the ACC concept is the Co-operative ACC (CACC), where the OBU in a vehicle is 
using a communication medium to communicate with OBUs available in other vehicles or RSUs. The 
information that is communicated and received by a vehicle is including vehicle dynamics information and 
general traffic information ahead, such as speed, acceleration, and position of other vehicles. Typically, this 
communicated information is denoted as CACC traffic information. The CACC traffic information can be used 
to enhance the performance of the current ACC systems. It is expected that CACC will increase vehicle traffic 
efficiency and traffic stability [WiKl07], [ArTa03]. CACC can be applied in traffic applications such as co-
operative following [ArTa03], or vehicle platooning [Ioan97], [ReMi02]. 
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The most important feature of vehicular networks and in particular, VANETs is the high mobility of nodes. 
Another parameter that needs to be considered is associated with the location of road side units (RSUs) and other 
intersection equipment, which has to be determined accurately. Therefore, it is important to study and model the 
mobility of vehicles, which should be carefully applied when evaluating any suitable network protocol [DjSo08]. 
 
With many years of research and design activities in this field, the technology still poses many challenges in the 
network and wireless transmission part, like efficient message dissemination, network scalability, and 
information security mechanisms. 
 
In this assignment, more attention will be paid to the impact of the communication medium on the vehicular 
traffic part. 
 
This assignment is realized in the context of the project ―connect&drive‖ [C&D], which is developing a CACC 
solution by enhancing the ACC functionality already available in vehicles with wireless communication, 
coordination and cooperation between vehicles mutually, and vehicles and infrastructure combined. This CACC 
solution, see [NaVu09], uses radar to measure the distance and relative speed between vehicles. By decreasing 
the relative distance, a high throughput can be achieved and for the heavy duty vehicles, the drag force can be 
decreased to lower the fuel consumption. Moreover, CACC is using the vehicular communication network in 
combination with longitudinal control, allowing for anticipation to emerging shock waves, and minimizing the 
occurrence and the length of traffic jams. The performance measure that is usually used to quantify the 
anticipation to shock waves is denoted as traffic flow stability or string stability, see e.g., [PuAr10].     
 

1.3 Problem Statement 

As already mentioned, traffic flow stability, or string stability is a performance measure used to quantify the 
anticipation to emerging traffic shock waves. In the context of vehicle platoon, see e.g., [Ioan97], [ReMi02], 
string stability is defined as the traffic flow stability measure that is measuring the propagation of a traffic shock 
wave, caused by a disturbance from one vehicle to other following vehicles in the same platoon. If the magnitude 
of this shock wave grows as it propagates from the leading to the following vehicles, then the platoon is said to 
be unstable (or string-instable) [PuAr10]. Guaranteeing the string stability is important. For example, for a 
platoon of vehicles of the same speed, if there‘s some incident happened to the leading vehicle like deceleration, 
with string stability not guaranteed, the following vehicle would decelerate more than necessary (because the 
shock wave grows as stated above). This will decrease the speed of the involved vehicles and may cause a traffic 
jam and may lower the traffic throughput.  Moreover, an incidental and unnecessary acceleration might cause 
accidents, i.e., vehicle crashes. Actually, manual driving and cruise control cannot guarantee string stability, see 
[PuAr10].  
  
Advanced Driver Assistance (ADA) systems are systems that support a driver in his driving tasks. An example of 
an ADA system that is commercially available is the Adaptive Cruise Control (ACC) system: by extending a 
‗regular‘ cruise control system with a radar sensor, the vehicle can maintain a preset speed, but also adapt the 
speed to a slower predecessor [WiKl07]. However, according to [NaVu09], this ACC system cannot achieve 
good string stability, either, while by using CACC the string stability can be significantly improved. 
   
Therefore, the main goal of this report is to investigate what will be the impact of an ACC and of a CACC that 
uses a realistic communication medium, on the string stability performance.  
 
In this report, a combined simulation environment will be considered,  This combined model includes: (1) a 
Simulink environment [Matlab_Simulink], used to simulate the vehicle and CACC behaviour, (2) SUMO 
[SUMO] traffic environment used to simulate the mobility behaviour of vehicles, (3) the MIXIM / OMNET ++ 
environment, used to simulate the communication networking behaviour. 
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1.4 Research Questions 

The main research question is: What is the impact of an ACC and of a CACC that uses a realistic communication 
medium, on the string stability performance?    
 
The research questions that have to be answered by this assignment are:  
 

1) How do ACC and CACC operate?  
The research approach used to answer this research question is literature study. 
 

2) Which vehicle model that includes ACC and CACC, traffic mobility model and communication 
networking model could be used in this assignment? 

 
The research approach used to answer this research question is to investigate, design and implement the 
combined vehicle model, traffic mobility and communication networking models within the SUMO, Simulink 
and OMNET++ simulation environments. 
 

3) Which experiments should be performed in order to investigate the impact of an ACC and of a CACC 
that uses a realistic communication medium, on the string stability performance? 

 
This research question is answered by designing, performing and analyzing the experiments that are needed to 
quantify and compare the impact of ACC and CACC on the string stability. 
 

4) How the loss of CACC traffic influences the CACC performance from the point of view of string 
stability? 

 
 
This research question is answered by designing, performing and analyzing experiments that quantify the impact 
of the CACC traffic losses, i.e., one or more beacons that are carrying CACC traffic are lost, on the CACC 
performance from the point of view of string stability. 
 

1.5 Outline of this report 

This report is organized as follows.  In section 2, the control theory used by the ACC and CACC controllers will 
be described. This section is partially used to answer the first research question. Section 3 describes the used 
simulation environments and models used in this assignment. This section is mainly answering the second 
research question.  Section 4 describes the performed experiments and analyses the obtained results. This section 
is mainly answering the third and the fourth research questions. Finally, Section 5 concludes and provides 
recommendations for future activities. It is important to note that three Appendices accompany this report, 
Appendix A, Appendix B and Appendix C. Appendix A is included in this report, while Appendix A and 
Appendix B are not. The reason of this is that Appendix B and Appendix C include TNO confidential 
information that cannot be made public.  
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2 Control theory and string stability  
In this section, the control theory related to this assignment is introduced. To achieve string stability, a specific 
control structure is designed which is based on [NaVu09]. First the concept of string stability is introduced and 
then the ACC and CACC control structure is briefly described.   
 

2.1 Control Theory 

Control theory [Kuma10] is an interdisciplinary branch of engineering and mathematics, which deals with the 
behaviour of dynamical systems. The desired output of a system is called the reference. When one or more 
output variables of a system need to follow a certain reference over time, a controller manipulates the inputs to a 
system to obtain the desired effect on the output of the system. 
 
Cruise Control (CC), see e.g., [WiKl07], can be considered as a control system that automatically controls the 
speed of a motor vehicle. The system takes over the throttle of the car to maintain a steady speed as set by the 
driver. It is useful in long drives by reducing driver fatigue and can also be used to avoid unconsciously violating 
speed limits. 
 
Consider a car's cruise control, which is designed to maintain a constant vehicle speed with the desired or 
reference speed provided by the driver. Furthermore, consider that the system is the vehicle. The system output is 
then the vehicle speed, and the control variable is the engine's throttle position which influences engine torque 
output. 
 
In ACC or CACC controllers, the references are the desired speed and the desired distance between vehicles. The 
system output and control variable are the same as the ones used for the CC controller.  
 
A primitive way of implementing CC is simply to lock the throttle position when the driver engages cruise 
control. However, on mountain terrain, the vehicle will slow down going uphill and accelerate going downhill. 
In fact, any parameter different from what was assumed at design time will translate into a proportional error in 
the output velocity, including exact mass of the vehicle, wind resistance, and tire pressure. This type of controller 
is called an open-loop controller because there is no direct connection between the output of the system (the 
vehicle's speed) and the actual conditions encountered. That is to say, the system does not and cannot 
compensate for unexpected forces. 
 
The ACC and CACC controllers can be considered as closed-loop control systems: a sensor monitors the output 
(the vehicle's speed) and feeds the data to a computer which continuously adjusts the control input (the throttle) 
as necessary to keep the control error to a minimum (that is, to maintain the desired speed). Feedback on how the 
system is actually performing allows the controller (vehicle's on board computer) to dynamically compensate for 
disturbances to the system. In our assignment, the disturbance is caused by other traffic‘s behaviour, such as 
preceding vehicle‘s suddenly deceleration. An ideal feedback control system should be able to cancel out all 
errors, effectively mitigating the effects of any forces that might or might not arise during operation and 
producing a response in the system that perfectly matches the user's wishes. In reality, this might be difficult to 
be achieved taking measurement errors in the sensors, delays in the controller, and imperfections in the control 
input into consideration. 
   

2.2 String Stability 

The term string stability is often used interchangeably with platoon stability in this area, which means any 
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nonzero position, speed, and acceleration errors of an individual vehicle in a string do not amplify when they 
propagate upstream, see e.g., see [PuAr10], [BoIo01]. The movement direction of vehicles, or of a string of 
vehicles, is considered to be the downstream direction. This means that the upstream direction is the direction 
from the leading vehicle towards the last following vehicle within the string. 
 
A simple scenario which can be used to explain string stability is showed in Figure 2 and Figure 3. 

 

Figure 2: Platoon stability: stable, copied from [PuAr10] 

 

Figure 3: Platoon stability: instable, copied from [PuAr10] 

 
In Figure 2 and Figure 3, a string of four vehicles moving from left to right is shown. The leading vehicle is 
denoted as 1st while the last vehicle is denoted as 4th. The direction of the moving (from left to right) is called the 
downstream direction, while the opposite direction which is from the leading vehicle to the last vehicle (from 
right to left) is called upstream direction. In each of these figures, below the shown string of vehicles, a speed vs. 
time coordinate graph is shown. As time goes by, the leading vehicle decelerates linearly and we can see 
different response of the following vehicles in the platoon depending on whether the platoon is string stable or 
not.  
 
In Figure 2, the situation is shown where the platoon is string stable: the deceleration of the leading vehicle is not 
amplified through the following vehicles and the deceleration of following vehicles‘ is smooth without any 
fluctuation of the speed. While in Figure 3, the platoon is considered of being not string stable (string in-stable): 
the following vehicles decelerate even more than the leading vehicle. Though finally, the speed of following 
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vehicles approach to the leading vehicle‘s speed, their speed fluctuate a lot. Actually, during the period of 
fluctuation, the distance of neighbouring vehicles‘ also fluctuate, when collisions are more likely to happen, in 
other words, safety is worse.  
 
String stability can be guaranteed if the information of the platoon leader and the preceding vehicle is used in the 
feedback loop, and the information of the platoon leader and the preceding vehicle can be collected by 
communication. CACC, which is different from ACC with the main feature of communication included, is 
treated as a solution to achieve a desired distance with string stability. 
As we have seen in this section, the string stability can be measured using vehicle‗s speed. However, also other 
measures can be used for this purpose, such as traffic throughput and acceleration. 
 

2.3 Control Structure 

Though, many solutions exist to implement the CACC controller, we will focus on the control structure designed 
by Naus et al as stated in [NaVu09], due to the fact this structure is developed within the Connect &Drive 
[C&D] project.  
 
For a string of vehicles, the primary control objective is to follow the preceding vehicle at a desired 

distance , see Eq. 1. 
 

 = + ,  for i>=1 Eq. 1 

 

Where  is the desired distance at standstill,  is the so-called desired time headway, and  is the velocity 
of vehicle i. The time headway is the time it takes for vehicle i to reach the current position of its preceding 
vehicle i − 1 when continuing to drive with a constant velocity. The above equation Eq.1, is referred to as the 
spacing policy dynamics. The available measurement data include the output of the radar, which is used by a 
standard ACC controller. Furthermore, the acceleration of the preceding vehicle that is used in a feed-forward 
setting can be provided by using a wireless communication medium. Suppose we have a string of three vehicles, 

the platoon leader is assumed to follow a given time-varying reference position and the resulting control 
setup is depicted in Figure 4. 
 

 

Figure 4: Control structure of a three-vehicle platoon, where Gi represents the dynamics of the i t̂h vehicle, Ki 
the corresponding ACC feedback controller, Fi the feedforward controller, Di the communication delay and Hi = 
1+h_(d,i), s the spacing policy dynamics, for i =  1, 2, 3, copied from [NaVu09] 

  

The acceleration of the preceding vehicle is used as a feedforward control signal via a feedforward filter . 
The design of this feedforward filter is based on a zero-error condition, where the error is defined as in Eq. 2, see 
also  Figure 4. 
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=  − ,    for i > 1 

=  
 

Eq. 2 

 

So in order to make the error  equal to zero and accounting for the fact that the communication delay 
cannot be compensated by a causal feedforward filter, yields the optimal design for the feedforward controller 
filter, see Eq. 3. 

=  =  

 

Eq. 3 

Finally, the wireless communication includes delay, i.e.,  = , for i > 1. This delay is represented by a 

constant time delay  , yielding L( ) = , where L( ) represents the 

Laplace transform of .  
 
Other details of the controller algorithms can be found in [NaVu09].  
 

2.4 Conclusion 

In this section, the theoretical information about the ACC and CACC controller is illustrated including the basic 
control theory, and the important parameters to be investigated in our experiments. Moreover, the definition of 
string stability is provided and the specific control structure of the CACC controller which indicates the structure 
of building the CACC controller model stated in Section 3.2.1 is provided. Most of the information presented in 
this section is based on [NaVu09].  
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3 Simulation Environment and Models 
   
This section describes the simulation environment and simulation models used in this assignment in order to 
study the impact of an ACC and of a CACC on the string stability performance.  
 
The used simulation environments and simulation models include: (1) the vehicle behaviour, including the ACC 
and CACC models, which is implemented using the Simulink environment; (2) the mobility behaviour of 
vehicles, which is modelled using SUMO traffic environment; (3) the communication networking behaviour that  
is modelled using the MIXIM / OMNET ++ simulation environment. 
 

3.1 Simulation Environments  

 
This section describes the three simulation environments, the Simulink environment, the SUMO traffic 
simulation environment and the MIXIM / OMNET++ simulation environment.  

3.1.1 Simulink Model Environment 

As stated in section 2, in this assignment the vehicles‘ behaviour is modelled using control theory, with a vehicle 
being the system, desired distance (decided by time headway) as the reference value, and the velocity of the 
vehicle as system output. Moreover, the control variable is the engine's throttle position which influences engine 
torque output.  
 
Since the ACC and CACC controllers we plan to investigate are supplied by TNO, [TNO-safety],  in the context 
of Connect&Drive [C&D] project, in the form of Matlab Simulink model. This Simulink model is the starting 
point of implementing the ACC and CACC controllers required in this assignment. Below, the Simulink 
simulation environment is introduced.  
 
Matlab [Matlab] is a high-level technical computing language and interactive environment for algorithm 
development, data visualization, data analysis, and numeric computation. Using the Matlab product, people can 
solve technical computing problems faster than with traditional programming languages, such as C, C++, and 
Fortran. 
 
Simulink is an environment for multidomain simulation and Model-Based Design for dynamic and embedded 
systems founded on Matlab. It provides an interactive graphical environment and a customizable set of block 
libraries that let one design, simulate, implement, and test a variety of time-varying systems, including 
communications, controls, signal processing, video processing, and image processing [Matlab_Simulink]. 
 
The Real-Time workshop supplies an interface for the Simulink model to couple with other models. It 
automatically generates and executes stand-alone C/C++ code for developing and testing algorithms originally 
implemented in Simulink  and Embedded MATLAB code. The resulting code can be used for many real-time and 
non-real-time applications, including simulation acceleration, rapid prototyping, and hardware-in-the-loop 
testing. People can tune and monitor the generated code using Simulink blocks and built-in analysis capabilities, 
or run and interact with the code outside the MATLAB and Simulink environment [Matlab_rtw].  
 
Therefore, in our experiment, we are able to convert the Simulink model composed by Matlab source code to 
C++ code so that this model can be used by simulators that are using C++ libraries, such as SUMO, see 
[SUMO].  
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3.1.2 Traffic Simulator—SUMO 

3.1.2.1 Mobility Models   
   
Vehicular mobility models are usually classified as either microscopic or macroscopic. When focusing on a 
macroscopic point of view, then motion constraints such as roads, streets, crossroads, and traffic lights are 
considered. Furthermore, in this case also the generation of vehicular traffic such as traffic density, traffic flows, 
and initial vehicle distributions are defined.  
 
The microscopic approach, instead, focuses on the movement of each individual vehicle and on the vehicle 
behaviour with respect to others [HaFi07]. In Figure 5, the vehicular mobility models are in advance classified 
from left to right: macroscopic, microscopic, and sub-microscopic (within the circle: mesoscopic). 
 

 

Figure 5: Mobility Models—Macroscopic, Microscopic, Sub-Microscopic from left to right (within the circle: 
mesoscopic,. copied from [SUMO] 

 
Also according to [HaFi07], several candidates are considered to simulate the VANET related issues but they 
have clear deficiency: MOVE [KaMo07] could not provide an interaction between the network simulator and 
mobility model. The method of FDK [FDK] has the limitation that CORSIM [CORSIM] as a traffic simulator 
has complex calibration and large number of configuration parameters. AutoMesh [VuOg07] is unable to 
reproduce the non-uniform distribution of positions and speed usually experienced in urban area. 
The Simulation of Urban Mobility (SUMO) [SUMO] is an open source, highly portable road traffic simulation 
package designed to handle large road networks. It is widely used in research community. The decision of using  
SUMO in combination with MIXIM / OMNET++ is the fact that this combination is often used in the research 
community and because it has been used within other research activities accomplished in the UT/DACS 
[UT/DACS] group.  
 
