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Summary 
Flood protection and awareness have continued to rise on the political agenda over the last decade 

accompanied by a drive to improve flood forecasts. Operational flood forecasting systems form a key 

part of ‘preparedness’ strategies for disastrous flood events by providing early warnings several days 

ahead giving flood forecasting services, civil protection authorities and the public adequate 

preparation time and thus reducing the impacts of the flooding.  

The River Mamoré in Bolivia, a major tributary of the Amazon, floods annually causing considerable 

damage, especially to cattle ranches and villages in the area. To limit the effects of flooding in Bolivia 

the Bolivian Vice-Ministry for Water Management and the Dutch Embassy together initiated the 

program ‘Vivir con el Agua’ (living with water). A part of the program is to set up a Flood Early 

Warning System, FEWS, which will warn inhabitants of any flood danger and give them time to take 

measures to limit the damage. This FEWS-project in Bolivia is being carried out by the consortium 

including RoyalHaskoningDHV, Deltares and the local organization Centro Agua Bolivia. During the 

FEWS project in Bolivia the curiosity arose how a semi-distributed hydrological model like HBV will 

perform in forecasting the discharge in this basin area, instead of the physically-based, distributed 

parameter, basin hydrological model TOPOG, used in the project. 

The goal of this research is to set up and evaluate the hydrological HBV-model to simulate discharges 

and forecast floods of the Mamoré River at the city of Trinidad, a city in Bolivia which suffer from the 

annual floods. 

A data analysis is executed to select the meteorological stations which are used in the research to 

determine the input data and to determine the sub basins with corresponding discharge stations. 

This data analysis showed that the Mamoré basin for this study should be divided into two sub 

basins: upstream sub basin Grande with outlet at discharge station Abapó and downstream sub basin 

Mamoré with outlet at discharge station Camiaco.  

In the model calibration procedure the objective function Y of sub basin Grande is a combination of 

the well-known Nash-Sutcliffe coefficient and Relative Volume error  and the objective function of 

sub basin Mamoré is the Nash-Sutcliffe coefficient for high flows NSH, both with an optimum value of 

1. The parameters for which the objective functions are the most sensitive, for both sub basins 

separately, are used for the final calibration step to obtain the sets of the optimum parameter 

values.  

The calibrated model is run for the validation period and sub basin Grande showed an improvement 

in performance in terms of the objective function with an Y value of 0.39 for the calibration period 

and an Y value of 0.54 for the validation period. The performance for sub basin Mamoré decreased in 

terms of the NSH values from 0.72 to 0.51 for the calibration period and validation period 

respectively. 

For flood forecasting, the optimized parameter set obtained during the calibration process is used to 

forecast the discharge for the validation period for 1 up to 10 days ahead, using perfect weather 

‘forecasts’ in the absence of historical weather forecasts. By following an updating procedure the 

observations of the state of the basin up to the current time are used for the forecasting to improve 

the model prediction performance. 
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The forecasted discharges of 1 up to 10 days ahead performed quite well considering the overall 

accuracy.  The NSH values of the forecasts lie between 0.99 for one day ahead and 0.69 for 10 days 

ahead. These performances are an improvement compared to the performance of the simulated 

discharges, which had a NSH value of 0.51. 

Next to the objective function value, the evaluation of the performance of the forecasted discharges 

are based on contingency tables, which show the total number of hits (an event occurred and the 

event was forecasted), misses (an event occurred, but the event was not forecasted), false-alarms 

(an event did not occur, but an event was forecasted) and correct rejections (an event did not occur 

and an event was not forecasted) for four different events for the validation period.  Two types of 

events are taken into account in this study for two different thresholds; a high water level threshold 

and a flood level threshold: 

- Event type 1: ‘the exceedance of a discharge threshold at time step t’ 

- Event type 2: ‘the exceedance of a discharge threshold at time step t, with the condition that 

at time step t-1 this threshold was not exceeded’.  

The accuracies A of the forecasts up to 10 days ahead (A ≥ 0.94) are at least higher than the 

accuracies of the simulated discharges in forecasting event type 1 for the high water level and the 

flood level threshold. Accuracy A has a value between 0 and 1, with 1 as optimum value, thus the 

performance of the forecasts in terms of accuracy are considered as good for the event type 1.  

The skill of the model in forecasting high water and flood levels up to 10 days ahead in terms of 

False-alarm rates F is better than the skill of the model in simulating high water and flood levels. 

Partly due to the high number of correct rejections the false-alarm rates F, which have a value 

between 0 and 1, of the forecasts are ≤0.02. The skill of the model in forecasting high water and 

flood levels up to 10 days ahead in terms of hit rate H are decreasing as the forecasting days ahead 

are increasing. Nevertheless, hit rates H of the high water level of the forecasts up to 7 days ahead 

are higher than the hit rate of the simulated discharges and the hit rates H of the flood level of the 

forecasts up to 3 days ahead are higher than the hit rate of the simulated discharges. At least the 

forecasts up to 3 days ahead perform well in terms of skill for the event type 1 for both thresholds.   

The reliability of the forecasts up to 10 days ahead for event type 1 in terms of the probability of a 

correct warning H’ is high (H’ ≥ 0.92) for the high water and flood level threshold.  The reliabilities of 

simulated discharges are 0.76 and 0.79 for the high water level and the flood level respectively. 

These values are much higher than the base rates, which has a value of 0.31 and 0.19 for the high 

water level and the flood level respectively. The reliability of the forecasts up to 10 days ahead for 

event type 1 in terms of probability of an incorrect non-warning (miss rate F’), decreases sharply as 

the forecasting days ahead are increasing for the high water and flood level thresholds. This is not 

directly visible in the miss rate F’, because the number of correct rejections is high.  

The contingency tables of event type 2 show that the performance of the forecasts is very poor for 

the high water and flood level thresholds. Event type 2 is the start of a high water or flood period.  In 

the validation period, 6 high water periods and 2 flood periods occurred. Out of all the 80 events (2 

events for flood threshold plus 6 events for high water threshold times 10 forecasts) the model was 

able to forecast 2 events and missed 78 events. Due to the small number of event (and thus the small 
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number of hits and misses) and the large number of correct rejections the evaluation in terms of 

accuracy, skill and reliability is not meaningful.  

In conclusion, the overall accuracy of the forecasts increase as the prediction days decrease and is 

higher than accuracy of the simulated discharges. The accuracy, skill and reliability of the forecasts 

up to 3 days ahead of event type 1 are higher than the simulated discharges for both the high water 

and flood level. However, as a decision maker, you are also interested in ability of a model to 

forecast the start of a high water or flood level threshold exceedance, event type 2. This to give a 

high water or flood warning to the people in the area, so they are able to evacuate and limit the 

flood damage. Unfortunately, the model is barely able to forecast and simulate events of type 2 for 

both high water and flood level thresholds.  
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1 Introduction 
This chapter introduces the topic of flood forecasting and hydrological modelling and gives an 

overview of this study. Section 1.1 presents some background of flood forecasting. Section 1.2 

describes the flood problem in Bolivia and introduces the hydrological model used in this research. 

Section 1.3 defines the research goal and the research questions of this study. The research strategy 

and the research model are presented in Section 1.4 presents the research strategy, the research 

model and an overview of the research that counts as reading guide of this report. 

1.1 Background 
Flood protection and awareness have continued to rise on the political agenda over the last decade 

accompanied by a drive to improve flood forecasts. Operational flood forecasting systems form a key 

part of ‘preparedness’ strategies for disastrous flood events by providing early warnings several days 

ahead [De Roo et al., 2003; Patrick, 2002; Werner, 2005] giving flood forecasting services, civil 

protection authorities and the public adequate preparation time and thus reducing the impacts of 

the flooding [Penning-Rowsell et al., 2000; Cloke et al., 2009].  

 

1.2 Problem description 
The River Mamoré in Bolivia, a major tributary of the Amazon, floods annually causing considerable 

damage, especially to cattle ranches and villages in the area. In particular the floods of 2007 and 

2008, due to heavy rains, caused a lot of damage and affected an estimated 350,000 people [Grant, 

2007] and inundated 62.7 *103 km2, see figure 1.1, of the area of the Mamoré River basin [Ministerio 

de Dsarrollo Rural Agropecuario y Medio Ambitente, 2007]. More recently, in February 2014 a major 

flood occurred in the largest department of Bolivia, Beni, in the North of Bolivia.  

 

Figure 1.1: Map of Bolivia with the inundated area of the 2007 floods [QGIS data provided by Centro Agua Bolivia]. 

To limit the effects of flooding in Bolivia the Bolivian Vice-Minister for Water Management and the 

Dutch Embassy together initiated the program ‘Vivir con el Agua’ (living with water). A part of the 

program is to set up a Flood Early Warning System (FEWS) which will warn inhabitants of any flood 
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danger and give them time to take measures to limit the damage. A FEWS is a complex system which 

can be described, following The United Nations Office for Disaster Risk Reduction [UNISDR, 2007], as: 

The set of capacities needed to generate and disseminate timely and meaningful flood warning 

information to enable individuals, communities and organizations threatened by a hazard to prepare 

and to act appropriately and in sufficient time to reduce the possibility of harm or loss.  

FEWS is more than a forecasting tool and although FEWS evaluations have focused on the accuracy 

of hazard predictions, many researchers have recently argued that FEWS’s success should be seen in 

terms of the impact of flood warnings on reducing damages [Molinari et al., 2013]. In order to 

evaluate FEWS’ capacity to reduce damages, flood forecasting systems performance must be 

evaluated as well, because expected damages vary along with the warning outcomes.  

This FEWS-project in Bolivia has been carried out by the consortium Witteveen+Bos (secretary), 

Royal HaskoningDHV, Deltares and the local organization Centro Agua Bolivia. The hydrological 

modeling framework wFlow [Schellekens, 2013] is being used for the Mamore River Basin. The model 

consists of 2 modules: a distributed hydrological model and the wflow_floodmap module which 

generates flood maps from the output of the hydrological model. In the Mamoré River basin project 

the wFlow_SBM model will be used as distributed hydrological model and input for the floodmap 

module [Deltares, 2012]. The wFlow_SBM is based on the hydrological tool TOPOG [Silberstein, 

1999]. TOPOG is a physically-based, distributed parameter, hydrological model. The wflow_SBM 

model is used to simulate discharges at several locations of the river Rhine [Schellekens, 2013]. 

During the FEWS project in Bolivia the curiosity arose how a semi-distributed hydrological model like 

HBV [Lindström et al, 1997] will perform in forecasting the discharge in this basin area. Partly due to 

the knowledge of and experience with the HBV-model within the Water Engineering and 

Management department of the University of Twente, the decision was made to use the HBV model 

for forecasting discharges in the Mamoré River basin as well.  

The HBV-model is a conceptual rainfall-runoff (CRR) model which uses daily precipitation, daily mean 

temperature and potential evapotranspiration as input and daily discharge as output.  A large 

number of applications, under various physiographic and climatological conditions, has shown that 

its structure is very robust and surprisingly general, in spite of its relative simplicity [Seibert, 1999; 

Lidén et al., 2000].  