The development of modern vehicular mobility models may be classified in four different classes, see [HaFi07]:   synthetic Models wrapping all models based on mathematical models;  traffic Simulators-based Models, where the vehicular mobility models are extracted from a detailed 

traffic simulator;   survey-based Models extracting mobility patterns from surveys;   trace-based Models, which generate mobility patterns from real mobility traces.  
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Furthermore, according to [HaFi07], synthetic models may be separated in five classes:   stochastic models wrapping all models containing purely random motions;   traffic stream models looking at vehicular mobility as hydrodynamic phenomenon;   Car Following Models, where the behaviour of each driver is modelled according to vehicles ahead;  Queue Models which models roads as FIFO queues and cars as clients;  behavioural Models where each movement is determined by behavioural rules imposed by social 
influences for instance. 

   
The car microscopic movement model in SUMO is a car following model. In SUMO, several car following 
models have already be implemented can be seen from Table 1 copied from [SUMO]. The SUMO environment 
is a discrete time simulator, meaning that the location of vehicles moving on a specified road network is 
calculated, using among others the mobility model, periodically on predefined discrete times. The calculation 
period can be configured, but a typical value is 10ms. 
 

Table 1: SUMO-implemented car-following models 

 
 

 
3.1.2.2 History of SUMO   
   
The development of SUMO started in the year 2000 by the German Aerospace Center, in order to support the 
traffic research community with a tool into which own algorithms can be implemented and evaluated without the 
need to regard all the artefacts needed to obtain a complete traffic simulation. Such artefacts are related to the 
implementation and/or setting up methods for dealing with road networks, demand, and traffic controls [SUMO]. 
By supplying such an open source microscopic road traffic simulation tool, the German Aerospace Center 
wanted to (1) make the implemented algorithms more comparable, as a common architecture and model base is 
used, and (2) gain additional help from other contributors. 
 
SUMO allows high-performance simulations of huge networks with roads consisting of single and multiple 
lanes, as well as of intra-junction traffic on these roads, either using simple right-of-way rules or traffic lights. 
Vehicle types are freely configurable with each vehicle following statically assigned routes, dynamically 
generated routes, or driving according to a configured timetable [SoYa08].  
 
Since 2002, one popular use of SUMO is the evaluation of vehicle-to-vehicle and vehicle-to-infrastructure 
communication. Two major third-party projects should be mentioned in this context, the first, TraCI, [SUMO], is 
an extension of SUMO by the possibility to communicate with external applications, done at the University of 
Lübeck by Axel Wegener. The second project that should be mentioned in this context is "TraNS" [TraNS]. 
TraNS is a direct coupling between SUMO and the network simulator ns2 [NS2], which uses TraCI for 
communication and that was set up by Michal Piorkowski and Maxim Raya at the EPFL Lausanne. 
 
Different than ―TraNS‖, in this assignment, we replace the ns2 by OMNeT++ and use TraCI for the support of 

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=TraCI
http://trans.epfl.ch/
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the bidirectional coupling and communication with SUMO.  
 
3.1.2.3 Simulation Processes   
 
For setting up a simulation for SUMO, first, the road network on which the vehicle traffic is moving on, is 
needed. This can be either done by a) generating an abstract road network using NETGEN, b) setting up an own 
description in XML and importing it using the NETCONVERT tool, or by c) importing an existing road network 
using also the NETCONVERT tool. Second, each vehicle should know its route, which is a list of edges that 
have to be passed and can be known. This can be accomplished  either by: a) describing explicit routes on the 
road network, b) using predefined routes and activating only a percentage of them only, c) generating random 
routes, d) importing OD-matrices, or e) importing existing routes. Then, if needed, a) compute the dynamic user 
assignment, b) calibrate the simulation using given measures. The final step is to perform the simulation. 
  
NETGEN allows building abstract networks. Three types of networks can be built, which are: grid-networks, 
spider-networks and random-networks. One always has to supply the name of the network to generate and the 
type of network you want to create. However, by using the NETCONVERT tool, one can build a road network of 
any topology freely. 
  
NETCONVERT imports digital road networks generated by other sources and at the same time can generate 
road networks that can be used by other SUMO tools. It assumes at least one parameter - the combination of the 
name of the file type to import as parameter name and the name of the file to import as parameter value. Of 
course, a user can specify the output file name and type. In our experiments, we did use the method of setting up 
an own description in XML and importing it using the NETCONVERT tool to generate a road network. This 
road network is generated in the form of a grid, where the most-left- and most-bottom node (vehicle) in the grid 
is identified by the coordinate (0,0). For more details, see Appendix C. 
 

3.1.3 Network Simulator—MiXiM/OMNeT++ 

Network simulation is commonly used to model computer network configurations long before they are deployed 
in the real world. In this assignment, the CACC controller needs to receive information that is being 
disseminated using a VANET. The operation of the VANET is modelled using a network simulator. Network 
simulators are able to evaluate the performance of network protocols and of the communicated traffic, under 
dynamic changes of e.g., the traffic conditions, the communication channel conditions.   
 
In most cases, network protocols are analyzed using discrete event simulations. A large number of simulation 
frameworks are available in this area. Examples of such frameworks are open source tools such as the network 
simulator ns-2 [NS2], [BrEs00], OMNeT++ [Omnetpp], J-SIM [SoHo06], and JiST /SWANS [BaHa04] and 
commercial tools like OPNET [OPNET]. The reason of selecting  OMNeT++ in this assignment is due to the 
fact that it is often used in research community and due to the fact that is also being used within the DACS group 
on some research activities. 
 
NS2 and OMNeT++ are considered as candidates in our assignment to couple with SUMO, but as already 
mentioned the combination of OMNET++ and SUMO is selected to be used in this assignment. It is important to 
emphasize that SUMO is a discrete time simulator, while OMNET++ is a discrete event simulator. During the 
integration process of these two types of simulators, this fact is can be considered as an important challenge that 
needs to be solved.  
 
3.1.3.1 OMNET++ 
 
OMNeT++ (Objective Modular Network Tested in C++), see [Omnetpp],  is an extensible and  modular 
component-based C++ simulation library and framework that is running on different operating systems such as 
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Linux, Mac OS X, other Unix-like systems and Windows. Primarily, OMNET++ is developed for building 
network simulators. The simulator can be used for traffic modelling of telecommunication networks, protocol 
modelling, queuing networks modelling, multiprocessors and other distributed hardware systems modelling, 
hardware architectures validating, evaluating performance aspects of complex software systems and modelling 
any other systems where the discrete event approaches are suitable. 
 

 

Figure 6: Simple modules, compound module and system module, copied from [Omnetpp_manual] 

   
OMNeT++ provides a component architecture for models. These components programmed in C++ are nested 
hierarchically and simpler components can assemble to compound components and models using a high-level 
language—NED (Network Description), see Figure 6.  NED lets the user declare simple modules, and connect 
and assemble them into compound modules. The user can label some compound modules as networks. These 
compound models are self-contained simulation models. Communication channels can be defined as another 
component type, whose instances can also be used in compound modules. The NED language has several 
features which let it scale well. Therefore, it can be used to model large communication topologies 
[Omnetpp_manual]. These features are: 
  Hierarchical: The traditional way to deal with complexity is by introducing hierarchies. Any module 

which would be too complex as a single entity can be broken down into smaller modules, and used as a 
compound module.  Component-Based: Simple modules and compound modules are inherently reusable, which not only 
reduces code copying, but more importantly, allows component libraries (like MiXiM) to be reused.  Interfaces: Module and channel interfaces can be used as a placeholder where normally a module or 
channel type would be used, and the concrete module or channel type is determined at network setup 
time by a parameter.  Inheritance: Modules and channels can be subclassed.   Packages: The NED language features a Java-like package structure, to reduce the risk of name clashes 
between different models.   Inner types: Channel types and module types used locally by a compound module can be defined within 
the compound module, in order to reduce namespace pollution.  Metadata annotations: It is possible to annotate module or channel types, parameters, gates and 
submodules by adding properties.  

 
Reusability of models makes building certain models flexible. Also, the depth of module nesting is not limited, 
which allows the user to reflect the logical structure of the actual system in the model structure. Modules 
communicate with message passing. Messages can contain arbitrarily complex data structures. Modules can send 
messages either directly to their destination or along a predefined path, through gates and connections. 
 
Modules can have parameters which are used for three main purposes: to customize module behaviour; to create 
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flexible model topologies (where parameters can specify the number of modules, connection structure etc); and 
for module communication, as shared variables. 
 
Modules at the lowest level of the module hierarchy are to be provided by the user, and they contain the 
algorithms in the model. During simulation execution, simple modules appear to run in parallel, since they are 
implemented as co-routines (sometimes termed lightweight processes). To write simple modules, the user does 
not need to learn a new programming language, but he/she is assumed to have some knowledge of C++ 
programming. 
 
Therefore, an OMNeT++ model is combined by simple modules by using the NED language while the simple 
modules themselves are programmed in C++. The simulation system provides two components: simulation 
kernel containing the code that manages the simulation and the simulation class library; user interfaces. 
Graphical, animating user interfaces are highly useful for demonstration, while command-line user interfaces are 
best for batch execution. 
 
Thus, the way of how OMNeT++ is used is as follows. First, the NED files are compiled into C++ source code, 
using the NEDC compiler which is part of OMNeT++. Then all C++ sources are compiled and linked with the 
simulation kernel and a user interface to form a simulation executable. 
 
3.1.3.2 MiXiM 
 
MiXiM (a MiXed siMulator) is an OMNeT++ modelling framework created for mobile and fixed wireless 
networks, such as wireless sensor networks, body area networks, ad-hoc networks, vehicular networks, etc. 
[MiXiM]. MiXiM provides detailed models and protocols, as well as a supporting infrastructure. These can be 
divided into five groups [KöSw08]:  Environment models: in a simulation, only relevant parts of the real world should be reflected, such as 

obstacles that hinder wireless communication.  Connectivity and mobility: when nodes move, their influence on other nodes in the network varies. The 
simulator has to track these changes and provide an adequate graphical representation.  Reception and collision: For wireless simulations, movements of objects and nodes have an influence 
on the reception of a message. The reception handling is responsible for modelling how a transmitted 
signal changes on its way to the receivers, taking transmissions of other senders into account.  Experiment support: the experimentation support is necessary to help the researcher to compare the 
results with an ideal state, help him to find a suitable template for his implementation and support 
different evaluation methods.  Protocol library: last but not least, a rich protocol library enables researchers to compare their ideas 
with already implemented ones.  

 
The base framework of MiXiM provides the general functionality needed for almost any wireless modelling. 
And since every module in OMNeT++ can be replaced, we can easily implement another module using different 
protocol.  
 

3.2 Integrated Simulation Model 

Our Integrated simulation model is constituted by the Simulink-model-based controller, SUMO based models, 
and MiXiM/OMNeT++ based models. In this part, we‘ll first give an introduction to these models and then 
describe how they are combined into the whole integrated simulation model.  
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3.2.1 Used Simulink Model 

The original Simulink model, developed and provided by TNO, simulates a complete system which comprises a 
platoon of ten vehicles including one leading vehicle and nine following vehicles equipped with both ACC and 
CACC controllers. Besides the control system, see Figure 7 and Figure 8, each following vehicle has a Wi-Fi 
(i.e., IEEE 802.11p) [IEEE80211p] interface, ideal radar, an HMI block, a module named ―G_a‖ mimicking the 
response of the output of the control system and sensors which actually store parameters.  ―G_a‖ is part of the 
module ―Vehicle‖ which also calculates the velocity and position with the generated acceleration. 
 
A vehicle, see Figure 7 and Figure 8, would read data from Wi-Fi (antenna 1), Radar, Sensor, HMI blocks at the 
beginning of a simulation timestep. These parameters are coupled to the Controller to calculate a reference 
acceleration ―a_ref‖. During this process, these parameters are also transmitted by Wi-Fi (antenna 2) so that 
information of this host vehicle can be received by following vehicles. With ―a_ref‖ coupled to the Vehicle 
block, the acceleration ―a‖, speed  (velocity) ―v‖ and position ―s‖ of the vehicle required for the next timestep 
are calculated and transmited out by antenna . This is done in order  to fake the reflection of a radar signal so that 
its following vehicle can calculate the relative speed and relative distance to this host vehicle. These calculated 
acceleration, speed and position then are coupled to the Radar and Sensor blocks to be read in the next 
simulation timestep. Furthermore, inside the Radar block, the preceding vehicle‘s speed and position can be 
gotten from antenna 4 so that this host vehicle can calculate its relative speed and position to its preceding 
vehicle. 
 

 

Figure 7: Vehicle's Control System 
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Figure 8: “Controller” and “Vehicle”blocks 

 
In Figure 7, Antenna 1 and 2 are the input and output interface of Wi-Fi, while antenna 3 couples the host 
vehicle‘s speed and position to the following vehicle to mimic the function of a radar reflection. Antenna 4 is the 
input of preceding vehicle‘s speed and position.  
  
Figure 8, shows the modules inside the ―Controller‖ and ―Vehicle‖ blocks. Inside the Controller blocks, the 
inputs parameters are coupled to several tracking modules: platoon control, host track and target track. The 
platoon control module selects the to be used time headway and cruise speed values from those specified by an 
user and from those transmitted by the RSU. The tracking module is consisted of two components: (1) host 
tracking and (2) target tracking. In the model used in this assignment, the host tracking does not implement any 
function. The target tracking can be implemented in three modes: direct measurement, single target tracking and 
multiple tracking. The first one just uses the input of the Controller block as input, while the last two would use 
Kalman filters to first estimate the received target data for different cases: (1) Wi-Fi data only, (2) Radar data 
only and (3) full data set. Which mode to be used is specified by the user. Based on the available data and the 
type of the controller suggested by the user,  a controller Switching Mechanism, see Figure 8, actually decides 
which type of controller will be used.  If the controller Switching mechanism is able to select all controller types, 
CACC, ACC and CC,  then the mechanism prefers to first select CACC. If this is not possible, then it selects 
ACC and if this is not possible then the Switching mechanism selects CC. If the user suggests a specific type of 
controller and the user requirements can be fulfilled, then the Switching mechanism selects the suggested 
controller. The selected controller uses inputs to calculate a reference acceleration ―a_ref‖, see   Figure 8, which 
will be coupled to the Vehicle block. First, this reference acceleration ―a_ref‖, will be used as the input of an LTI 
system named ―G_a‖ which mimics the response of a vehicle and the output value is bounded by the vehicle‘s 
maximal acceleration and minimal deceleration. In this process, a reference acceleration is used for the 
calculation of the acceleration ―a‖. Using two integration blocks, this acceleration ―a‖ can be used to calculate 
the speed ―v‖ and position ―s‖ by using Eq. 4 and Eq.5, respectively.  These calculated values are coupled to the 
Radar and Sensor modules. Details of this model can be found in Appendix B. 
 
 

velocity=velocity_lasttime+a*timestep Eq. 4 

position=position_lasttime+velocity*timestep 
 

Eq. 5 
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Figure 9: modified vehicle control system 

 
The Simulink model that is used in this assignment and applied in the performed experiments is shown in Figure 
9, which is different than the original model developed by TNO and shown in Figure 7. The parameters from Wi-
Fi (IEEE 802.11p), radar, etc., located inside the controller system are directly used instead of using Kalman 
filters. The reason of not using the Kalman filters in this integrated model is related to fact that the Simulink 
model of the Kalman filters could not be successfully converted into C++ code using the Real-Time Workshop 
tool of  Matlab.  Note that the CACC/ACC controller module is used instead of the Controller module shown in 
Figure 8. The main difference between these controller modules is that the CACC/ACC controller module shown 
in Figure 9 is not using the Switching mechanism shown in Figure 8, One of the reasons of not using this 
mechanism is the fact the Simulink model of this Switching mechanism could not successfully be converted into 
C++ code using the Real-Time Workshop tool of Matlab.  Another reason is that we would like to measure the 
performance of a pure CACC controller and compare it with the performance of a pure ACC controller. 
 
The radar block computes the distance from a vehicle to its preceding vehicle, see Eq. 6, and the 
relative velocity, see Eq. 7. . 
 

Relative velocity= precedingVehicle_velocity-hostVehicle_velocity Eq. 6 

Distance= precedingVehicle_position-hostVehicle_position-Vehicle_length 
 

Eq. 7 

 
The inputs of the CACC controller comprise the host vehicle‘s acceleration, time headway, cruise speed, relative 
position and speed to preceding vehicle, and preceding vehicle‘s acceleration. For the ACC controller the same 
inputs are used, excluding the preceding vehicle‘s acceleration. The output of the controller is the reference 
acceleration ―a_f‖. 
 
Actually, not all of the functions shown in Figure 9 are directly realized by converting the modules into C++ 
code. This is only realized for the CACC, ACC and ―G_a‖ Simulink modules, where C++ shared libraries are 
generated for each of these modules.  All the other modules shown in Figure 9 are implemented in SUMO using 
C++ code. Moreover, the function of sensor is implemented by directly reading parameters stored in SUMO. The 
detailed description of the modified Simulink model is given in Appendix B.  
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3.2.2 SUMO Model 

The SUMO model used in this assignment is quite simple. The road network is just a long straight single-lane 
road. This is because at this moment the CACC and ACC controllers operate on a single lane, and there‘s no lane 
changing mechanism implemented in the model. 
 
Though there are several ways of building a road network, for such a simple scenario, setting up an own road 
network description in XML and importing it using NETCONVERT can be considered to be an easy task. In 
order to create a road, which contains sections (i.e., edges) and nodes (i.e. start/end points), three types of XML 
files are created:  Node based XML: this XML file describes the coordinates of the start/end points of a road section. This 

XML file should contain at least three nodes.  Edge based XML: this file describes the edges (i.e., of each road section), that has to be used between 
two nodes included in the node based XML file.  Link type XML: this file describes the properties of the edges included in the edge based XML file. 
When the link type XML file is not used, then SUMO considers that the used edges are single lanes.  

 
In this assignment we use a single lane road network, that comprises two road sections (i.e., two edges) between 
three nodes.  Therefore, in this assignment we use a node based XML file that contains three nodes. Furthermore, 
an edge based XML file is created that contains two edges that are interconnecting the three nodes specified in 
the node based XML file.  So by converting the two XML files using the NETCONVERT tool, we constructed a 
one-single lane road with two edges and three nodes. In this assignment it is considered that 10 vehicles see 
Appendix B, will be located on one of the generated edges, i.e., first edge.  Therefore, the length of the first edge 
is set to 5000 m. The second edge is not relevant for our experiments and therefore, the length of the second 
edge is set to 1m.  
 
Vehicles can be distributed on a predefined road network using a fourth type XML file, denoted as route XML 
file. This route XML file contains the vehicle parameters and the description of the routes that each vehicle can 
take on the road network. The vehicle parameters can be the car length, the route ID, vehicle ID, maximum 
speed, and maximum acceleration. In Figure 10 a part of the generated road network is shown, where a platoon 
of 10 vehicles is located on the first edge. We mark each vehicle with an ID, where the leading vehicle‘s ID is 
―veh0‖, that of the first following vehicle is ―veh1‖ and the last vehicle‘s ID is ―veh9‖. In the original model, see 
Appendix B, the car length is 4.46 meters, the desired distance between neighbouring vehicles when standstill is 
7.7m, and the time headway 0.7s, see Section 2.3. Moreover, in the original model, see Appendix B, the leading 
vehicle has an initial velocity of 20m/s and the following vehicles‘ an initial velocity of 19m/s. Therefore, by 
using Eq. 1 from Section 2.3: the desired distance between neighbouring vehicles when moving equals: 
7.7m+20m/s*0.7s=21.7 m. When the car length is taken into consideration, the desired distance between 
neighbouring vehicles when moving is equal to: 21.7m+4.46m=26.16m. Therefore, the initial distance used in 
the route XML file is set equal to the distance when the platoon become stable (i.e., 26.16m), which ensures that 
the time before the platoon gets stable will not be large. 
 
In SUMO, a following vehicle uses the car-following model to track preceding vehicle. In SUMO there are 
already several car-following models implemented, see Section 3.1.2. Note that in all experiments performed in 
this assignment are using the ―carFollowing-IDM‖ model, see [SUMO].  
 
What we want to do is to change the way of calculating vehicle‘s speed and position resulted from the existing 
SUMO car-following models. We can specify any car-following model in the route XML file, because it will not 
change the way of calculating speed and position.  
 
We let the leading vehicle move on a straight single-lane road from left to right. When the platoon gets stable 
(the speed and relative position of vehicles do not change any more), we would specify the leading vehicle‘s 
behaviour including acceleration and deceleration to observe the behaviours‘ of following vehicles. In the 
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following experiments accomplished in this assignment, the downstream direction means the direction from the 
last vehicle to the leading vehicle (from left to right in the model), while the upstream direction means the 
direction from the leading vehicle to the last vehicle (from right to the left in the model). 
  

    

Figure 10: SUMO road network 

 

3.2.3 MiXiM / OMNET++ Model 

The used MiXiM/OMNET++ model in this assignment has been developed within the UT/DACS [UT/DACS] 
group. This model is implementing a cooperative awareness mechanism using beaconing, see [EeKa10]. The 
beaconing procedure is using a Simple Timer, see EeKa10],which means that a node transmits a beacon when a 

timer  expires. Afterwards, this timer is reset. By tuning the value of  , the beacon sending rate/frequency 
can be varied. 
 
In this assignment it is considered that each beacon packet needs to carry for each vehicle, the acceleration and 
vehicle ID. This is because only preceding vehicle‘s acceleration is necessary to be sent by communication 
means. After each vehicle receives one beacon, it will decide whether this beacon has been sent by its preceding 
vehicle, which has a certain know vehicle ID. As has been already mentioned, 10 vehicles were used, meaning 
that the used vehicle IDs vary from 0 to 9 through the platoon. Therefore, if the receiving beacon‘s vehicle ID is 
larger than the receiving vehicle‘s ID by 1, it is considered that this beacon is sent by the preceding vehicle and 
is fed to the controller. Otherwise, this beacon will not be used and will be dropped. 
 
The MAC and Physical layers used in the MiXiM/OMNET model are based on the IEEE 802.11p technology, 
see [IEEE802.11p-2010].  IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless 
access in vehicular environments. It is important to note that currently no IEEE802.11p model is included in the 
MiXIM version 1.2 environment, see [MiXiM]. The model used in this assignment was realized by modifying 
the currently available IEEE 802.11 MiXiM example,  i.e., Mac80211, such that it could operate as an 802.11p 
model.  In particular, just the ―Host.ned‖ module is used, which describe the individual vehicle‘s communication 
architecture. The modified MAC layer module and Physical layer source code, plus the higher layer 
mechanisms‘ source code are developed in activities accomplished outside the context of this assignment.  
 
In addition to that, in order to take advantage of a model that successfully integrated the SUMO and MiXiM 
environments, a modified version of MiXiM environment is used, see [MiXiM_sommer]. This modified MiXiM 
environments is created by Christoph Sommer. In particular, in this assignment the ―Highway.ned‖ module 
provided in the example ―traci_lauchd‖, see [MiXiM_sommer] ,  is used.  
 
Below, a short introduction is given of the parameter values used in the IEEE 802.11p model.  The carrier 
frequency of this model is set to 5.87 GHz which is in the frequency allocated by European Commission in 
August, 2008 for or priority road safety applications and inter-vehicle, infrastructure communications. In this 
model, the header length in each layer is different from the ―Mac80211‖ example used in [MiXiM]. In particular, 
the header length associated with the in Physical layer is set to 0bit, the header length associated with the MAC 
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layer is set to 160bit,  the header length associated with the Network layer is set to 3200bit and the header length 
associated with the Application layer is set to 512bit.  
 
The model transmits the beacons using the IEEE 802.11p broadcast channel. Moreover (1) the MAC queue 
length is set to 14 frames, and the MAC bit rate is set to 3 Mbps, (2) the RtsCtsThreshold is set to1400, (3) the 
beacon length is 3200bit with a duration of 0.001175, (4) the burst size is set equal to 3. For other parameters, 
please refer to the used source code, which can be accessed using the guidelines given in  Appendix C. 
 

3.2.4 Complete Simulation Model  

The MiXiM/OMNET++ model is used to simulate the wireless communication medium between vehicles. In 
Figure 11, the communication medium is represented by the Wi-Fi module, which is among others used to 
disseminate the dynamic traffic parameters of vehicles, such as speed, location, acceleration. The controller used 
in each vehicle uses these parameters and influence the movement of the cars.   Figure 12 gives an abstract view 
of the integrated/complete simulation model used in this assignment, where (1) the MiXiM model  simulates the 
operation of the wireless communication medium, (2) SUMO simulates the mobility behaviour of a  ―vehicle‖, 
whose traffic mobility-related parameters were supplied by its controller provided by the (3) Simulink Model, 
which simulates a series of functions including the ACC and CACC controller functions.  Note that the Simulink 
model is integrated into the SUMO simulation environment.  

 

Figure 11: experiment structure in reality 

 

Figure 12: experiment structure in simulation 
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3.2.4.1 Coupling between SUMO and the Simulink Model 
The coupling between the Simulink and SUMO models is used to simulate the mobility behavior of vehicles.   
Since SUMO is C++ based, it is required to convert the Simulink model into C++ code or available C++ 
libraries. This conversion is realized by using the Real-Time Workshop tool in Simulink, where the Simulink 
model is converted into a C++ shared library. After this, the SUMO source code associated with the car 
following model on how speed and position is modified. The detailed description of this method and the 
associated Source code can be found (or found via) in Appendix C. 
 
It is important to mention that SUMO is a discrete time simulator; MiXIM is an event based simulator. This 
means that SUMO will calculate the location of all vehicles during periodic discrete times. We denote these 
discrete times as timesteps. The duration of each time step used in this assignment is set to 10ms. The converted 
Simulink model (the C++ libraries) is using parameters received from MiXiM and parameters provided by 
SUMO, e.g., position, velocity, and acceleration during one timestep. Moreover, the converted Simulink model 
is generating the host vehicle‘s position and velocity for the coming timestep. These calculated parameters are 
used by the SUMO model to move the vehicle on a road network.  It is important to note that the information 
provided by MiXIM is only used when the CACC model is used. In the situation that ACC is used, and then only 
the parameters provided by SUMO are used by the converted Simulink model for the calculation of the velocity 
and position for the coming timestep. 
 
In particular, for the situation that the CACC model is used, at the beginning of each simulation step, the SUMO 
model associated with one vehicle gets the preceding vehicle‘s acceleration from MiXiM.  The SUMO model 
has already stored for each vehicle, the speed, position, and acceleration generated during the previous timestep. 
The time headway and desired cruise speed is preconfigured in the SUMO source code.  
 
The preceding vehicle‘s information can also be fetched directly in SUMO, without using the information 
communicated by MiXIM. The relative velocity and distance are calculated using Eq. 6 and Eq. 7, respectively. 
Moreover, the acceleration can be directly fed from the SUMO model, instead of retrieving it via the MiXiM 
model, see Section 4.2.  When pure ACC is used then all controller inputs are retrieved from the SUMO model. 
All these parameters are passed to the ACC/CACC controller as inputs so that updated speed and position of a 
vehicle is generated and provided to SUMO, which updates the position of each vehicle.  
These operations are repeated during each timestep.    
 
3.2.4.2 Bidirectional Coupling between OMNeT++/MiXiM and SUMO 
 
In this assignment the method described in [SoYa08], [SoGe11] is used for bidirectional coupling between 
OMNeT++/MiXiM (similar to OMNeT++/INET in [SoYa08], [SoGe11]) and SUMO. As already mentioned 
OMNeT++ is an event-based simulator, being able to handle mobility by scheduling node movements at regular 
intervals. This suits the approach followed by SUMO, which is a discrete time simulator.   
 
Figure 13 shows the control modules and used state machines that are integrated with OMNeT++ and SUMO, 
see [SoGe11]. Using these state machines it can be seen that any commands arriving in-between timesteps can 
be buffered to guarantee synchronous execution at defined intervals, see Figure 14. In particular, OMNeT++ 
would then send at each timestep all buffered commands to SUMO. At the same time trigger the corresponding 
timestep of the road traffic simulation. Subsequently, when the road traffic simulation timestep is completed, 
SUMO sends a series of commands and the position of all the instantiated vehicles back to OMNET++ module. 
By receiving this information, the OMNET++ module can react to this mobility trace by changing the status of 
the vehicles involved in the trace. This could mean that new vehicles can be introduced, vehicles that reached 
their destinations can be removed and vehicles can be moved according to their road traffic simulation 
counterpart. When all the received commands are processed and all the vehicles are moved according to the 
mobility trace, then OMNET++ advance the simulation until the next scheduled timestep. In this way the 
vehicles are allowed to react to the altered environmental conditions.  
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Figure 13: Overview of the coupled simulation framework. State machines of road traffic and network simulator 
communication modules, copied from [SoGe11] 

 
Figure 14 shows the sequence diagram of messages exchanged between network and road traffic simulator 
communication modules. By using a simple request/response protocol, the road traffic in SUMO can be 
influenced by OMNeT++ in different ways. It is important to see that timesteps are generated to advance the 
simulation in SUMO. The two alternating phases show that the OMNET++ and SUMO modules are 
bidirectionally coupled to each other. In the first phase, OMNET++ commands are sent to SUMO, while in the 
second phase the execution of these commands in SUMO is triggered by OMNET ++ and the resulting mobility 
trace generated by SUMO is sent to OMNET++.  In this way, both simulators are tightly coupled. Furthermore, 
it can be seen that SUMO is only able to perform a simulation step after all events within a time step have been 
processed in the OMNET++ network simulation. It is important to see that the network simulator advances the 
road traffic microsimulation only at fixed intervals, meaning that the granularity of these intervals needs to be 
sufficiently fine-grained to obtain realistic results. This can be realized since the SUMO road traffic 
microsimulatrion can be processed much faster compared to the simulation of OMNET++ wireless networks.  
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Figure 14: Sequence diagram of messages exchanged between network and road traffic simulator 
communication modules. Command execution is delayed until the next road traffic simulation timestep is 
triggered, copied from [SoGe11] 

 

 

Figure 15: coupling between OMNeT++/MiXiM and SUMO 

 
Figure 15 shows also the coupling between OMNET++/MiXiM and SUMO.  The functionality blocks shown in 
Figure 15 are: 
  TraCI: is a traffic control interface, which is a TCP based client/server architecture and it provides 

access to run a road traffic simulation. During simulation runs, both SUMO and OMNeT++ use their 
communication modules to exchange commands by using TCP connections. As a TraCI client, 
OMNeT++/MiXiM uses TraCIScenarioManager to communicate with the TraCI server—SUMO. 
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  TraCIMobility: is a OMNeT++/MiXiM function that is able to move corresponding communication 
nodes.  The communication between interacting modules in OMNeT++ is accomplished by exchanging 
internal messages. The mobility of communication nodes in MiXiM is realized by TraCIMobility 
function once vehicles in traffic simulation environment update their position and speed.  

  TraCIScenarioManager: TraCIScenarioManager connects OMNeT++ to a TraCI server (SUMO) 
running road traffic simulations. It sets up and controls the simulation experiments, moving nodes with 
the help of a TraCIMobility module. It makes the initialization of the stages in the simulation as well as 
controls the connection to the TraCI server (SUMO). The communication between OMNeT++/MiXiM 
and SUMO is based on exchanging TraCI messages. The TraCIScenarioManager as being the 
―Manager‖ can ask SUMO for all the parameters such as vehicle speed, position and to execute all the 
commands such as creating an object. This can however be accomplished only if these parameters and 
commands are defined in the ―TraCIConstants.h‖ header file. ―TraCIConstants.h‖ is a header file that 
defines all parameters allowed to be transmitted between SUMO and OMNET++/MIXiM), e..g., 
acceleration, position, velocity). Moreover, this header file contains all the allowed program commands 
that can be executed and can use on these parameters, e.g., ―get‖, ―set‖. The function ―queryTraCI‖ 
specifies exactly which parameters (and commands) will be exchanged between SUMO and MiXiM. In 
this assignment the exchanged parameters are acceleration, position, and velocity and time headway.  
The ―queryTraCI‖ command is send in a message that is buffered within the ―TraCIBuffer‖ module until 
the beginning of each time step. During the simulation, SUMO would execute as ―queryTraCI‖, 
executing commands and sending back information through TraCI back to OMNeT++/MiXiM. 

 
At the beginning of each timestep, OMNeT++ would send buffered commands to SUMO by using the 
TraCIScenarioManager (step 1&2 in Figure 15). SUMO uses this information as described in the previous 
subsection. Once the received information is used, then SUMO sends a trace to MiXiM (step 3 in Figure 15), 
which includes the traffic information such as position, speed and acceleration of vehicles. In MiXiM, the 
communication nodes can also move discretely according to the positions received from the SUMO trace. This 
movement of the communication nodes is implemented by the MiXiM mobility module—TraCIMobility (step 4 
in Figure 15). Then the communication nodes‘ state of each vehicle is changed followed by the procedure of 
transmitting a beacon (step 5 in Figure 15). Note that the received information is buffered before the start of next 
simulation timestep.    
 
 

3.3 Conclusion 

In this section, first the original model environment—Simulink is introduced. Then the traffic simulation 
environment—SUMO and the network simulation environment—OMNeT++/MiXiM are described. The SUMO 
and OMNeT++/MiXiM models are used in the experiments described in Section 4.  
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4 Experiments, Results and Analysis 
This section describes the accomplished experiments used to investigate the impact of ACC and CACC on the 
string stability performance. 
 