CRR models are normally run with point values of precipitation as primary input data and produce 

mean basin values of actual evapotranspiration, soil-moisture, runoff generation etc. In regions 

where precipitation data series are available but runoff data are scarce, CRR models are essential 

tools. This is a common situation in many developing countries, countries with a large need of 

developing their infrastructure and water resources, like Bolivia. In the past, only for a small basin in 

Bolivia, Locotal, the HBV-model has been used in a study for discharge simulation [Lidén et al., 2000].  

1.3 Objective and research questions 
The aim of this research is to set up and evaluate the hydrological HBV-model to simulate discharges 

and forecast floods of the Mamoré River at the city of Trinidad. This to be able to warn the people in 

the area when Mamoré River water level will reach alarming levels at Trinidad, so the people can 

evacuate and take action to limit the flood damage.  
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To achieve the research objective the following questions need to be answered within this research: 

1. What is the best HBV configuration for the Mamoré River basin given the available data?  

2. How well does the HBV-model perform in simulating discharges with the available data for 

the Mamoré River basin? 

3. How well does the HBV model perform in forecasting floods of the Mamoré River at Trinidad? 

1.4  Research model and reading guide 
To fulfil the research goal and to answer the research questions the following steps need to be 

executed.  

Step 1: This study starts with analyses of the data and the study area. This in order to obtain the 

input data for the HBV model and to determine the sub basins. After these analyses, the HBV-model 

is set up by the selection of the model routines and connection of the sub basins. This is done with 

the knowledge from previous research in the literature and the provided data from the Bolivian 

partners within the consortium.  When the HBV model is set up, the optimum parameter set values 

are determined for each sub basin. This is done by the execution of a calibration procedure. This 

procedure starts with the selection of the model parameters to be calibrated and from previous 

research the parameter value ranges are obtained. Then the calibration period and validation period 

are defined and for both sub basins separately, the objective functions are selected and the first 

calibration run is executed. With the outcome of the first calibration step, a sensitivity analysis is 

executed in order to select the parameters for which the model objective function is most sensitive. 

The sensitivity analysis is executed for each sub basin separately. The parameters for which the 

model is most sensitive are calibrated in the second and final calibration step where parameters for 

which the model is less sensitive have default values.  

Step 2: After the final calibration step, the optimum parameter set is obtained and the model is run 

for the validation period in order to see how well the model performs for another period. 

Step 3: When the calibration and validation procedures are finished, the forecasting procedure is 

executed. From the final calibration run empirical relations are obtained of the fast and slow 

components of the total runoff. These empirical relations are used for updating the model storages 

in the forecasting procedure. The results of the forecasting procedure are discussed by comparing 

discharges of the forecasting days 1 to 10 days ahead and by comparing them with the simulated 

discharges.   

When the three steps are executed, conclusions are drawn and recommendations for further 

research are given.  

The structure of the steps described above is shown in the schematization of figure 1.2. 
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Figure 1.2: Schematization of the research model of this study; step 1 is represented in blue, step 2 in green and step 3 in 

orange.  

Chapter 2 contains a description of the study are and a data analysis. In chapter 3 of this report the 

research methodology is described including the choices for the HBV model, the consecutive steps of 

the calibration procedure, validation and forecasting procedure. The results are presented in chapter 

4 together with some discussion of the results. Finally, in chapter 5 the answers to the research 

questions are given by the conclusions together with recommendations for further research.  
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2 Study area and data 
This chapter contains a description of the study area, section 2.1, and a data analysis in section 2.2. 

2.1 Study area 

Location and topography  

The Mamoré River basin is located in Bolivia and for a small part in Brazil, within latitudes -10° to -20° 

S and longitudes within -62° to -66° W. The Mamoré River drains to the Madeira River, a tributary of 

the Amazon River, on the Brazilian-Bolivian border in the North of Bolivia. The Mamoré River basin 

drains an area of approximately 240*103 km2, which is in the same order of magnitude as the Rhine 

basin, covering about a quarter of the area of Bolivia. The elevation of the Mamoré River basin 

ranges from ± 4500 m in the southwest at the edge of the Bolivian plateau to 110 m at the 

confluence with the Madeira River in the North. 

 

 Figure 2.1: Elevation map of Bolivia with the borders of the Mamoré River basin on the left and the Amazon basin with 

its tributaries including Madeira and Mamoré on the right [QGIS data provided by Centro Agua Bolivia]. 

Climate 

The climate regime in the Mamoré River basin varies from a tropical to semi-arid climate according to 

the Köppen-Geiger climate classification [Peel et al., 2007], see figure 2.6. One of the main cities in 

the basin area is Trinidad (for location, see figure 2.7) with an annual mean precipitation of 1914 mm 

and a mean temperature of 25.5oC. The fluctuations in temperature are low. A wet season from 

November till March is distinguished (see figure 2.2). The annual mean temperatures vary from 10oC 

in the southwest close to the plateau to 27oC in the north of the basin. With an exception of a small 

region near the plateau, the annual mean temperature of the basin is above 20oC, shown in figure 

2.3. The annual mean precipitation varies from 500 mm/year in the south to >5000 mm/year in the 

middle of the basin, as seen in figure 2.4.  
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Hydrology  

The Mamoré River basin is a sub basin of the Amazon basin. South of the Mamoré basin, the Del 

Plato basin is located and to the west is the Altiplano basin, see figure 2.5.  Although the size of the 

basin is similar to the Rhine basin, the annual average discharge of the Mamoré River is over five 

times larger, namely 11*103 m3/s. The Mamoré River is a meandering river with many tributaries of 

which the largest one is the Rio Grande which lays in the southern part of the basin area.  