4.1 Experiment Setup 

The main goal of this assignment is to investigate the impact of an ACC and of a CACC on the string stability 
performance. In order to achieve this goal a set of experiments are performed that evaluate the ACC and CACC 
performance, using as performance measure the string stability, see Section 4.3. String stability, see Section 
3.2.2, is important and should be guaranteed to stabilize the movement of the platoon. By observing the speed 
and acceleration of following vehicles it can be investigated whether the disturbance of the leading vehicle is 
amplified upstream through the platoon. 
 
As described in Section 3.1.1 the ACC and CACC controllers are available in SUMO in the form of shared C++ 
libraries, which are generated by converting the Simulink models of these controllers into C++ code. Due to the 
fact that small modifications have been brought to these converted C++ shared libraries, a set of experiments is 
performed to verify whether the modified and integrated model is satisfactorily equivalent with the original 
Simulink model provided by TNO. This set of experiments is described in Section 4.2. 
 
The topology that is used in all experiments is shown in Figure 10 and explained in Section 3.2.2. A platoon of 
ten vehicles is placed in a straight single lane road that has a length of 5000 meters.  The parameters used for the 
ACC and CACC controllers, vehicle IDs, starting vehicle positions and departure speed are the same as the ones 
described in Section 3.2.2, which are also used by the original Simulink model provided by TNO. 
 

These parameters are specified in the road based network XML file and route XML file, as stated in Section 
3.2.2. Similar to the value used by the original Simulink model provided by TNO, the default time headway is 
specified to be 0.7s and the default desired cruise speed is specified to be 50m/s, see also Appendix B and 
Appendix C. Furthermore, the upper limit of the vehicle‘s acceleration is specified to be 2m/s2 and the minimal 
deceleration is specified to be -9m/s2, which are also implemented in source code. These parameters apply to all 
experiments accomplished in this assignment. Note however, that in Section 4.3, various values for the 
acceleration and time headway are used.  
   

4.2 Simulink Model Verification and ACC vs. CACC performance when 
using an ideal communication medium 

4.2.1 Experiment Description   

4.2.1.1 Experiment goal, topology, measures and parameters:  
 
The first goal of this set of experiments is to compare the combined SUMO-Simlink modified model with the 
original Simulink model provided by TNO and described in Section 3.2.1.   
 
The second goal of this set of experiments is to compare the CACC and ACC performance, under ideal 
communication medium circumstances. This means that in this set of experiments it is considered that all 
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information that needs to be received by the ACC and CACC controllers in each vehicle is indeed received with 
a probability of 100%.  In other words, it is considered that the communication medium between vehicles is an 
ideal communication line, with no delays and no losses. 
 
This set of experiments is achieved by using the same topology, the same values for the used static and variable 
parameters for both models. In particular, the dynamicity of the leading vehicle is changed and the velocity and 
acceleration of the following vehicles is observed. If the observed velocity and acceleration for the following 
vehicles, are the same (under certain bounds) for both models then it can be assumed that these two models are 
satisfactorily equivalent. It is important to emphasize that the results associated with the original Simulink model 
provided by TNO are obtained using the Simulink monitoring facilities, while the results associated with the 
modified model, are obtained using the SUMO monitoring facilities. They are plotted using the GNUplot tool. 
 
In this set of experiments two scenarios have been observed. In the first situation the leading vehicle decelerates, 
while in the second situation the leading vehicle accelerates. Note that for all experiments the value of the 
timestep is set to 10 ms. 
 
Decelerating scenario: In the decelerating situation it is assumed that the leading vehicle initially moves with a 
speed (velocity) of 20m/s.  For the original Simulink model it is considered that at time t=500timestep, the 
leading vehicle starts to decelerate with an acceleration of -9m/s2, until the leading vehicle reaches the speed 
(velocity) of 15 m/s. This is acceleration is kept constant for another 54 timesteps. For the last timestep 
(t=555timestep), before the leading vehicle reaches the speed (velocity) of 15m/s, the acceleration of the leading 
vehicle is set to -5m/s2. The acceleration of the leading vehicle for t: t<500timesteps and t > 555timesteps is set 
to 0. For the modified model it is considered that the leading vehicle starts to decelerate with an acceleration of -
9m/s2  at t=8000 timestep. This acceleration is kept constant for another 54 timesteps until the leading vehicle 
reaches a speed (velocity) of 15 m/s. This is accomplished in order to give the possibility for the movement of all 
vehicles in the platoon to become stable and to move with a speed (velocity) of 20m/s. Similarly, to the original 
model, for the last timestep, before the leading vehicle reaches the speed (velocity) of 15m/s, the acceleration of 
the leading vehicle is set to -5m/s2.  Note that the acceleration of the leading vehicle for t: 8000timesteps > t > 
8055timesteps is set to 0. 
 
Accelerating scenario: For completeness of the comparison between ACC and CACC, we also accomplished  
the experiments for the situation that the leading vehicle is accelerating, instead of decelerating. In this scenario 
the initial speed (velocity) of the leading vehicle is 20m/s that accelerates with an acceleration 2m/s2 until the 
speed (velocity) of the leading vehicle  reaches the value of 25 m/s. This acceleration is kept constant for another 
249timesteps. 
 
For the original model, provided by TNO, at t=500timestep, the leading vehicle starts to accelerate with an 
acceleration of 2m/s2 until it reaches the speed (velocity) of 25m/s. Note that the acceleration of the leading 
vehicle for t: t<500timesteps and t > 749timesteps is set to 0. For the modified model, the leading vehicle starts 
to accelerate with the same acceleration as in the original model at t= 8000timestep. Similar to the deceleration 
scenario, this is accomplished in order to give the possibility for the movement of all vehicles in the platoon to 
become stable and all vehicles move with a speed (velocity) of 20m/s. Note that the acceleration of the leading 
vehicle for t: 8000timesteps > t > 8249 timesteps is set to 0.  
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4.2.2 Experiment Result &Analys 

4.2.2.1 Decelerating scenario 
 

The CACC and ACC results associated with the decelerating scenario can be seen in Figure 16 and Figure 17, 
respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) velocity of 10 vehicles Modified Model 
(CACC) 

(a) velocity of 10 vehicles in Original 
Simulink Model (CACC) 

 

(d) acceleration of 9following vehicles in Modified 
Model (CACC) 

 

(c) acceleration of 9 following vehicles in 
Original Simulink Model (CACC) 

 

Figure 16: velocity and acceleration of 10 vehicles in Original Simulink Model and modified model 
for CACC (decelerating scenario) 
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The result showed in parts (a) and (c) of Figure 16 and Figure 17 are obtained from the experiments performed 
using the original Simulink model, while the result showed in parts (b) and (d) of Figure 16 and Figure 17 are 
obtained from the experiments performed using the combined SUMO – Simulink modified model. The parts (a) 
and (b) of Figure 16 and Figure 17, show the curve velocities of the used vehicles, which are drawn from left to 
right, staring from the velocity of the leading vehicle towards the last one, i.e., veh9. The parts (c) and (d) of 
Figure 16 and Figure 17, are representing the acceleration of the 9 vehicles following the leading vehicle. 
Starting from left to right, the first curve is associated with the first following vehicle, while the last curve is 
associated with the last following vehicle, i.e., veh9. The vehicle acceleration of the leading vehicle is not 
shown, but is realized in the way as in Section 4.2.1.1. From Figure 16 and Figure 17, it can be seen that for the 
string stability from the point of view of velocity and for both CACC and ACC controllers there are no 
significant differences between the original Simulink model and the modified model.  
 
For CACC, see  Figure 16, the maximum difference of velocity between the original Simulink model and the 
modified model is 0.02m/s and the maximum difference of acceleration between these two models is 0.03m/s2.  
For ACC; see Figure 17, the maximum difference of velocity between the original Simulink model and the 
modified model is 0.1m/s and the maximum difference of acceleration between these two models is 0.08m/s2.,  
 
The reasons of observing these (relative small) differences can be the following:   Kalman filters are not used because of converting problem 

Figure 17: velocity and acceleration of 10 vehicles in Original Simulink Model and modified model for 
ACC(decelerating scenario) 

(b) velocity of 10 vehicles in Modified 
Model (ACC) 

 

(a) velocity of 10 vehicles in Original 
Simulink Model (ACC) 

 

(c) acceleration of 9 following vehicles in 
Original Simulink Model (ACC) 

 

(d) acceleration of 9 following vehicles in 
Modified Model (ACC) 
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 Complexity of the original model is much larger, which might introduce larger processing delays. 
  
   
 4.2.2.2 Accelerating scenario 
 
The CACC and ACC results associated with the accelerating scenario can be seen in Figure 18 and Figure 19, 
respectively. 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   
 
 

Figure 18: velocity and acceleration of 10 vehicles in Original Simulink Model and modified 
model for CACC (accelerating scenario) 

(b) velocity of 10 vehicles in Modified 
Model (CACC) 

(a) velocity of 10 vehicles in Original 
Simulink Model (CACC) 

 

(d) velocity of 10 vehicles in Modified 
Model (CACC) 

(c) acceleration of 9 following vehicles in 
Original Simulink Model (CACC) 
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Parts (a) and (b) of Figure 18 and Figure 19 , show the vehicle velocity. Starting from left to right, the first curve 
is related to the velocity of the leading vehicle and the last curve represents the velocity of the last following 
vehicle, i.e., veh9. Parts  (c) and (d) of Figure 18 and Figure 19 show the vehicle acceleration. Starting from left 
to right, the first curve represents the acceleration of the first following vehicle and the last curve represents the 
acceleration of the last following vehicle, i.e. veh9. The vehicle acceleration of the leading vehicle is not shown, 
but is realized in the way specified in Section 4.2.1.1.  
 
From Figure 18 and Figure 19, it can be seen that for the string stability from the point of view of velocity and 
for both CACC and ACC controllers there are no significant differences between the original Simulink model 
and the modified model.  
 
For CACC, see Figure 18, the maximum difference of velocity between the original Simulink model and the 
modified model is 0.01m/s and the maximum difference of acceleration between these two models is 0.01m/s2.  

(a) velocity of 10 vehicles in Original 
Simulink Model (ACC) 

 

Figure 19: velocity and acceleration of 10 vehicles in Original Simulink Model and modified model 
for ACC(accelerating scenario) 

(d) acceleration of 9 following vehicles in 
Modified Model (ACC) 

 

(c) acceleration of 9 following vehicles in 
Original Simulink Model (ACC) 

 

(b) velocity of 10 vehicles in Modified 
Model (ACC) 
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For ACC; see  Figure 19, the maximum difference of velocity between the original Simulink model and the 
modified model is 0.09m/s and the maximum difference of acceleration between these two models is 0.07m/s2.,  
For CACC, in case of deceleration (first scenario), following vehicles decelerate smoothly as the leading vehicle 
decelerates, but not decelerate more than the leading vehicle and in the case of acceleration, they don‘t accelerate 
more the leading vehicle does. From parts (c) and (d) of Figure 18, it can be seen that the maximum absolute 
value of acceleration of following vehicles are smaller than the leading vehicle and decreases in upstream 
direction.  
 
Similar, to the decelerating situation, the reasons of observing these (relative small) differences can be the 
following:   Kalman filters are not used because of converting problem  Complexity of the original model is much larger, which might introduce larger processing delays. 
 
In general it can be concluded that: 
  For CACC:  in case of the deceleration scenario, the following vehicles decelerate smoothly when the leading 

vehicle decelerates, but do not decelerate more than the leading vehicle does.   In case of the acceleration scenario, the following vehicles do not accelerate more than the leading 
vehicle does. In particular, the maximum values of acceleration of the following vehicles are smaller 
than the acceleration of the leading vehicle and their values are decreasing in the upstream direction.  

  For ACC: 
  for both decelerating and accelerating scenarios, the following vehicles will decelerate or accelerate 

more than the leading vehicle does, until their velocities become stable (do not fluctuate anymore).  In case of the accelerating scenario, the maximum absolute value of acceleration of following vehicles 
can be larger than the leading vehicle and increases in upstream direction except the first following 
vehicle. From parts (c) and (d) of Figure 19, it can be seen that the maximum absolute value of 
acceleration for the last following vehicle is limited by the maximum acceleration of 2m/s2. Different 
from the case of CACC where acceleration of following vehicle go back to zero smoothly, here 
acceleration for the case of ACC would fluctuate around the 0 for a while before finally approaching to 
zero. 

 
 By comparing the obtained results it can be observed that for both accelerating and decelerating scenarios, the 
disturbance on the velocity and acceleration caused by the leading vehicle is not being amplified through the 
platoon upstream when the CACC controller is used. This conclusion does not hold for the situation that the 
ACC controller is applied.  
 
Since the differences between the original Simulink model and the combined SUMO – Simulink modified model 
are quite small, we can assume that the behaviour of the two models, from the point of view of string stability, 
are satisfactorily equivalent. Therefore, the following set of experiments will only use the combined SUMO – 
Simulink modified model. 
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4.3 Evaluating the impact of wireless communication medium on CACC 
string stability performance 

4.3.1 Experiment Description   

4.3.1.1 Experiment goal, topology, measures and parameters  
 
The main goal of this set of experiments is to observe and analyse the CACC string stability performance, 
assuming that the wireless communication medium is a realistic IEEE 802.11p wireless medium.  In particular, 
the performance of the CACC controller is observed, when the beacon sending rate, the packet loss probability 
of beacons and the time headway between vehicles are varied. 
In this set of experiments the same topology and parameters are used as the ones described in Section 4.2.2 for 
the first set of experiments. The main differences are related to the use of the OMNET++/MiXiM simulation 
model,  described in Section 3.2.3, as the wireless communication medium that interconnects the 10 vehicles. 
Moreover, only the CACC controller is used, that is incorporated in the combined SUMO -Simlink modified 
model. Note that the new combined SUMO-Simulink –OMNET++/MiXiM model is denoted in this section (and 
the following sections as ―modified model‖.  
In this set of experiments the preceding vehicle‘s velocity and acceleration is received by a host vehicle via the 
OMNET++/MiXiM model as described in Section 3.2,  instead of receiving it directly via SUMO. So, it is not 
guaranteed that a host vehicle receives the velocity and acceleration of the preceding vehicle at each SUMO 
simulation timestep.     
   
The different packet loss ratios are realized in the following way. A module used to compute the packet loss ratio 
is used and located at the point where the received information by a vehicle needs to be propagated to the CACC 
controller.   This module is used to drop the received beacons by using a loss probability with uniform 
distribution.  The module generates a random value between 0 and 1 with uniform probability every time a 
beacon received. If a packet loss ratio of a% is needed, then this module compares the random generated value 
with the preconfigured packet loss ratio a%. If the random value is larger than a%, then the received beacon is 
kept and propagated towards the CACC controller. If this generated random value is equal or smaller than a% 
then the beacon is dropped.  
   
The different beacon sending rates (R) are realized by using different beacon sending intervals (T), where R=1/T,  
For example, in order to compute a beacon sending rate for a vehicle equal to 10Hz, the vehicle should send a 
beacon every 100ms (i.e., 10 SUMO simulation timesteps) in the MiXiM model.   
   
The different used time headways are: 2s, 1.5s, 1s, 0.9s, 0.8s, 0.7s, 0.6s, and 0.5s. 
   
In order to provide statistically accurate results we calculate the 90% confidence intervals, see e.g., [Jain91],  of 
the obtained experimental results.  Every experiment was run ten times (using different random seeds for each 
run). The 90% confidence intervals of the obtained results are discussed in Appendix A of this report.  
In these experiments we are not observing the string stability for all 9 following vehicles, but we are only 
observing the string stability for the last following vehicle (veh9). The last following vehicle is chosen for this 
purpose, due to the fact that when the platoon is not string stable then the disturbance on a leading vehicle would 
be amplified through the platoon in the upstream direction, and the last following vehicle would experience the 
most significant disturbance effect. 
  
Similar to Section 4.2.2, two types of scenarios are used, (1) the decelerating scenario, where the acceleration of 
the leading vehicle decelerates from a velocity of 20m/s to a velocity of 15 m/s, and the (2) accelerating 
scenario, where the leading vehicle is accelerating from 20m/s to a velocity of 25m/s.  
 
Furthermore, for each type of scenario (i.e., decelerating or accelerating) we performed two sets of experiments.  
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In the first set of experiments the string stability, i.e., velocity and acceleration, is observed when the time 
headway is set constant to 0.7 s and varied the packet loss ratio and the beacon sending rate. The value of 0.7 s is 
chosen, since this value has been specified in the original Simulink parameters file specified by TNO. The 
chosen values of packet loss ratio are 10%, 20%, 30%, 40%, 50% and that of beacon sending rates are 25Hz, 
20Hz, 15Hz, 10Hz, 5Hz.  
  
In the second set of experiments the string stability, i.e., velocity and acceleration, is observed when the packet 
loss rate and beacon sending rate are set constant and the time headway is varied, from 0.5s to 2s.  In particular, 
the beacon sending rate is set to be 15Hz and the packet loss ratio is set to be 20%, since this combination 
provides a good reference to observe the influence of time headway on string stability.. 
 