 

Figure 2.2: Average daily mean temperature and monthly mean precipitation for the period 1972-1996 for Trinidad 

[Centro de Investigaciones Fitosociologicas, 2012] 

  

Figure 2.6: Climate classification of Bolivia 
according to Köppen-Geiger [Peel et al.,2007] 

Figure 2.5: The locations of the major catchment areas of Bolivia 
with the Mamoré River basin as a sub basin of the Amazon basin 
and the Mamoré River with its main tributaries [QGIS data 
provided by Centro Agua Bolivia]. 

Figure 2.4: Annual mean precipitation lines of River Mamoré 
basin [QGIS data provided by Centro Agua Bolivia]. 

Figure 2.3: Annual mean temperature zones of the Mamoré 
River basin [QGIS data provided by Centro Agua Bolivia].        
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2.2 Data availability for calibration and validation period 
Hydrological simulations and forecasts rely on observations of meteorological gauging stations within 

or near the basin under investigation and observations of discharge measure stations. To be able to 

run the HBV model in the Mamoré River basin, observed measurements of precipitation and 

estimates of potential evapotranspiration are necessary input variables. Observations of discharge 

measuring stations are necessary to compare the simulated discharges with the observed discharges 

for the calibration and validation procedure. The observations need to be a continuous period as long 

as possible to be able to define a calibration and a validation period 

2.2.1 Meteorological input data 

2.2.1.1 Precipitation  

Daily values of precipitation have been obtained from meteorological stations within or in the vicinity 

of the river basin (see Appendix A) for the period of 1950 till 2013. The obtained data than have to be 

inter- and extrapolated on a spatial raster over the entire basin to generate a areal mean value. 

Given the available data, Thiessen polygons are used to obtain the areal mean value of precipitation. 

Appendix A shows that the meteorological stations are unevenly distributed over the basin area and 

section 2.1 shows that the Mamoré basin is a very diverse area concerning annual mean 

precipitation,  elevation and climate. Therefore, an analysis is executed to find an appropriate 

approach to calculate the areal mean precipitation, see Appendix B. 

2.2.1.2 Potential evapotranspiration 

There is a wealth of methods for estimating the potential evapotranspiration etp [mm]. Overviews of 

many of these methods can be found in the literature [Brutsaert, 1982; Jensen et al., 1990; Xu and 

Singh, 2001]. These methods can be classified into several categories, including: empirical, radiation 

based, temperature based, mass transfer and combination methods. The combination method 

[Penman, 1948] is usually considered as the most physically satisfying one by many hydrologists 

[Jensen et al., 1990; Shuttleworth, 1993; Beven, 2001; Lindström et al., 1997; Oudin et al., 2005]. This 

approach delivers a direct estimate for potential evapotranspiration, but demands detailed 

measurements of temperature, relative humidity, incoming global radiation, wind speed and 

sunshine duration [Gurtz et al., 1999]. However, data analysis shows that the meteorological stations 

only recorded daily temperature and precipitation, so a temperature-based method for estimating 

the etp can be used in this research. Given the available data, the temperature-based Thornthwaite 

method to estimate etp is used in this research and is described below. 

Thornthwaite method 

The Thornthwaite method [1948] is widely used for estimating potential evapotranspiration based on 

mean monthly temperature [Xu and Singh, 2001]. The method is based on an empirical relationship 

between potential evapotranspiration and the mean air temperature. While this method is not the 

most accurate one, and may lack theoretical basis, it can provide reasonably accurate estimates of 

potential evapotranspiration [Kang et al., 1999]. 

𝑒𝑡𝑃  =  0                                𝑖𝑓 𝑇 < 0℃       (2.1) 

𝑒𝑡𝑃 = 16Ld (
10𝑇𝑗

𝐼
)

𝑎

       𝑖𝑓 𝑇 ≥ 0℃         (2.2) 

 

Where etp is the monthly etp [mm];  
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Ld is the daytime length, it is time from sunrise to sunset in multiples of 12 hours;  

Tj is the monthly mean air temperature [oC] obtained by Thiessen polygons, using the same 

measuring stations used to obtain the areal mean precipitation; 

 𝑎 = 67.5 ∗ 10−8𝐼3 − 77.1 ∗ 10−6𝐼2 + 0.0179𝐼 + 0.49239;  

and I is the annual heat index, which is computed from the monthly heat indices: 

    𝐼 = ∑ 𝑖𝑗
12
𝑗=1    (2.3) 

 

Where ij is computed as 

 

    𝑖𝑗 = (
𝑇𝑗

5
)

1.514
   (2.4) 

 

In which i is the monthly heat index for month j,  

Tj is the mean monthly air temperature [°C] and 

  j is the number of months (1,…,12) 

2.2.2 Discharge stations 

The Mamoré River basin is a rather large basin area, so it is desirable to divide the basin into several 

sub basins. The Mamoré River basin can be divided into 3 sub-basins: Ichilo basin with outflow at 

Puerto Villarroel, Grande basin with outflow at Apabó and Rio Mamoré, with outflow at Camiaco, see 

Appendix A. The focus of this research is on about half the area of the Mamoré River basin (240 *103 

km2), see table 2.1. Data of these discharge stations is available for the period 7-8-2001 to 7-5-2009. 

The city of Trinidad, which is a major city in Bolivia, was affected by the 2007 floods, see figures 2.1 

and A.1. Long term data sets of observed discharges by discharge measuring stations at Trinidad are 

absent. Therefore, the simulation and forecasts of discharges at Camiaco, which is about 50 km 

upstream of the city of Trinidad, is the goal of this research.  

Table 2.1: Areas of the sub-basins and the cumulative area of the total study area [QGIS data provided by Centro Agua 

Bolivia; Rodal, 2008] 

 

 

 

Appendix B shows an analysis to find out which approach use to determine the mean areal 

precipitation. This analysis showed the poor quality of the data of the sub basin Ichilo and the choice 

is made to redistribute the area of the Mamore river basin into two sub basins: Grande and Mamore 

which includes the former sub basin Ichilo, see figure 2.7.  

Sub basin Area [*103 km2] Area cumulative [*103 km2] 

Grande 53.3 53.3 

Ichilo 7.9 7.9 

Rio Mamoré 61.4 122.6 
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Figure 2.7: Map of the Mamoré River basin, Mamoré River and tributaries, sub basins and their discharge stations, 
Meteorological measuring stations and the main cities of Bolivia.  
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3 Methodology 
This chapter describes the various steps undertaken and choices made in this study. First, in section 

3.1, the hydrological model HBV is described. Section 3.2 explains the steps to be taken in the 

calibration and validation procedure. Finally, in section 3.3, the flood forecasting, an updating 

procedure and evaluation of flood forecasting are described.  

3.1 HBV model 
The HBV-model is introduced and briefly described by its structure and applications in section 3.1.1. 

In section 3.1.2. the model is described more in detail by explaining its routines. Section 3.1.3 gives 

an overview of the model parameter and sections 3.1.4 and 3.1.5 describe the connection of the two 

sub basins. 

3.1.1 Model  structure and applications 

The hydrological model used in this study is the HBV model, developed in the early 70’s of the last 

century by the Swedish Meteorological and Hydrological Institute (SMHI). The HBV model is named 

after the abbreviation of Hydrologiska Byråns Vattenbalansavdelning, a former section of the SMHI.  

It is a conceptual rainfall-runoff model and different model versions of HBV have been applied in 

more than 60 countries all over the world. It has been applied to countries with highly different 

climatic conditions and highly different basin area sizes [Perrin et al, 2001]. The HBV-model has also 

been applied in Bolivia for a small sub-basin (200 km2) of the Mamoré River basin in a study by Lidén 

et al. [2000].  

The reasons the HBV model is chosen for this study are first because it is a proven model and has 

been in use for a long time. Since its development, multiple revisions and adjustments have been 

made resulting in the HBV-96 model [Lindström et al., 1997]. It has been applied to many basins and 

provided good results in most applications [Seibert, 2005]. Second, the model needs a moderate 

amount of input data to generate the output of the model. The input data are easily to obtain which 

makes this study feasible. Further, the HBV model has been applied at the University of Twente 

before, thus experience with the model  is available [Booij, 2002; Booij & Krol, 2010; Demirel et al., 

2013; Akhtar et al., 2008; Deckers et al., 2010; Knoben, 2013; Tillaart, van der, 2010].  

The HBV model generates daily discharges as output and uses daily precipitation, temperature and 

potential evapotranspiration as input. Every time step the water balance of the basin is calculated. It 

is a conceptual hydrological model, which means it attempts to cover the most important runoff 

generating processes using a simple and robust structure, and a small number of parameters [Abebe 

et al., 2010]. The model parameters do not directly represent physical properties. That is why model 

parameters cannot be measured in the field. The model parameters, which represent some basin 

characteristics, are determined by calibration of the model.  

The HBV model can be used as a semi-distributed or lumped model [Lidén et al., 2000; Lindström et 

al, 1997]. A semi‐distributed model is used if a basin can be separated into a number of sub-basins 

with different characteristics in for example elevation and vegetation. A lumped model does not take 

into account the spatial variability of processes, input, boundary conditions and watershed geometric 

characteristics [Singh, 1995]. As a result of data analysis, see section 2.2, a semi-distributed model 

with two sub basins has been used in this study. The HBV version used in this study is the by Knoben 

[2013] adjusted version applied by Tillaart [2010], which is a Matlab implementation of the HBV-15 
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model developed in Fortran by Booij [2002]. Individually sub basins are modeled with the HBV-96 

model [Booij, 2005]. In this study two sub basins are considered: Grande and Mamoré. Further some 

other adjustments made to the model are considered in section 3.1.4 and 3.1.5. 

3.1.2 Model routines 

In this study, the model uses three storage boxes, connected by various fluxes.  These storage boxes 

and fluxes are described in sections 3.1.2.1 and 3.1.2.2 per routine. For each sub basin the HBV 

model is run separately. Model input consists of time series of daily precipitation P [mm] and daily 

potential evapotranspiration etP [mm].  In this study the precipitation routine has not been taken into 

account, because snowfall rare phenomenon in the study area. The model calculates all fluxes and 

storages terms in unit [mm] with a daily time step. Model output is a time series of simulated mean 

daily discharge Qsim [m3/s], converted from the daily total runoff flux [mm]. The routines, fluxes, 

parameters, input and output of the HBV model used in this study are shown in figure 3.1 in a 

schematization. 

 

Figure 3.1: Schematization of the HBV model used in this study with in red the eight model parameters, the arrows 

represent the fluxes, the three black outlined boxes represent the three model routines used in this study. The two green 

boxes are the model input and the red box is the model output.  

3.1.2.1 Soil moisture routine 

The soil moisture accounting of the HBV model is based on a modification of the bucket theory in 

that it assumes a statistical distribution of storage capacities in a basin [Lindström et al., 1997]. This is 

the main part controlling runoff formation. Water enters the soil moisture routine from the 

precipitation P [mm] via infiltration and from the upper response box via capillary rise qc [mm]. 