4.3.2 Experiment Result &Analysis 

This section describes the experiment results and their analysis that are accomplished in order to observe the 
impact of a wireless communication medium on the CACC string stability performance.  
Two scenarios are used, i.e., (decelerating and accelerating), and for each of these scenarios two sets of 
experiments are performed. In the first set of experiments the packet loss ratio and the beacon sending rate are 
varied, while the time headway is kept constant. In the second set of experiments the time headway is varied, 
while the packet loss ration and beacon sending rate are kept constant.  
  
 
4.3.2.1 Decelerating scenario 
 
This section describes the two sets of experiments that have been accomplished in the context of the decelerating 
scenario. 
 
4.3.2.1.1 Varying packet loss ratio and beacon sending rate 
 
In this set if experiments the time headway is set to be 0.7s and the packet loss ratio and beacon sending rates are 
varied In this part, with a constant time headway of 0.7s,  The chosen values of packet loss ratio are 10%, 20%, 
30%, 40%, 50% and that of beacon sending rate are 25Hz, 20Hz, 15Hz, 10Hz, 5Hz.  
 
In particular, Figure 20 and Figure 21 show the curves associated with velocity and the acceleration, 
respectively, of the last following vehicle, i.e., veh9. Starting from left to right, the first curve is associated with 
the packet loss (PL) ratio of 10%, while the last curve is associated with the packet loss (PL) ratio of 50%. Note 
that for the captions used in this section, ―h‖ denotes time headway and PL denotes packet loss ratio. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) velocity of veh 9 with beacon sending 
frequency=25Hz, h=0.7s 

(b) velocity of veh 9 with beacon sending 
frequency=20Hz, h=0.7s 
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And the results of acceleration can be seen from Figure 21:  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: velocity of veh 9 in modified model for CACC with MiXiM (decelerating scenario) 

(c) velocity of veh 9 with beacon sending 
frequency=15Hz, h=0.7s 

(d) velocity of veh 9 with beacon sending 
frequency=10Hz, h=0.7s 

(e) velocity of veh 9 with beacon sending 
frequency=5Hz, h=0.7s 
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(a) acceleration of veh 9 with beacon 
sending frequency=25Hz, h=0.7s 

(b) acceleration of veh 9 with beacon 
sending frequency=20Hz, h=0.7s 

(c) acceleration of veh 9 with beacon 
sending frequency=15Hz, h=0.7s 

(d) acceleration of veh 9 with beacon 
sending frequency=10Hz, h=0.7s 
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From each part (a) until (e)  of Figure 20 it can be seen that for a constant value of beacon sending rate and time 
headway (0.7s), as the packet loss ratio increases, the velocity fluctuations of veh9 are increasing, which means 
that the disturbance of the leading vehicle is amplified more through the platoon upstream.  Furthermore, for a 
constant value of packet loss ratio and time headway (0.7s), as the beacon sending rate decreases, the velocity 
fluctuations of veh9 are increasing. Thus  for a given value of time headway, as the packet loss ratio is increased 
or the beacon sending rate is decreased, the platoon becomes to be,  from the point of view of velocity, more 
string-instable.  
 
From each part (a) until (e) of Figure 21, it can also be seen that for a constant value of beacon sending rate and 
time headway (0.7s), as the packet loss ratio increases the acceleration fluctuations of veh9 are also increasing.  
Furthermore, the absolute value of the maximum acceleration and minimum deceleration gets larger as the 
packet loss ratio increases.  Furthermore, for a constant value of packet loss ratio and time headway (0.7s), as the 
beacon sending rate decreases, the acceleration fluctuations of veh9 are increasing. Moreover, in this case the 
absolute value of the maximum acceleration and minimum deceleration become to be larger. Thus, also for 
acceleration, it can be concluded that for a given value of time headway, as the packet loss ratio is increased or 
the beacon sending rate is decreased, the platoon becomes to be, from the point of view of acceleration, more 
string-instable. 
 
Therefore, it can be concluded that for a constant time headway value, as packet loss ratio increases and/or 
beacon sending rate decreases, the platoon becomes to be  more string-instable, which means that the 
disturbances of a leading vehicle are being amplified. The cause of this effect that occurs when the packet loss 
ratio is increased and/or when the beacon sending rate decreased, can be related to the fact that the CACC 
controller is not always using up to date acceleration values. Note that during one timestep, when the CACC 
controller does not receive an acceleration value in time, then it uses an acceleration value that was used by this 
controller during the previous timestep. The causes of not receiving the acceleration value in time can be due to 
one or more lost beacons, or due the fact that beacons are not sent (and received) frequently enough. In other 
words, when the difference between the used acceleration value of the preceding vehicle and up-to-date 
acceleration value of the preceding vehicle increases, then the platoon becomes to be more string-instable.  
 

Figure 21: acceleration of veh 9 in modified model for CACC with MiXiM (decelerating scenario) 

(e) acceleration of veh 9 with beacon 
sending frequency=5Hz, h=0.7s 
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4.3.2.1.2 Varying the time headway 
 
In this set of experiments the packet loss ratio and beacon sending rates are kept constant and the time headway 
is varied. In particular, the packet loss ratio is set to 20% (PL=0.2), and the beacon sending frequency (rate) is 
set to 15Hz. The time headway is varied from 0.5s to 2s.   
 
In particular, parts (a) and (b) of  Figure 22 show the curves associated with velocity and acceleration, 
respectively, of the last following vehicle, i.e., veh9. Starting from left to right, the first curve is associated with 
the time headway of 0.5s, while the last curve is associated with the time headway of 2s.  
 
Note that for the captions used in this section, ―h‖ denotes time headway and PL denotes packet loss ratio. 
 
From Figure 22, it can be seen that when the packet loss ratio and beacon sending rate are kept constant, as the 
time headway increases the platoon becomes to be more string-stable. The velocity of the last vehicle can 
decelerate with less fluctuations and its acceleration becomes to be more stable, see also [NaVu09].  
Furthermore, with larger time headways, the relative distance between vehicles is larger and when a disturbance 
occurs on a leading vehicle, the following vehicles do not react as sharp as when small time headways are used. 
However this will decrease the road throughput and capacity. Therefore, finding the smallest time headway to 
guarantee string stability and keeping the road capacity high can be considered as an important challenge. 
   
4.3.2.2 Accelerating scenario 
 
This section describes the two sets of experiments that have been accomplished in the context of the accelerating 
scenario. 
 
4.3.2.2.1 Varying packet loss ratio and beacon sending rate 

Figure 22: velocity and acceleration of veh 9 in modified model for CACC with MiXiM with different time 
headway (decelerating scenario) 

(a) velocity of veh 9 with beacon sending 
frequency=15Hz, PL=0.2 

(b) acceleration of veh 9 with beacon 
sending frequency=15Hz, PL=0.2 
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The way of how the time headway, packet loss ratio and beacon sending rate are chosen is the same as in the 
experiments described in Section 4.3.2.1.1. 
 
Figure 23 and Figure 24 show the curves associated with velocity and the acceleration, respectively, of the last 
following vehicle, i.e., veh9. Starting from left to right, the first curve is associated with the packet loss (PL) 
ratio of 10%, while the last curve is associated with the packet loss (PL) ratio of 50%. 
 

 
 
 
 
 
 

 
 
 
 

(a) velocity of veh 9 with beacon sending 
frequency=25Hz, h=0.7s 

(b) velocity of veh 9 with beacon sending 
frequency=20Hz, h=0.7s 

(c) velocity of veh 9 with beacon sending 
frequency=15Hz, h=0.7s 

(d) velocity of veh 9 with beacon sending 
frequency=10Hz, h=0.7s 
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Figure 23: velocity of veh 9 in modified model for CACC with MiXiM (accelerating scenario) 

(e) velocity of veh 9 with beacon sending 
frequency=5Hz, h=0.7s 

(a) acceleration of veh 9 with beacon 
sending frequency=25Hz, h=0.7s 

(b) acceleration of veh 9 with beacon 
sending frequency=20Hz, h=0.7s 
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Figure 24: acceleration of veh 9 in modified model for CACC with MiXiM (accelerating scenario) 

(c) acceleration of veh 9 with beacon 
sending frequency=15Hz, h=0.7s 

(d) acceleration of veh 9 with beacon 
sending frequency=10Hz, h=0.7s 

(e) acceleration of veh 9 with beacon 
sending frequency=5Hz, h=0.7s 
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Similar conclusions are derived as the ones derived in Section 4.3.2.1.1. In particular, for a constant time 
headway value, as packet loss ratio increases and/or beacon sending rate decreases, the platoon becomes to be 
more string-instable, which means that the disturbances of a leading vehicle are being amplified.  
 
 
4.3.2.2.2 Varying time headway 
 
The way of how the time headway, packet loss ratio and beacon sending rate are chosen is the same as in the 
experiments described in Section 4.3.2.1.2.   
 
Parts (a) and (b) of Figure 25 show the curves associated with velocity and acceleration, respectively, of the last 
following vehicle, i.e., veh9. Starting from left to right, the first curve is associated with the time headway of 
0.5s, while the last curve is associated with the time headway of 2s.  
 
Similar conclusions are derived as the ones derived in Section 4.3.2.1.2.  In particular, when the packet loss 
ration and beacon sending rate are kept constant, as the time headway increases the platoon becomes to be more 
string-stable.  

 
 

4.4 Combining CACC and ACC 

Experiment Goal: Just as stated above, when the input acceleration is not updated in time, the string stability 
performance of the vehicle will decrease. In worst cases also accidents (vehicle crashes) might happen, because 
the CACC controller will base its decision on outdated acceleration information.  
 
 

Figure 25: velocity and acceleration of veh 9 in modified model for CACC with MiXiM with different time 
headway (accelerating scenario) 

(a) velocity of veh 9 with beacon sending 
frequency=15Hz, PL=0.2 

(b) acceleration of veh 9 with beacon 
sending frequency=15Hz, PL=0.2 
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The goal of this experiment is to study whether the CACC and ACC controllers can be combined in such a way 
that the ACC controller gets the control responsibility of the vehicle in situations where the CACC controller is 
not anymore able to successfully provide this responsibility. In particular, this experiment studies whether a 
CACC – ACC controller Switching mechanism is able to switch from CACC to ACC in situation that the 
received acceleration information is too much outdated, and back from ACC to CACC when this situation is 
corrected. Note that due to time constraints, only some preliminary experiments have been accomplished. 
Therefore, this section includes only some preliminary conclusions associated with these experiments, without 
showing the obtained results.     

4.4.1 Experiment parameters and analysis 

In this set of preliminary experiments, the same topology as described in Section 4.3.1 is used.   
 
Regarding the CACC-ACC controller switching mechanism, it is important to emphasize that it is not operating 
in the same way as the CACC-ACC controller switching mechanisms provided by TNO. The main reason of this 
is related to the fact that the CACC-ACC controller switching mechanism and the Kalman filters available in the 
original Simulink model provided by TNO could not be converted into C++ shared libraries.  Moreover, the 
CACC-ACC controller switching mechanism used in the original Simulink model does not mention how to 
calculate the necessary inputs for the switching mechanism by using real-time parameters measured from the 
field. 
 
The original Simulink model provided by TNO supports a requirement with respect to preceding vehicle(s) 
timing: information, which should not be older than 200 ms. If this timing information is older than 200 ms, then 
the host vehicle will not use the CACC controller, but will instead switch back to the ACC controller. For this 
reason the CACC controller requires an effective beaconing rate of at least 5 Hz in order to be active. 
 
This experiment studies what happens if the above mentioned timing requirement is dropped, i.e., what happens 
when the CACC controller keeps using the received preceding vehicle(s) timing: information, even when this 
information is older than the required 200ms. 
 
In particular, in this experiment we have set the time headway to 0.7s, the packet loss ratio to 0.5, and beaconing 
rate to 1Hz. Furthermore, the CACC-ACC controller switching mechanism used in this set of experiments is 
triggered based on the value of the measured time headway value. In particular, two thresholds for time headway 
are specified. If the time headway is below 99.85% of the required time headway, the vehicle chooses to use the 
ACC controller. When the time headway is equal to 100% of the required time headway or higher, then the 
controller switching mechanism returns back to the CACC controller mode.  
 
Two sets of experiments are accomplished. In both sets of experiments a decelerating scenario is used, where the 
values of the velocity and acceleration are set in an identical way as the experiments described in Section 4.3.2.1.  
 
In the first set of experiments, the proposed CACC-ACC controller switching mechanism described above is not 
used. In this set of experiments 10 simulation runs, (using the same parameters, but for each run using different 
random seeds) are performed. During all these simulation runs, the leading vehicle is decelerating in the same 
way as described in the experiments described in Section 4.3.2.1. During this set of experiments it has been 
observed during 4 simulation runs that due to the deceleration of the leading vehicle a number of vehicles 
accidents (vehicle crashes) occur.   
 
In the second set of experiments, the proposed CACC-ACC controller switching mechanism described above is 
used. All the other parameters and number of simulation runs are the same as the ones used for the first set of 
experiments. During this set of experiments it has been observed during 2 simulation runs (instead of the 4 runs) 
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that due to the deceleration of the leading vehicle a number of vehicles accidents (vehicle crashes) occur.   
 
Furthermore, using a CACC-ACC controller switching mechanism could help solving this problem. However, 
for the studied CACC-ACC controller switching mechanism in these experiments, it seems to help solving the 
string instability, but for the chosen parameter values for time headway, packet loss ratio and beacon sending rate 
this controller switching mechanism is not operating satisfactorily. More and extensive experiments are needed 
to optimize the operation of such a CACC-ACC controller switching mechanism.   
 
In addition to the time headway a CACC-ACC controller switching mechanism can also be triggered by other 
parameters.  For example, the beacon receiving rate could be used for this purpose. The receiving vehicle can set 
a beacon receiving rate threshold and maintain a counter that counts the number of beacons received every 
second. If this measured beacon receiving rate is lower than the set threshold then the controller switching 
mechanism could select the ACC mode. Another beacon receiving rate could be used to trigger to switch from 
the ACC controller mode to the CACC mode.   
   
Another solution that could be used to optimize the operation of such a CACC-ACC controller switching 
mechanism is to trigger the switching operation based on a combination of parameters, e.g., time headway and 
beacon receiving rate. Moreover, similar to the original Simulink model provided by TNO, Kalman filters and 
the freshness of the received preceding‘s vehicle timing information could be included and used by such 
switching mechanisms. In addition to the switching operation between CACC-ACC controllers such a controller 
switching mechanism could increase/decrease the desired time headway depending on wireless communication 
conditions.  
 
From these preliminary experiments it can be observed that when the beaconing rate is too low and the packet 
loss is too high then a CACC controller cannot guarantee string-stability and is not able to prevent accidents 
(vehicle crashes) from occurring. Note that the original Simulink model provided by TNO, uses the value of 200 
ms to define whether the received preceding‘s vehicle timing information is either fresh or outdated. If this 
timing information is older than 200 ms, then the host vehicle will not use the CACC controller, but will instead 
switch back to the ACC controller. For this reason the CACC controller requires an effective beaconing rate of at 
least 5 Hz in order to be active. The above experiments justify that the beaconing rate should not be lower that a 
certain value. More extensive experiments are needed to find the optimum beaconing rate value applied under 
certain packet loss percentages. 
 
More work and experiments are needed to develop and evaluate such a CACC-ACC controller switching 
mechanism.  
  

4.5 Conclusion 

In this section, the accomplished experiments are described and analyzed. It can be concluded that the original 
Simulink model provided by TNO and the modified model developed in this assignment and implemented as an 
integrated simulation model are from the point of view of string stability, reasonably equivalent on how they 
operate. The main differences between these models are that (1) another CACC-ACC controller switching 
mechanism is used in the modified model, (2) the Kalman filters used in the original Simulink model are not 
used in the modified model used in this assignment. Another conclusion that has been derived is that when a 
CACC controller is used instead of an ACC controller then the string stability performance is significantly 
increased.  
 
Furthermore, based on the experiments where only the integrated modified model (built on SUMO and 
OMNeT++/MiXiM) was used, the following conclusions are derived. When the time headway value is kept 
constant, as packet loss ratio increases and/or beacon sending rate decreases, the platoon becomes to be more 
string-instable, which means that the disturbances of a leading vehicle are being amplified. Moreover, when the 
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packet loss ration and beacon sending rate are kept constant, as the time headway increases the platoon becomes 
to be more string-stable.  Furthermore, it can also be concluded that the use of only a CACC controller can be 
dangerous in some situations, which could become a cause of vehicle crashes. Therefore, a combination of a 
CACC and ACC controller operation is required. This can only be accomplished by using a CACC-ACC 
controller switching mechanism that would operate in such a way to guarantee that vehicle crashes caused by the 
imperfections of the wireless communication link are avoided.  
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5. Conclusions and Future Work 

5.1 Conclusions   

In this assignment the impact of ACC and CACC that uses a realistic communication medium on the string 
stability performance has been investigated. This has been realized by answering the research questions that are 
listed in Section 1.4. In particular, the needed control theory used by the ACC and CACC controllers has been 
briefly described in Section 2. Subsequently, the used simulation environments and models used in this 
assignment have been described in Section 3. A simulation model has been realized that integrates different 
simulation models that were originally implemented in the SUMO, Simulink and OMNET++/MiXiM simulation 
environments. In particular, an original Simulink model of the ACC and CACC controllers that has been 
provided by TNO has been successfully converted into a shared C++ library so that it could be simulated within 
the traffic simulator SUMO. Moreover, using an existing IEEE 802.11p communication model provided by 
UT/DACS, implemented in the OMNET++/MiXiM simulation environment it was possible to build the 
integrated simulation model and to test the performance of the CACC controller. After realizing this integrated 
simulation model, several sets of simulation experiments were performed and analyzed based on this simulation 
model, see Section 4. In particular, the first set  of experiments compares the original Simulink model and the 
modified and integrated simulation model. In another set of experiments the ACC and CACC string stability 
performance was compared assuming that the CACC controller was able to receive information using an ideal 
communication link, i.e., no packet losses and no delays.  Subsequent sets of experiments analyzed the CACC 
string stability performance, considering that the CACC was using an IEEE 802.11p communication medium. In 
the last set of experiments a combined ACC and CACC controller model has been investigated and some 
preliminary conclusions were derived. 
 