Water from precipitation is divided into infiltration qin [mm] into the soil moisture box SSM [mm] and, 

in case of saturation of the soil moisture box,  direct runoff qd [mm] into the upper response box:  
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𝑞𝑖𝑛(𝑡) = 𝑃(𝑡) − 𝑞𝑑(𝑡)                 (3.1) 

𝑞𝑑(𝑡) = 𝑞𝑖𝑛(𝑡) + 𝑆𝑆𝑀(𝑡) − 𝐹𝐶             (3.2) 

Where SSM [mm] is the soil moisture storage and FC [mm] is the field capacity, the maximum 

SSM. 

Capillary rise qc [mm] from the upper response box replenishes soil moisture storage, providing that 

the soil moisture storage is not yet saturated: 

𝑞𝑐(𝑡) = 𝐶𝐹𝐿𝑈𝑋 ∗
𝐹𝐶 − 𝑆𝑆𝑀(𝑡)

𝐹𝐶
          (3.3) 

Where CFLUX is the maximum rate of capillary rise [mm d-1]. 

The soil moisture storage releases water as seepage, recharge qr [mm], into the upper response box 

and actual evapotranspiration eta [mm], which leaves the model completely: 

𝑞𝑟(𝑡) = (
𝑆𝑆𝑀(𝑡)

𝐹𝐶
)

𝐵𝐸𝑇𝐴

∗ 𝑞𝑖𝑛(𝑡)            (3.4) 

𝑒𝑡𝑎(𝑡) = 𝑒𝑡𝑝(𝑡) ∗ (
𝑆𝑆𝑀(𝑡)

𝐿𝑃 ∗ 𝐹𝐶
)     𝑖𝑓 𝑆𝑆𝑀(𝑡) < 𝐿𝑃 ∗ 𝐹𝐶            (3.5) 

𝑒𝑡𝑎(𝑡) = 𝑒𝑡𝑝(𝑡)                              𝑖𝑓 𝑆𝑆𝑀(𝑡) ≥ 𝐿𝑃 ∗ 𝐹𝐶                       

Where BETA is a non-linearity parameter [-] (BETA > 1) and LP a factor limiting potential 

evapotranspiration [-] (0 < LP < 1). 

This routine includes three parameters, BETA, LP and FC. The parameter BETA controls the 

contribution to the response function or the increase in soil moisture storage from each millimeter of 

rainfall. The parameter LP is a soil moisture value above which evapotranspiration reaches its 

potential value. The parameter LP is given as a fraction of FC [Seibert, 1999].  Another parameter, 

CFLUX, is the maximum capillary flow from the upper response box to the soil moisture box. 

3.1.2.2  Runoff generation routine 

The runoff generation routine is the response function which transforms excess water from the soil 

moisture zone to runoff. The function consists of one upper, non-linear, and one lower, linear, 

reservoir [Lindström et al., 1997]. These are the origin of the quick and slow runoff components of 

the hydrograph. 

Fast runoff routine 

The fast runoff routine is linked to the upper response box which contains the recharge form the soil 

moisture box and direct runoff from precipitation and holds the surface water storage SSW [mm]. 

Three outflows exits; capillary transport to the soil moisture box, percolation PERC [mm d-1] into the 

lower response box and fast runoff of the model qf [mm]:  

𝑞𝑓(𝑡) = 𝑘𝐹 ∗ 𝑆𝑆𝑊(𝑡)1+𝐴𝐿𝐹𝐴             (3.6) 

 Where kF is the fast runoff parameter [d-1] and ALFA is a non-linearity parameter [-] 
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PERC is not expressed as equation, but rather calibrated as a model parameter. 

Slow runoff routine 

The slow runoff routine is linked to the lower response box which contains the ground water storage 

SGW [mm]. The ground water storage receives water via percolation and has a single outflow as slow 

runoff qS [mm]: 

𝑞𝑠(𝑡) = 𝑘𝑆 ∗ 𝑆𝐺𝑊(𝑡)             (3.7) 

Slow runoff and fast runoff together constitute the total runoff qt [mm] of the model: 

𝑞𝑡(𝑡) = 𝑞𝑓(𝑡) + 𝑞𝑠(𝑡)        (3.8) 

The runoff routine has two recession coefficients, namely kF and kS, a measure for non-linearity of 

slow flow in the upper response box ALFA and a percolation rate PERC from the upper to the lower 

response box.  

3.1.2.3 Changes in storage 

The storage terms are updated based on daily fluxes. Safeguards are included for cases where total 

outflow fluxes exceed the total of current storage and inflow fluxes. In such a case the storage term 

is set at zero and outflow flux is equal to storage + inflow fluxes, rather than letting it reach physically 

impossible negative storage values, which also prevents numerical issues in the model equations.  

Soil moisture storage: 

𝑆𝑆𝑀(𝑡 + 1) = 𝑆𝑆𝑀(𝑡) + 𝑞𝑖𝑛(𝑡) + 𝑞𝑐(𝑡) − 𝑞𝑟(𝑡) − 𝑒𝑡𝑎(𝑡)        ( 3.9) 

 Surface water storage: 

𝑆𝑆𝑊(𝑡 + 1) = 𝑆𝑆𝑊(𝑡) + 𝑞𝑑(𝑡) + 𝑞𝑟(𝑡) − 𝑃𝐸𝑅𝐶 − 𝑞𝑓(𝑡) − 𝑞𝑐(𝑡)     (3.10) 

 Ground water storage: 

𝑆𝐺𝑊(𝑡 + 1) = 𝑆𝐺𝑊(𝑡) + 𝑃𝐸𝑅𝐶 − 𝑞𝑠(𝑡)           (3.11) 

3.1.3 Model parameters 

The HBV model used in this study includes eight model parameters, as seen in figure 3.1 and 

described in the previous sections. An overview of the model parameters, their descriptions and 

units is shown in table 3.1. 
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Table 3.1: Overview of the eight model parameters with their descriptions and units.   