The main conclusions derived within this assignment are: 
  The original Simulink model provided by TNO and the modified model developed in this assignment 

and implemented as an integrated simulation model are from the point of view of string stability, 
reasonably equivalent on how they operate.  The main differences between these models are that (1) 
another CACC-ACC controller switching mechanism is used in the modified model, (2) the Kalman 
filters used in the original Simulink model are not used in the modified model used in this assignment.   When a CACC controller is used instead of an ACC controller than the string stability performance is 
significantly increased.  

 
Based on the experiments where only the integrated modified model (built on SUMO and OMNeT++/MiXiM) 
was used, the following conclusions are derived: 
  When the time headway value is kept constant, as packet loss ratio increases and/or beacon sending rate 

decreases, the platoon becomes to be more string-instable, which means that the disturbances of a 
leading vehicle are being amplified.   When the packet loss ration and beacon sending rate are kept constant, as the time headway increases the 
platoon becomes to be more string-stable.   The use of only a CACC controller can be dangerous in some situations, which could become a cause of 
vehicle crashes. Therefore, a combination of a CACC and ACC controller operation is required. This can 
only be accomplished by using a CACC-ACC controller switching mechanism that would operate in 
such a way to guarantee that vehicle crashes caused by the imperfections of the wireless communication 
link are avoided.  
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5.2 Future Work 

Based on the conclusions derived in this assignment several recommendations for future activities have been 
identified see below:  More work and extensive experiments are needed to develop and evaluate an optimal CACC-ACC 

controller switching mechanism that will guarantee that the imperfections of a communication medium 
will not become a cause for vehicle crashes.  Some features that were available in the CACC/ACC Simulink model provided by TNO, including 
Kalman filters, are not implemented in this assignment. It is recommended to implement these features 
in the modified model developed in this assignment and investigate whether the conclusions derived in 
this assignment regarding the CACC string stability performance still hold.   In this assignment the packet loss ratio has been emulated at each receiving vehicle, by either dropping 
or accepting a received beacon depending on a predefined packet loss probability. It is recommended to 
use IEEE 802.11p background traffic in such a way that the packet loss ratio and beacon delays are 
obtained by varying the network conditions (via this background traffic).    Improving the communication part should be able to increase the beacon receiving ratio. The improved 
beacon generating schemes stated in [EeKa10] which aimed at decreasing beacon collisions to improve 
beacon throughput should be tested in future. Of course, other improvement in the network protocols can 
be tested.  At this moment, the CACC/ACC controllers just support the case of a single lane road. In the future it 
will be needed to investigate also network topologies where multilane roads and other complex traffic 
conditions are used.   More complex communication infrastructures could be used, e.g., including Road Side Units, for the 
dissemination of the beacons.  
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Appendix A: Confidence intervals associated with Section 4.3 

experiments 
 
This appendix describes the two-sided 90% confidence intervals calculated for the average results of the 
experiments provided in Section 4.3.  In order to calculate these confidence intervals, 10 simulation runs (where 
each of them uses a different random seed) have been accomplished for each experiment described in Section 
4.3. This means that for each point in each curve presented in the figures given in Section 4.3, 10 samples are 
found, where their average value is used to calculate the two-sided 90% confidence interval.  
 
According to [Jain91], since the collected number of samples is lower than 30, in order to find the two-sided 
90% confidence intervals, the t-student distribution is used for the calculation of these confidence intervals. 

According to [Jain91], the 100(1-)% confidence interval is given by: 

( - ) 
 

Here,  is the (1- /2)-quantile of a t-variate with n-1 degrees of freedom, where n represents the 
number of samples. These quantiles are listed in Table A.4 in [Jain91]. With n equal to 10 samples, n-1=9, and 
two-sided 90% confidence interval, we found =1.833. 
 
In order to be able to plot these confidence intervals in such a way that also the relation to their associated 
average value is shown, we decided to calculate and plot the ratios between each confidence interval and its 
associated average value. This is accomplished instead of just plotting the confidence interval and its average 
value in the same figure, which will make such a figure severely unclear.   
 
For the velocity related experiments, we calculated the ratio of half of the CI range and its associated average 
value.  
 
For the acceleration related experiments, it was not possible to calculate this ratio, since some average values 
equal to zero. Therefore, we just calculated and plotted only the absolute values of confidence interval. 
 
For the decelerating scenario, see Section 4.3.2.1, the confidence intervals corresponding to Figure 20 are 
showed in Figure 26 and Table 2. The confidence intervals corresponding to Figure 21 are showed in Figure 27 
and Table 3. Furthermore, the confidence intervals corresponding to Figure 22 are showed in Figure 28, Table 4 
and Table 5.  
 
Note that in the below figures and tables, ―h‖ denotes the time headway; ―BSF‖ denotes the beacon sending 
frequency (rate); ―PL‖ denotes the packet loss ratio and ―CI‖ is denotes a confidence interval, which means the 

value of (2* ). 
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(a) CI(Velocity) of veh9 with beacon 
sending frequency=25Hz h=0.7s 

(b) CI(Velocity) of veh9 with beacon 
sending frequency=20Hz h=0.7s 

(c) CI(Velocity) of veh9 with beacon 
sending frequency=15Hz h=0.7s 

(d) CI(Velocity) of veh9 with beacon 
sending frequency=10Hz h=0.7s 
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Figure 26: confidence interval corresponding to (a), (b), (c), (d), (e) of Figure 20 

PL

BSF (Hz) 50% 40% 30% 20% 10%

25 0.2261 0.2273 0.133 0.1078 0

20 0.4891 0.4805 0.3237 0.2564 0.1454

15 0.8523 0.7275 0.2996 0.2659 0.2027

10 2.3387 1.5087 0.8689 0.8674 0.2099

5 3.1052 3.284 1.7768 0.6812 0.1286

Table 2: half of maximum CI/average of veh 9 on velocity in decelerating scenario (%), h=0.7s 

(e) CI(Velocity) of veh9 with beacon 
sending frequency=5Hz h=0.7s 
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(a) CI(Acceleration) of veh9 with beacon  
 sending frequency=25Hz h=0.7s 

(b) CI(Acceleration) of veh9 with beacon  
 sending frequency=20Hz h=0.7s 

(d) CI(Acceleration) of veh9 with beacon  
 sending frequency=10Hz h=0.7s 

(c) CI(Velocity) of veh9 with beacon 
sending frequency=15Hz h=0.7s 
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PL

BSF (Hz) 50% 40% 30% 20% 10%

25 0.0449 0.0419 0.0263 0.0208 0

20 0.0946 0.0897 0.0597 0.0497 0.0265

15 0.1641 0.1407 0.0581 0.0524 0.0399

10 0.3693 0.2771 0.1616 0.1685 0.0395

5 0.5293 0.614 0.3234 0.1274 0.0342

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27: confidence interval corresponding to (a), (b), (c), (d), (e) of Figure 21 

Table 3: maximum CI of veh 9 on acceleration in decelerating scenario (m/s^2), h=0.7s 

(e) CI(Acceleration) of veh9 with beacon  
 sending frequency=5Hz h=0.7s 
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Table 4: half of maximum CI/average of veh 9 on velocity in decelerating scenario (%), BSF=15Hz, PL=20% 

 
h (s) 2 1.5 1 0.9 0.8 0.7 0.6 0.5

0.2383 0.2735 0.2005 0.3242 0.4523 0.2659 0.3266 0.3436  
 

Table 5: maximum CI of veh 9 on acceleration in decelerating scenario (m/s^2), BSF=15Hz, PL=20% 

h (s) 2 1.5 1 0.9 0.8 0.7 0.6 0.5

0.0214 0.0323 0.0334 0.0527 0.08 0.0524 0.067 0.0703  
 

For the accelerating scenario, see Section 4.3.2.2, the confidence intervals corresponding to Figure 23 are 
showed in Figure 29 and Table 6. The confidence intervals corresponding to Figure 24 are showed in Figure 30 
and Table 7. Furthermore, the confidence intervals corresponding to Figure 25 are showed in Figure 31, and 
Table 8 and Table 9. 

 
 
 
 
 
 
 
 
 
 

Figure 28: confidence interval corresponding to (a), (b) of Figure 22 

(b) CI(Acceleration) of veh9 with beacon  
 sending frequency=15Hz PL=0.2 

(a) CI(Velocity) of veh9 with beacon sending 
frequency=15Hz PL=0.2 
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(a) CI(Velocity) of veh9 with beacon 
sending frequency=25Hz h=0.7s 

(b) CI(Velocity) of veh9 with beacon 
sending frequency=20Hz h=0.7s 

(c) CI(Velocity) of veh9 with beacon 
sending frequency=15Hz h=0.7s 

(d) CI(Velocity) of veh9 with beacon 
sending frequency=10Hz h=0.7s 
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PL

BSF (Hz) 50% 40% 30% 20% 10%

25 0.0694 0.0531 0.0422 0.0361 0

20 0.0949 0.0461 0.0416 0.0435 0.0229

15 0.135 0.1138 0.0548 0.055 0.0421

10 0.3267 0.2049 0.1497 0.1441 0.0321

5 0.6398 0.4346 0.2918 0.2563 0.1108

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29: confidence interval corresponding to (a), (b), (c), (d), (e) of Figure 23 

Table 6: half of maximum CI/average of veh 9 on velocity in accelerating scenario (%), h=0.7s 

(e) CI(Velocity) of veh9 with beacon 
sending frequency=5Hz h=0.7s 
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(a) CI(Acceleration) of veh9 with beacon 
sending frequency=25Hz h=0.7s 

(b) CI(Acceleration) of veh9 with beacon 
sending frequency=20Hz h=0.7s 

(c) CI(Acceleration) of veh9 with beacon 
sending frequency=15Hz h=0.7s 

(d) CI(Acceleration) of veh9 with beacon 
sending frequency=10Hz h=0.7s 
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Table 7: maximum CI of veh 9 on acceleration in accelerating scenario (m/s^2), h=0.7s 

 

PL

BSF (Hz) 50% 40% 30% 20% 10%

25 0.0197 0.0159 0.0125 0.0099 0

20 0.0263 0.0175 0.014 0.0132 0.0075

15 0.0363 0.0397 0.0188 0.0157 0.0123

10 0.1187 0.0647 0.0526 0.0436 0.0146

5 0.2861 0.1455 0.0997 0.0906 0.0344  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30: confidence interval corresponding to (a), (b), (c), (d), (e) of Figure 24 

(e) CI(Acceleration) of veh9 with beacon 
sending frequency=5Hz h=0.7s 
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Table 8: half of maximum CI/average of veh 9 on velocity in accelerating scenario (%), BSF=15Hz, PL=20% 

 

h (s) 2 1.5 1 0.9 0.8 0.7 0.6 0.5

0.1833 0.4663 0.0331 0.0484 0.0455 0.055 0.0887 0.0658  

 

Table 9:  maximum CI of veh 9 on acceleration in accelerating scenario (m/s^2), BSF=15Hz, PL=20% 

 

h (s) 2 1.5 1 0.9 0.8 0.7 0.6 0.5

0.0203 0.0703 0.0093 0.0106 0.0123 0.0157 0.0223 0.0239  

 

Conclusions: 
 
This appendix shows that the statistical accuracy of the results associated with the experiments performed in 
Section 4.3 is good enough, since the ratio of CI and its average value is in most cases below 1%. Only in one 
case this ration is equal to 3.1%. 
 

(a) CI(Velocity) of veh9 with beacon sending 
frequency=15Hz PL=0.2 

(b) CI(Velocity) of veh9 with beacon sending 
frequency=15Hz PL=0.2 

Figure 31: confidence interval corresponding to (a), (b) of Figure 25 
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Appendix C: Guidelines for realizing experiments on SUMO-

Simulink-OMNET++/MiXiM combined model 
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Appendix C: Guidelines for realizing experiments on SUMO-Simulink-
OMNET++/MiXiM combined model 
 
This appendix describes the guidelines for realizing the experiments given in the main report and 
are accomplished using the SUMO-Simulink-OMNET++/MiXiM combined model. This 
guideline is split into two parts: controller library generated part (procedures of how to  generate 
a shared library by existent Simulink model) and bidirectional coupling part (procedure to couple 
SUMO and OMNeT++/MiXiM).   
 
Note that:  We will try to make it as clear as we can, however, if there are any questions, please 

contact Chenxi Lei (current email address: c.lei@student.utwente.nl)  Also, here we will just explain the procedures exactly as they were done during the 
experiments, so it is possible that there are alternative ways to realize some sub 
procedures, such as the way of calling a shared library. 

 

1. Controller library generated part: 
Thanks to the Real-Time Workshop tool, we can generate the model built into the Simulink 
environment into C and/or C++ source code. 
 
1.1  Background 
A Linux version of Matlab is used to convert the original Simulink model into C++ source code. 
In particular, the Real-Time Workshop tool is used for this conversion. The converted C++ code 
is structured in C++ shared libraries that can be used by the Linux-based simulator—SUMO. A 
Linux version of Matlab is used, since it is difficult to build a shared library in the Linux-based 
simulator SUMO, using the source code generated from Real-Time Workshop tool embedded in 
a Windows version of Matlab.  
   
1.2  Software specification 
Because the latest version of the controller (original Simulink model) provided by TNO can only 
be used without any bug in Matlab 2010b and the current  Linux OpenSUSE (version 10.3) 
distribution installed on the UT/DACS lab computers does not support the Matlab 2010b version, 
we had to use other operating systems or a higher version of a Linux kernel. Using the support of 
the UT/EWI ICT helpdesk we installed on a computer the operating system: Ubuntu 10.04. 
Using this operating system, we could install and use the  linux version of Matlab 2010b 
(which can be found at http://www.mathworks.com/support/sysreq/current_release/linux.html).  
 
1.3  C++ Code  generation 
First, one has to open Simulink model to be used (see Section 2 of Appendix B). Then in order to 
convert this Simulink model into C++ code by using the Real-Time Workshop tool, one has to 
configure the Real-Time Workshop parameters accordingly.  One can get access to the 
configuration parameters by selecting ―tools->Real-Time Workshop-> Options‖ .  Figure 1 gives 
a screenshot of the dialog window used during the Real-Time Workshop configuration.  
 

mailto:c.lei@student.utwente.nl
http://www.mathworks.com/support/sysreq/current_release/linux.html
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Figure 1: Real-Time Workshop Configuration 

1.3.1  Real-Time Workshop configuration: “system target file” 
 
In the ―system target file‖ option in Figure 1 you can select which kind of coder you would like 
to use to generate the code by clicking the ―Browse‖ button. Since we have to use the code in 
Linux environment (here we used Ubuntu 10.04), available options for compiling in Linux are    -ert.tlc (Real-Time Workshop Embedded Coder)  -grt.tlc (Generic Real-Time Target) 
 
Moreover, because we do not have the license of ―ert.tlc‖, the only choice for us is to use 
―grt.tlc‖.  
 
1.3.2 Real-Time Workshop configuration: “Language” 
The ―Language‖ (see Figure 1) of the generated code is chosen as ―C++‖, because the simulator 
(SUMO) we are going to apply is using (in calls) C++ shared libraries.  
 
For other parameters in the tab ―Real-Time Workshop‖, see Figure 1, we just use the default 
values. Of course, one can customize other parameters such as ―compiler optimization level‖, see 
Figure 1, in order to make the compilation faster. 
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1.3.3 Real-Time Workshop—Solve  configuration 
In addition to the ―Language‖, also the parameters associated with the ―Solver‖ have to be 
configured, see Figure 2. 
 
 

 
Figure 2: Solver Configuration 

 
 
 
   In the ―Solver‖ tab (see Figure 2), ―type‖ is chosen to be ―Fixed-step‖ and ―solver‖ is chosen to 
be ―ode5‖. 
   Since all sample times in the model must be an integer multiple of the fixed-step size‖ 
(specified by Real-Time Workshop) and the sample time (sampling timestep) of the model is 
0.01s, we just set the same value for the ―fixed-step size‖. We set the stop time to 0.005s, since 
this stop time must be smaller than one sample timestep (―0.01‖s). So every time we call the C++ 
shared library (built using the generated code), it will have the same effect as when the Simulink 
model would execute one run.  
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  If you specify the stop time equal or higher than ―0.01‖s, then every time the C++ shared 
library is called, it will have the effect as when the Simulink model executes more than two runs. 
This will mean that for CACC, at the beginning of each run, the C++ shared library would use 
the same value for preceding vehicle’s acceleration (one input of the controller). Thus every time 
the C++ shared library is called, the value for preceding vehicle’s acceleration for all the runs 
after the first run will be out-dated. 
  In our experiments, we would like to evaluate the performance of CACC controller used in 
ideal communication circumstances, where the controller can always get ―fresh‖ and up to date 
input every time it runs. So in each SUMO timestep, we specify that the CACC controller runs 
once by calling the C++ shared library once. In this way we can timely assign the fresh (and up 
to date) value of preceding vehicle’s acceleration to the CACC controller. Therefore, we have to 
specify the value of stop time less than one sampling timestep. For other parameters, we just use 
the default values.  
 