Parameter Description Unit 

FC Field capacity, maximum soil moisture storage [mm] 

BETA Non-linearity parameter [-] 

LP Factor limiting actual evapotranspiration [-] 

ALFA Non linearity parameter [-] 

kF Fast runoff coefficient [d-1] 

kS Slow runoff coefficient [d-1] 

PERC Rate of percolation [mm d-1] 

CFLUX Rate of capillary rise [mm d-1] 

 

3.1.4 Connection sub basins 

The observed discharge at Camiaco, the outflow of sub basin Mamoré, is the discharge generated in 

both sub basins. The discharge from the upstream basin Grande flows into the downstream basin at 

Abapó and then flows approximately 850 kilometers through sub basin Mamoré before it reaches the 

point of outflow at Camiaco. In order to calibrate the sub basin Mamoré, the discharge of the Grande 

basin, Qg, needs to be subtracted from the observed discharge at Camiaco, QobsM, to obtain the 

discharge generated in the Mamoré basin itself. Therefore the travel time of the discharge of Grande 

through the Mamoré basin needs to determined. Because not enough information is  available to 

calculate the travel time, it  is found by using the Pearson’s correlation coefficient.  

3.1.4.1 Pearson’s correlation coefficient 

The Pearson’s correlation coefficient  R is a measure of the strength and direction of a linear 

relationship between two variables giving a value between +1 and -1 inclusive, where 1 is total 

positive correlation, 0 is no correlation, and -1 is total negative correlation. R is defined as the 

covariance of the variables divided by the product of their standard deviations and the formula for R 

is: 

𝑅 =

∑ ((𝑄𝑜𝑏𝑠,𝐺(𝑡−∆𝑡)
− 𝑄𝑜𝑏𝑠,𝐺

̅̅ ̅̅ ̅̅ ̅̅ ) (𝑄𝑜𝑏𝑠,𝑀(𝑡)
− 𝑄𝑜𝑏𝑠,𝑀

̅̅ ̅̅ ̅̅ ̅̅ ))

√∑ ((𝑄𝑜𝑏𝑠,𝐺(𝑡−∆𝑡)
− 𝑄𝑜𝑏𝑠,𝐺

̅̅ ̅̅ ̅̅ ̅̅ )
2

) ∑ ((𝑄𝑜𝑏𝑠,𝑀(𝑡)
− 𝑄𝑜𝑏𝑠,𝑀

̅̅ ̅̅ ̅̅ ̅̅ )
2

)

      (3.12) 

𝑓𝑜𝑟  ∆𝑡 = 0, 1, 2, … , 40 

 

with: 

Qobs,G(t) is the observed mean daily discharge of sub basin Grande of time step t [m3/s] 

Qobs,M(t) is the observed mean daily discharge of sub basin Mamoré of time step t [m3/s] 

𝑄𝑜𝑏𝑠,𝐺
̅̅ ̅̅ ̅̅ ̅̅  is the average mean daily discharge of sub basin Grande [m3/s] 

𝑄𝑜𝑏𝑠,𝑀
̅̅ ̅̅ ̅̅ ̅̅  is the average mean daily discharge of sub basin Mamoré [m3/s] 

∆𝑡 is the lag time [day] 

The correlation between the discharge of the Grande and the discharge of the Mamoré is 

determined for the period for which discharge data are available. The correlation coefficients for a 

lag time of 0 to 40 days are calculated and presented in figure 3.2.  
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Figure 3.2: Correlation between observed discharge of Grande and Mamoré with in red the highest correlation with a lag 

time of 17 days. 

The optimum correlation coefficient is 0.484 corresponding to a lag time of 17 days, but the range of 

R is small. The assumption is made that peaks at Abapo show up at Camicao with floods in Mamoré. 

This correlation may be wake or peaks of Abapo may be completely dampened. 

This lag time corresponds to a mean velocity of 0.6 m/s over the length of 850 kilometers.  

The route of the runoff from Abapo (point of outflow of sub basin Grande) to Camiaco (point of 

outflow of sub basin Mamoré) can be divided into two parts: tributary Grande and Rio Mamoré. 

Figure 3.3 is a figure provided by the Bolivian partners of RHDHV. It shows the travel time of the main 

river Rio Mamoré. The Rio Mamoré part of the route is from Grande to Sécure. The travel time is 

1.28 days, over a distance is 95 km, giving a mean velocity of 0.86 m/s and is of the same magnitude 

as the 0.6 m/s mentioned before.  
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Figure 3.3: ‘Water Displacement’ of the Mamoré river with on the horizontal axis distance [km] and on the vertical axis 

time [days] [source: Rodal, 2008]. 

3.1.5 Reservoir 

When looking at the hydrograph of the discharges of both sub basins,  figure 3.5, it can be observed 

that the peak discharges of sub basin Grande exceeds the peak discharges of the outflow of the total 

basin. This looks controversial, but an explanation of this phenomenon can be that inundations take 

place within the sub basin Mamoré. In this study the assumption is made that this phenomenon 

occurs and this assumption is supported by inundation maps of floods in the past, like the 2007 

floods, see figure A.1. Therefore, a reservoir is added to the HBV model in sub basin Mamoré, to deal 

with the floods within the sub basin Mamoré due to the contribution of the discharge from sub basin 

Grande. When the discharge of the Grande exceeds a certain value, Qgmax, the surplus flows into the 

reservoir. The value of Qgmax is based on the information provided by the Bolivian partners of RHDHV. 