1.3.4 Other Considerations  
After that, one can convert the whole Simulink model by selecting ―tools->Real-Time 
Workshop-> Build Model‖. It is important to note that we encountered several problems during 
the process of converting the original Simulink model provided by TNO, into the C++ source 
code.  
 
In the original Simulink model provided by TNO, two stateflow (charts) are used, which could 
not be converted. One stateflow (chart) is used in the ―fault detection, isolation&recovery‖ 
module in the RT system, the other is used in the ―from HMI‖ module, see Appendix B.  The 
following error message was generated during the conversion process: ―To build RTW with 
Stateflow blocks requires a valid Stateflow Coder license‖.  It’s still not clear whether a real 
license is needed or it might only be a bug.  A similar problem occurred when we tried to convert 
the Kalman filters. 
 
Therefore, we have just taken the pure ACC and CACC controllers from the RT control system 
and the ―G_a‖ module that is used to revise the value generated by the ACC and CACC 
controllers from the ―vehicle‖ module. Due to the converting problems with the Kalman filters, 
we were not able to use the ―single target tracking‖ or ―multiple target tracking‖ functions 
incorporated in the ―target-tracking‖ block. This is because these functions are using the Kalman 
filters. The only ―target-tracking‖ function that we could use is the ―direct measurement‖ 
function. All details about the original Simulink model can be found in Section 1, Appendix B, 
and the modified Simulink model used in the experiments performed in this assignment can be 
found in Section 2, Appendix B. 
 

Finally, we were able to generate the C++ code of the modified Simulink model, which does not 
include fault detection and host tracking functions. Note, before one converts the model, the 
parameters of the model can be loaded by running the parameters file. The original parameter file 
is named ―caccrt_p.m‖ which was used together with the original Simulink model named 
―caccrt.mdl‖. The modified parameter file is named ―testpartofcacc_p.m‖ used for modified 
Simulink models for controllers which supplied by this appendix. Note that the CACC controller 
models’ names start with ―trysome‖ while the ACC controller models’ names start with 
―accwithout‖.  
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1.4 Code Modification and Share library generation 
 
Though the C++ code could be successfully generated by Real-Time Workshop tool using parts 
of the original Simulink model provided by TNO, this C++ code cannot be applied within the 
SUMO environment directly without modifications. 
 
1.4.1  short introduction of the generated code  
  As example, we use the Simulink CACC controller model that is included in a file denoted as 
―trysome‖.  So a folder containing the generated code would be created with the name 
―trysome_grt_rtw‖.  Figure 3 is a screenshot of the files contained in this folder. 

 
Figure 3: folder of generated code 

 

As seen from Figure 3, the folder of the generated code comprises five sources files (.cpp) while 
the most important two of them are  ―trysome.cpp‖ (whose content is related to Simulink model's 
algorithm), ―trysome_data.cpp‖ (comprising the values for parameters of the model inherited 
from the file ―testpartofcacc_p.m‖.  

Other files are the corresponding header files of the above source files, the corresponding 
objective files and the most important ―make‖ file that is named ― trysome.mk‖ (at lower left of 
Figure 3). The ― trysome.mk‖ file can be used to compile the modified code and to generate an 
executable file in the parent folder named ― trysome‖ (here is the folder ―CACC‖).   

1.4.2 Modifying procedures 
Commonly, to change values for the parameters in the model one can just modify the 
corresponding values in ―trysome.cpp‖. For the purpose of coupling the source file to our traffic 
simulator (SUMO), we have to modify the ―trysome.cpp‖ in the following way: 

1) Because these machine-generated code are hard to read by human-beings, in order to know 
which functions inside ―trysome.cpp‖ would be called and their sequence to be called, we 
just simply add one sentence to every function defined in ―trysome.cpp‖ so that once some 
function is called, it will print out the corresponding line. Figure 4 shows such an example. 
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Figure 4: example for adding sentence 

In Figure 4, once the function ―rt_ODECreateIntegrationData‖ is called, the sentence 
―extern c void rt_ODECreateIntegrationData is called‖ will be displayed in the ―terminal‖ 
window of Ubuntu. Then one can run the ―trysome_mk‖ in the command line to compile 
the code and then also run the executable file named ―trysome‖ available in the parent 
folder as stated in 1.4.1. After that, the exact functions called during one run of the model 
will be displayed in the ―terminal‖ in time sequence.  

2) by doing the first step, we know that four functions are necessarily to be called and their 
names are: 

void trysome_initialize(bool firstTime); 

extern "C" void MdlInitialize(void); 

extern "C" void MdlOutputs(int tid,float data[],float *q1); 

extern "C" void MdlUpdate(int tid,float data[],float *q1); 

The names of the above four functions are exactly as those in the machine-generated code 
while the parameters and data types of above four functions have already been changed to 
make sure they can be called by the SUMO traffic simulator. This is because the original 
data types are only defined in Matlab.  
 
The previous two functions are used to initialize the controller, and MdlOutputs is the 
function which performs the control algorithm. Every time the controller is called, the 
MdlUpdate is used to update information of the controller. The array ―data[]‖ is used to 
assign values to the inputs of the controller and q1 is used to fetch the output of the 
controller (the acceleration). In function MdlOutputs the input parameters are named in 
the form of trysome_U.In1, trysome_U.In2,... and the outputs are named in the form of 
trysome_Y.Out1, trysome_Y.Out2.  
 
The sequence numbers of inputs and outputs are exactly the same as those used in the 
Simulink model. In other words, trysome_U.In1, trysome_U.In2,...and trysome_U.In7 
exactly correspond to In1, In2, …In7, associated with the modified Simulink model 
described in section 2 of Appendix B. Furthermore, trysome_Y.Out1 and 
trysome_Y.Out2 correspond to Out1 (reference acceleration after the ―G_a‖ block‖ and 
Out2 (reference acceleration before the ―G_a‖ block), see  Section 2 of Appendix B. 
Therefore, we assigned parameters as shown in Figure 5 and fetched the reference 
acceleration by ―G_a‖ as shown in Figure 6: 
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Figure 5: inputs assignment 

 

 

Figure 6: outputs fetched 

In Figure 5, one can see an array named ―data2‖ that is used to assign values to the inputs of 
controller. Here fetching the value of the acceleration before ―G_a‖ (the second output: 
trysome_Y.Out1) is done only for test purpose. 

3) Subsequently, in the source file ―trysome.cpp‖, parameters of the above four functions should 
be modified (to make these parameters and data type the same as those in the source file) in the 
function declarations in the corresponding header file ―trysome.h‖.  
 

Furthermore, also the data types in ―trysome.h‖ are needed to be modified from those 
specific for Matlab to general data types. In particular, the data type ―int_T‖ is changed 
into ―int‖, the data type ―bool_T‖ is changed to ―bool‖ and the data type ―real_T‖ is 
changed to ―float‖ or ―double‖. 

 
4) After modifying the code, a shared library is necessary to be created to make use of this code. 
Here only the target files (all the files with the suffix ―.o‖) in the folder shown in Figure 3 are 
needed. The shared library can be put anywhere if only it can be linked to. Below the commands 
we used to generate the shared library are shown: 
 

>>make -f trysome.mk //compile the generated code 
>>g++ -g -shared -Wl,-soname,libtrysome.so.0 \ 

-o libtrysome.so.0.0 trysome.o grt_main.o rtGetInf.o rtGetNaN.o rt_logging.o 
rt_nonfinite.o     

rt_sim.o trysome_data.o –lc //using target file to create shared library 
>>/sbin/ldconfig -n . 
>>ln -sf libtrysome.so.0 libtrysome.so //link different names of the shared library 
 
For more details about creating a shared library, you can refer to the following URL: 
http://www.faqs.org/docs/Linux-HOWTO/Program-Library-HOWTO.html 

http://www.faqs.org/docs/Linux-HOWTO/Program-Library-HOWTO.html
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5) Since we have 9 following vehicles and two kinds of controllers (CACC and ACC), we need 
to create 18 shared libraries for each possible combination.  
 

Therefore, the above procedures have to be repeated for 18 times. In addition to this note 
that the names for the four functions (stated in the second procedure of this section) 
should be different in different shared libraries. This is needed in order to prevent 
confusion in SUMO when calling the same function belonging to different libraries. 
These names can be modified manually after the code is generated for each combination. 
 
An easier way to do that is modify these names in /matlab/rtw/c/grt/grt_main.c before 
generating the code with Real-Time Workshop. As shown in Figure 7, we modified the 
function name ―MdlOutputs‖ to ―MdlOutputs3‖ and ―MdlUpdate‖ to ―MdlUpdates3‖ 
manually in /matlab/rtw/c/grt/grt_main.c so that in the generated code, the corresponding 
function names in source file ―trysome3.cpp‖ (the name of the different Simulink model 
should also be different. Moreover, for a different Simulink model, e.g., ―trysome3‖, the 
names of these functions would be ―MdlUpdates3‖ and ―MdlOutputs3‖. In this way, one 
can assign different names for same functions used in different libraries. 

 

 
Figure 7: example of modifying function name 

 
6) In order to use this shared libraries, we have to link SUMO to them, which is accomplished by 
specifying these libraries’ address in: ―sumo/src/Makefile‖.  
 

Because we move all the generated shared library to the address ―sumo/src/microsim‖, 
we specify these libraries’ address in two different places  of the file ―sumo/src/Makefile‖ 
as shown in Figure 8: 
 

 
Figure 8: libraries address specification 
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In Figure 8, we can see the generated libraries with the name ―libtrysome.so‖, 
―libtrysome1.so‖,…, ―libtrysome8.so‖ (for CACC) and ―libaccwithout.so‖, 
―libaccwithout1.so‖,.., ―libaccwithout8.so‖ (for ACC) that are used as dependencies by 
the SUMO environment. By running the file ―sumo/src/Makefile‖ (―make‖ command 
under this directory), SUMO will be linked to these libraries. 
 So far, shared libraries of the controller have been created and can be used by the SUMO 
environment.  

 
Note:  our way of just calling these four functions won't make the executable file ―trysome‖ 
work (with segmentation fault) after modification, but the controller works well if it is just used 
in the form of a shared library  
 
1.5 Using the shared libraries in SUMO 
 
The SUMO installation can be found via the following URL: 
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=LinuxBuild  
 
The version we used is the subversion of SUMO-0.12, please refer to ―subversion checkout‖ at 
above URL. 
 
In SUMO, the essential source file used to calculate the vehicle speed (by car-following models, 
see section 3.1.2 of the report) is ―MSVehicle.cpp‖ under the directory: /sumo/src/microsim/. 
Figure 9 is a section we wrote in this file to call the shared library for a specific vehicle. 
 

 
Figure 9: calling shared library in SUMO 

As seen in Figure 9, at the beginning of the simulation, we initialize the shared CACC library 
and then we use an array ―datap‖ to store the values for the input parameters of the controller. 

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=LinuxBuild
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These parameters stored in sequence are: preceding vehicle’s position, speed, host vehicle’s 
position, cruise speed, time headway, preceding vehicle’s acceleration and host vehicle’s speed. 
 
Then this array would be used by the function ―MdlOutputs3‖ to calculate the reference 
acceleration. However, the inputs have to be updated by calling ―MdlUpdate3‖ before 
―MdlOutputs3‖ is being called at each time step after the first timestep. Then the reference 
acceleration fetched by ―q1‖ (revised by ―G_a‖) should be limited by the maximum value 
2m/s^2 and minimum value of -9m/s^2. Finally this acceleration can be used to calculate the 
speed and position.  
 
In this way, we successfully couple the controller model and SUMO. For other details, please 
refer to the source code.  

 
2. Bidirectional coupling between MiXiM and SUMO part: 
 
In this part, procedures to bidirectional couple the traffic simulator SUMO and the network 
simulator OMNeT++/MiXiM are explained. A similar bidirectional coupling example can be 
found at the following URL: 
http://veins.car2x.org/tutorial/, where Christoph Sommer gives an example of coupling SUMO 
and OMNeT++/INeT. 
 
2.1 Software Specification 
  
In MiXiM, which is modified by Christoph Sommer, an example named ―traci_launchd‖ is 
given. In this example, vehicles in SUMO are using the OMNeT++/MiXiM to communicate by 
exchanging messages and move from a starting point to a destination point. This make it possible 
for us to implement our SUMO model (see Section 3.2.2 in the main report) and the network 
model (provided  by UT/DACS) by modifying such example. The exact software environments 
that we used: 
  OMNeT++ 4.1  DACS-MiXiM.1.2 (supplied by UT/DACS) packet  MiXiM-sommer (git://github.com/sommer/mixim-sommer.git) packet  SUMO-0.12 subversion (stated in section 1.5) 
 
For installation of OMNeT++4.1, please refer to: 
www.omnetpp.org/doc/omnetpp41/InstallGuide.pdf 
For installation of MiXiM packets, please refer to: 
 http://veins.car2x.org/tutorial/ 
For installation of SUMO, please refer to: 
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=LinuxBuild  
 
The following sections describe how to implement the traffic and network models used in this 
assignment. 
 

http://veins.car2x.org/tutorial/
http://www.omnetpp.org/doc/omnetpp41/InstallGuide.pdf
http://veins.car2x.org/tutorial/
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=LinuxBuild
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2.1 Building the traffic model 
As stated in Section 3.2.2 of the report, our traffic model is quite simple, which is different from 
Christoph Sommer’s model in ―traci_launched‖ (after installation, its directory is ―omnetpp-
4.1/samples/mixim-sommer/examples/traci_launchd‖). So we have to replace the corresponding 
―net.net.xml‖ and‖routes.rou.xml‖ files in the folder of ―omnetpp-4.1/samples/mixim-
sommer/examples/traci_launchd‖. Here the ―net.net.xml‖ file specifies the road network, and the 
―routes.rou.xml‖ file specifies the route of vehicle. 
 
The ―net.net.xml‖ file is created by two xml files: ―hello.nod.xml‖ and ―hello.edg.xml‖ which 
can be seen in Figure 10 and Figure 11, respectively. 
 
 

 
Figure 10: hello.nod.xml 

 
 
 

 
Figure 11: hello.edg.xml 

Since in SUMO, a road network with only one section is not allowed, we defined in 
―hello.nod.xml‖ three nodes in a horizontal line as seen in Figure 10 with the coordinates (0.0, 
0.0), (5000.0, 0.0) and (5001.0, 0.0). In   Figure 11, we show that we used two edges to connect 
these three nodes. In order to build such a ―net.net.xml‖ file, the following command should be 
executed under the directory ―sumo/bin/‖. Moreover, both of the ―hello.nod.xml‖ file and 
―hello.edg.xml‖ file should be put under this directory, because ―netconvert‖ tool is installed 
here by default.  
 
>>./netconvert --xml-node-files=hello.nod.xml --xml-edge-files=hello.edg.xml --output-
>>file=net.net.xml  
 
Furthermore, the ―net.net.xml‖ file (see source code) is also generated here and should be moved 
to ―omnetpp-4.1/samples/mixim-sommer/examples/traci_launchd‖ and replace the ―net.net.xml‖ 
created by Christoph Sommer.  
 
Furthermore, the ―routes.rou.xml‖ used for our experiment can be seen in Figure 12, which is 
also moved to ―omnetpp-4.1/samples/mixim-sommer/examples/traci_launchd‖ folder to replace 
the ―routes..rou.xml‖ created by Christoph Sommer. 
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Figure 12: routes.rou.xml 

As Figure 12 shows, we define vehicle’s length, maximum speed sigma (human’ influence 
index) and even car-following model. However, since the reference acceleration calculation is 
calculated in our model using the controller library we generated in Section 1, the following 
SUMO parameters: ―accel‖, ―decel‖, ―maxspeed‖, ―sigma‖ and ―carFollowing-IDM‖ will not be 
used in our SUMO model. Nevertheless, the SUMO parameters used for each vehicle on 
departure position (―departpos‖) and departure speed (―departspeed‖) are still applied in our 
SUMO model.  
 
So far, we are able to provide the traffic model for our experiment. 
 
Note: speed of the 9 following vehicles in Figure 12 is in charge of the shared libraries generated 
in Section 1, while the behaviour of the leading vehicle is also specified also in 
/sumo/src/microsim/MSVehicle.cpp, which can be seen in Figure 13 and Figure 14: 
 

 
Figure 13: accelerating scenario 
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Figure 14: decelerating scenario 

Figure 13 and Figure 14 describe the exact leading vehicle’s behaviour in accelerating scenario 
and decelerating scenario given in Section 4.2 of the main report.  
 
In Figure 13, the leading vehicle accelerates with the acceleration 2m/s^2 from timestep=8000 to 
timestep=8250 and its speed accelerates from 20m/s to 25m/s while in Figure 14, the leading 
vehicle decelerate with the acceleration -9m/s^2 from timestep=8000 to timestep=8054 and with 
the acceleration -5m/s^2 at timestep=8055, so its speed decelerates from 20m/s to 15m/s. During 
other time, the acceleration of the leading vehicle is set to zero.  
 
So far, the traffic model has been built completely. 
 
2.2 Implementing the Network model 
To install the network model supplied by UT/DACS, we modified the ―car.ned‖ file and 
substituted the application layer, network layer, Mac layer, and physical layer modules supplied 
by UT/DACS. The ―car.ned‖ file can be found under the folder: ―omnetpp-4.1/samples/mixim-
sommer/examples/traci_launchd‖. The modules contained in the ―car.ned‖ file can be seen in 
Figure 15: 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: car.ned 
Figure 16: nic 
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What we changed are the ―appl‖, ―net‖, ―nic‖ (comprising ―mac‖ and ―phy‖ modules, see Figure 
16) modules in Figure 15. All the other modules ―car.ned‖ file are left unchanged. This part 
comprised two procedures: 
 
First, we put the necessary files to specific directories. 
 
For the physical layer, we had to move the following files from the directory ―omnetpp-
4.1/samples/DACS_MiXiM-1.2/modules/phy/‖ to the directory ―omnetpp-4.1/samples/mixim-
sommer/modules/phy/‖. 
 
 ―Decider80211p.cc‖ 
―Decider80211p.h‖ 
―PhyLayerp.cc‖ 
―PhyLayerp.h‖ 
― PhyLayerp.ned‖ 
 
For Mac layer, we have to move the following files from the directory ―omnetpp-
4.1/samples/DACS_MiXiM-1.2/modules/mac/‖ to the directory ―omnetpp-4.1/samples/mixim-
sommer/modules/mac/‖. 
 
 
―Mac80211p.cc‖ 
―Mac80211p.h‖ 
―Mac80211p.ned’ 
 
Since the modules corresponding to physical layer and Mac layer (―mac‖ and ―phy‖ in Error! 
Reference source not found.) are comprised in ―nic‖ module as seen in Error! Reference 
source not found., we also have to move the file ―Nic80211p.ned‖ from the directory 
―omnetpp-4.1/samples/DACS_MiXiM-1.2/modules/nic/‖ to the directory ―omnetpp-
4.1/samples/mixim-sommer/modules/nic/‖.  
 
For the network layer, we have to move the following files from the directory ―omnetpp-
4.1/samples/DACS_MiXiM-1.2/modules/netw/‖ to the directory ―omnetpp-4.1/samples/mixim-
sommer/modules/netw/‖. 
 
 
―BeaconNetwLayer.cc‖ 
―BeaconNetwLayer.h‖ 
―BeaconNetwLayer.ned‖ 
(Note that the following six files are not use in our experiment but might be used in future): 
―JitterBeaconNetwLayer.cc‖ 
 ―JitterBeaconNetwLayer.h‖ 
 ―JitterBeaconNetwLayer.ned‖ 



15 

 

 ―ReactiveBeaconNetwlayer.cc‖ 
 ―ReactiveBeaconNetwlayer.h‖ 
 ―ReactiveBeaconNetwlayer.ned‖ 
 
For the application layer, we have to move the following files from the directory ―omnetpp-
4.1/samples/DACS_MiXiM-1.2/modules/application/‖ to the directory ―/omnetpp-
4.1/samples/mixim-sommer/modules/application/‖. 
 
 
―BeaconApplLayer.cc‖ 
―BeaconApplLayer.h‖ 
―BeaconApplLayer.ned‖ 
 
Second, after moving the files as stated in first procedure, we have to specify the directories of 
the ―BeaconNetwLayer.ned‖, ―BeaconApplLayer.ned‖, ―Nic80211p.ned‖ as shown in Figure 17  
to the beginning of the ―car.ned‖ source file. 
 

 
Figure 17: beginning part of "car.ned" source file 

The first line in Figure 17 gives the directory of ―traci_launchd‖; the second line is empty; the 
third line gives the directory of ―mobility‖ module in Figure 15; the forth line gives the 
directories of ―utility‖ module and ―arp‖ module in Figure 15; the other lines (in shadow) give 
the directories of modules supplied by DACS (the directories of ―BeaconNetwLayer.ned‖, 
―BeaconApplLayer.ned‖, ―Nic80211p.ned‖—corresponding to the ―net‖, ―appl‖, ―nic‖ modules 
in Figure 15). 
 
In addition to the above, we have to specify the directories of the ―PhyLayerp.ned‖ and 
―Mac80211p.ned‖ as shown in the beginning of the ―Nic80211p.ned‖ source file. 
 

 
Figure 18: beginning part of "nic.ned" source file 

 

Again the first line in Figure 18 gives the directory of ―traci_launchd‖; the second line is empty; 
the other lines (in shadow) give the directories of modules supplied by DACS (the directories of 
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the ―PhyLayerp.ned‖ and ―Mac80211p.ned‖—corresponding to the ―phy‖, ―mac‖ modules in 
Figure 16). 

Using the other files contained in the following directory we successfully could built our network 
model: 

omnetpp-4.1/samples/mixim-sommer/examples/traci_launchd  

 

2.3 Bidirectional coupling of the traffic model and network model 
 

Since our whole model is based on the existent ―traci_launchd‖ model created by Christopher 
Sommer, we can already run the simulation after building the traffic model and network model 
as stated in section 2.1 and 2.2 of this Appendix. However, so far, the CACC controller cannot 
work, because we have not implemented what parameters to be communicated using the 
OMNeT++/MiXiM model. The only parameter to be transmitted/received using the wireless 
channel for CACC in our experiment is the preceding vehicle’s acceleration. So here we just 
specify vehicle’s acceleration as the only parameters transmitted by the OMNeT++/MiXiM 
model.  

2.3.1 Parameter definition 
 
In order to transmit vehicle’s acceleration between OMNeT++/MiXiM and SUMO, we have to 
define these parameters in two files with the same name ―TraCIConstants.h‖ and same content. 
Their directories are ―omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/‖ and 
―sumo/src/traci-server‖. The same lines showed in Figure 19 should be added to the two files. 
 

 
Figure 19: parameter definition 

Here, the parameter ―VAR_PREDACC‖, shown in Figure 19 should be hex number, which is 
not used by other parameters defined in those two files. Note that VAR_PREDACC represents  
the acceleration of preceding vehicle. This name is just used in exchanging parameters between 
OMNeT++/MiXiM and SUMO environments. In the network model source file and the traffic 
model source file, a different name may be used.  
 
2.3.2 OMNeT++/MiXiM modification 
 
In the OMNeT++/MiXiM, we have to modify three main files. These are: 
 
omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIMobility.h 
omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIScenarioManager.cc 
omnetpp-4.1/samples/mixim-sommer/modules/application/BeaconApplLayer.cc 
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1) In ―TraCIScenarioManager.cc‖, we defined a function named ―commandSetPredacc‖ shown 
in Figure 20: 
 

 
Figure 20: "commandSetPredacc" definition 

In Figure 20, we can see that this function uses the ―objectId‖ (vehicle’s id: from ―veh0‖, 
―veh1‖…to ―veh9‖) and ―acclcx‖ (preceding vehicle’s acceleration) as parameters. 
Moreover, we use the ―variableId‖ (VAR_PREDACC as defined in section 2.3.1) and 
―objectId‖ as the parameters of ―queryTraCI‖ to pass the command 
―CMD_SET_VEHICLE_VARIABLE‖ to SUMO through TraCI. 

 
2) In order to call this function by the application layer of the network model, we can define 
another function in ―TraCIMobility.h‖ to call ―commandSetPredacc‖ as shown in Figure 21: 
 

 
Figure 21: "commandSetPredacc" definition in "TraCIMobility.h" 

In Figure 21, only the name of parameters are different from those shown in Figure 20, 
and we use ―getManager()‖ to call the ―commandSetPredacc‖ defined in 
―TraCIScenarioManager.cc‖. 

3) In the ―BeaconApplLayer.cc‖, we modify the function of ―handleLowerMsg‖. The modified 
part can be seen in Figure 22: 
 

 
Figure 22: modified part of "handleLowerMsg" in "BeaconApplLayer.cc" 

As shown in Figure 22, we first generate a random value between 0 and 1 so that when 
the packet loss is specified to ―fakepl‖, the application layer has a probability of (1-
―fakepl‖) to deal with the received message. It would first check whether this message 
comes from a preceding vehicle. If it is, then the message’s source address should be 
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larger than the application layer’s address by 1 or we can say that the id of the vehicle 
sending the message should be larger than the host vehicle’s id by 1. If this message 
comes from a preceding vehicle, this application layer translates its address to 
corresponding vehicle’s (e.g. translate ―1‖ to ―veh1‖). The last line calls the function  
defined in ―TraCIMobility.h‖ –―commandSetPredacc‖ so that the acceleration of 
preceding vehicle stored in the message (―m->getAcceleration( )‖) can be passed to 
SUMO. 

 
 2.3.2 SUMO modification 
 
In SUMO, two main files have to be modified. These are: 
 
sumo/src/traci-server/TraCIServerAPI_Vehicle.cpp 
sumo/src/microsim/MSVehicle.h 
 
1) In ―TraCIServerAPI_Vehicle.cpp‖, first we have to add ―VAR_PREDACC‖ (see Section 
2.3.1 of this Appendix) to the list of parameters that can be accepted by SUMO, as shown in 
Figure 23: 
 

 
Figure 23: adding "VAR_PREDACC" to those parameters accepted by SUMO 

As shown (in the shadowed part) in Figure 23, ―VAR_PREDACC‖ is put in the list of 
parameters which SUMO can deal with. Once SUMO received a message to set value for the 
preceding vehicle’s acceleration (sent by the function ―queryTraCI‖ in Figure 20), it would 
execute the lines shown in Figure 24: 
 

 
Figure 24͗ ƐĞƚƚŝŶŐ ͞VARͺPREDACC͟ ǀĂůƵĞ ŝŶ ͞TƌĂCI“ĞƌǀĞƌAPIͺVĞŚŝĐůĞ͘ĐƉƉ͟ 

In Figure 24, we can see that if the type of the value for ―VAR_PREDACC‖ is 
―TYPE_DOUBLE‖, a function named ―setPredacc‖ will be called to set this value to the vehicle. 
This function is defined in ―MSVehicle.h‖ as shown in Figure 25: 

 

Figure 25: "setPredacc" definition 

As seen in Figure 25, in this function we just pass the value of input parameter 
(―inputStorage.readDouble(), see Figure 24) to the parameter ―predacc‖.  
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In this way, the value of preceding vehicle’s acceleration is passed to the parameter defined in 
MSVehicle (―predacc‖) and it contributes to the calculation of reference acceleration as shown in 
Figure 9. 
 
2.3.3 Iterating vehicles  
 
Since in our experiment, each vehicle uses an independent controller library, which is not 
available in the existing car-following models in SUMO, we have to manually ―tell‖ each vehicle 
to use its own controller library. SUMO uses an ―iterator‖ in ―sumo/src/microsim/MSLane.cpp‖ 
to perform vehicle’s mobility starting from the last following vehicle towards the leading 
vehicle. Therefore, we use the counter named ―curr‖ defined in 
―sumo/src/microsim/MSLane.cpp‖ as shown in Figure 26: 

 
Figure 26: counter "curr" in "MSLane.cpp" 

In Figure 26, it is shown what we modified.  We use the function 
―moveFirstChecked(*pred,curr)‖ to pass the value of ―curr‖ and the pointer *pred) to 
―sumo/src/microsim/MSVehicle.cpp‖. This function is defined in  
―sumo/src/microsim/MSVehicle.cpp‖.  
 
Note that ―*pred‖ is a pointer defined in SUMO which can be used to refer to preceding vehicle, 
while ―curr‖ is used in the following way. It uses an  initial value of 0, and increases every time 
by one when the vehicle is iterated in SUMO. In other words, SUMO begins to move a different 
vehicle in the direction from the last following vehicle to the leading vehicle. After iterating all 
the vehicles on the road, ―curr‖ will be set to the value to 0 again. Since the original source code 
is quite large, we will give the simplified pseudo code of how the counter ―curr‖ is used in 
―sumo/src/microsim/MSVehicle.cpp‖: 
 
>>switch (curr) { 
>>case 0 
>>using the library for veh9 (last vehicle); 
>>break; 
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>>case 1 
>>using the library for veh8; 
>>break; 
… 
>>case 8 
>>using the library for veh1; 
>>break; 
 
>>case 9 
>>moving leading vehicle as stated in Figure 13/Figure 14; 
>>break; 
 
>>default: 
>>break; 
>>} 
 
  
 The details about definition of the function ―moveFirstChecked(*pred,curr)‖ can be found in the 
source code of ―sumo/src/microsim/MSVehicle.cpp‖. 
 
In addition to the above, the ―omnetpp-4.1/samples/DACS_MiXiM-
1.2/examples/Mac80211Beaconing/omnetpp.ini‖ should be used to replace the ―omnetpp-
4.1/samples/mixim-sommer/examples/traci_launchd/ omnetpp.ini‖. Because this omnetpp.ini file 
is easy to read, but is too large, to get the details of modification of this file, you can refer to its 
source code. Note that during the implementation procedure, the ―lambda_g‖ defined in 
―/omnetpp-4.1/samples/mixim-sommer/modules/netw/ BeaconNetwLayer.h‖ is not used. Instead 
we defined another variable named ―ritama‖ denoting the beacon sending frequency in the same 
file. Moreover, in /omnetpp-4.1/samples/mixim-sommer/ modules/netw/BeaconNetwLayer.cc‖ 
we use the following statement to make the network model to send specific number(the value of 
―ritama‖) of beacons every seconds: 
―scheduleAt(simTime() + (1.0/(ritama/100)), tauTimer);‖  
 
So far, we have already described how to bidirectional couple OMNeT++ and SUMO by 
modifying the code. To get more details, one can refer to source code of files listed below. These 
files were modified or created by us. Some files are not mentioned in the descriptions given 
above because they were modified just for grammar reasons, e.g. function declaration in head 
files for the function defined in the source file: 
 
/sumo/bin/hello.nod.xml 
/sumo/bin/hello.edg.xml 
/omnetpp-4.1/samples/mixim-sommer/examples/traci_launchd/net.net.xml 
/omnetpp-4.1/samples/mixim-sommer/examples/traci_launchd/car.ned 
/omnetpp-4.1/samples/mixim-sommer/modules/nic/Nic80211p.ned 
/omnetpp-4.1/samples/mixim-sommer/modules/netw/BeaconNetwLayer.cc 
/omnetpp-4.1/samples/mixim-sommer/modules/netw/BeaconNetwLayer.h 
/omnetpp-4.1/samples/mixim-sommer/modules/application/BeaconApplLayer.cc 
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/omnetpp-4.1/samples/mixim-sommer/modules/application/BeaconApplLayer.h 
/omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIMobility.h 
/omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIMobility.cc 
/omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIScenarioManager.h 
/omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIScenarioManager.cc 
/omnetpp-4.1/samples/mixim-sommer/modules/mobility/traci/TraCIConstants.h‖ 
/sumo/src/traci-server/TraCIConstants.h 
/sumo/src/traci-server/TraCIServerAPI_Vehicle.cpp 
/sumo/src/traci-server/TraCIServerAPI_Vehicle.cpp 
/sumo/src/microsim/MSVehicle.h 
/sumo/src/microsim/MSVehicle.cpp 
/sumo/src/microsim/MSLane.h 
/sumo/src/microsim/MSLane.cpp 
 
Finally, the whole model is built.  
 
In order to make the whole model to work, a script (~/omnetpp-4.1/samples/mixim-
sommer/base/ 
sumo-launchd.py) should be run first, and where the shared libraries’ directory should be 
mentioned. The command used for running SUMO in command line is: 
 
LD_LIBRARY_PATH="/home/…/sumo/src/microsim" ~/omnetpp-4.1/samples/mixim-sommer/ 
base/sumo-launchd.py -vv -c ~/sumo/bin/sumo 
 
One can run the simulation, either by running ―omnetpp-4.1/samples/mixim-
sommer/examples/traci_launchd/ omnetpp.ini‖ graphical way, or a command line. For example, 
if one wants to run the configuration ―config1‖ specified in ―omnetpp.ini‖, this command can be 
used to run the simulation in command line under the directory ―omnetpp-4.1/samples/mixim-
sommer/examples/traci_launchd/‖: 
 
>>./run -c config1_c -u Cmdenv 
 
For other details about SUMO, please refer to: 
http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Main_Page  
 
For other details about OMNeT++, please refer to: 
http://www.omnetpp.org/  
 
Please note that:  the source code of the modified SUMO model can be supplied together with this 

Appendix;  the source code of the modified MiXiM model can be supplied together with this 
Appendix. 

 
 
 

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Main_Page
http://www.omnetpp.org/