The value of Qgmax is determined to be 1.0*103 m3/s, which is the total capacity of the whole tributary 

Grande of the Mamoré river. River Grande originates in sub basin Grande and flows at Abapo into 

sub basin Mamoré and is there connected to the Mamoré River at last, see figure 3.6. The 

assumption is made that inundations occur in the sub basin Mamoré of tributary Grande.    
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Figure 3.4 Map of total basin Mamoré, with the sub basin Mamoré, sub basin Grande, trace of the river main Mamoré 

and main river Grande.  

If the discharge of the Grande is below Qgmax,  the reservoir will empty.  The assumption is made that 

the reservoir outflow, qR (t) behaves similar to the fast runoff component of the HBV model: qf. Thus 

a non-linear dependency with storage. Therefore, the formula of qR (t) is similar to the equation of qf 

and is as follows:  

𝑞𝑅(𝑡) =  𝑆𝑅(𝑡)1+𝐴𝐿𝐹𝐴 ∗ 𝑘𝑓       (3.13) 

With the same values 

qR is outflow of the reservoir [mm] 

SR is storage in the reservoir [mm] 

ALFA is the nonlinearity parameter [-] 

kf is the fast runoff coefficient of the fast runoff [-] 

t is the time [days] 

3.2 Calibration and validation 
To make a hydrological model ready to use in practice for a specific application, calibration of the 

model should be performed. Calibration is the process of searching for a parameter set which closely 

simulates the behaviour of the basin [Madsen et al, 2002]. The goal of the calibration procedure is to 

adjust the model parameters to decrease the difference between e.g. observed and simulated values 

of discharge for a certain period in time [Viviroli et al, 2009].   

The procedure to find the optimum parameter set in this study is Monte Carlo Simulation (MCS). 

MCS is a technique in which, through numerous model simulations, a best objective function value is 

sought by using randomly generated parameter values within a pre-defined model parameter range. 

Important aspects of MCS are the determination of prior parameter ranges (see section 3.2.1), the 
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determination of the calibration period (see section 3.2.2), the selection of the objective function(s) 

(see section 3.2.3), the selection of calibration parameters (see section 3.2.4) and the validation (see 

section 3.2.5) 

To be certain that the entire model parameter space is examined and to permit statistical treatment 

of the results, a sufficient number of runs should be executed [Booij & Krol, 2010]. The number of 

model simulations carried out in this study is 100,000. This number is limited because of the time 

consuming characteristics of this procedure. Shrestha et al. [2009] found that in case of using MCS 

for a HBV model with nine parameters, 10,000 simulations is a reasonable number for stable 

convergence of the MCS.  

Advantages of using MCS are that it is an easily understood and flexible method, which is very 

flexible and it can easily be extended and developed as required. Disadvantage of using MCS are that 

it is a time consuming process, compared to other methods and the calibration with other methods 

can be done more efficiently.  

3.2.1 Selection of parameter ranges 

Because the model parameters are not directly measurable, the first part of the calibration process is 

to estimate ranges of possible values for these parameters based on prior research. These estimated 

ranges of the model parameters are shown in table 3.2.  

Table 3.2: Ranges of the model parameters which are used in calibration process. Source: 
1
Demirel et al.(2013), 

2
Uhlenbrook et al. (1999), 

3
Deckers et al. (2010), 

4
Lidén and Harlin (2000), 

5
Knoben (2014). The range values with 

* 
are 

adjusted values of that source.  

Parameter Range  Unit 
 

MIN MAX  
1 FC 100 800 [mm] 
2 BETA 1 5 [-] 
1 LP 0.1 0.9* [-] 
3 ALFA 0* 2* [-] 
2,4 kF 0.0005 0.1 [d-1] 
2,4 kS 0.0005 0.1 [d-1] 
1 PERC 0 6 [mm d-1] 
5 CFLUX 0 4 [mm d-1] 

 

3.2.2 Calibration and validation period 

The available discharge and climate data for this basin have been analyzed during the data analysis, 

see section 2.2. In this analysis it has been determined that the total time period considered in this 

research is from 7-8-2002 till 7-5-2009. This time period is limited by the data of the discharge 

gauging stations. The period shows seven hydrological years, where the first four years (7-8-2002 to 

7-8-2006) are used for the calibration and the last three years (8-8-2006 to 7-5-2009) are used for the 

validation of the model, see the figure below.  
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 Figure 3.5: Hydrographs of the calibration and validation period of sub basins Grande and Mamoré.  

Because climatic data are available before this period, a warm up period of approximately 1.5 years is 

used from 1-1-2001 to the start of the calibration period. The warm up period of the validation is also 

from 1-1-2001 to the start of the validation period. This is a total warm up period of approximately 

5.5 years. 

3.2.3 Selection of objective functions 

For a proper evaluation of the calibrated model, it is necessary to translate the overall calibration 

objective into more operational terms: objective functions [Madsen, 2000]. The following four 

objectives are usually considered: (1) a good water balance, (2) a good overall agreement of the 

shape of the hydrograph, (3) a good agreement of the peak flows with respect to timing, rate and 

volume and (4) a good agreement for low flows. Since in the research the objective of model 

calibration is to forecast floods adequately, a good agreement of low flows is less important and 

therefore not taken into account. Examples of objective functions related to the objectives of 

Madsen are given below: 

3.2.3.1.1 Relative Volume Error [Madsen, 2000] 

With respect to the objective ‘a good water balance’,  the Relative Volume Error (RVE) is a commonly 

used objective function. Equation 3.14 represents RVE and is shown below: 

𝑅𝑉𝐸 =
∑ 𝑄𝑠𝑖𝑚,𝑖 −𝑛

𝑖=1 ∑ 𝑄𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

          (3.14) 

Where Qsim stands for simulated discharge, Qobs for observed discharge, i for the time step and n for 

the total number of time steps used during calibration. The value of RVE can vary between -∞ and ∞. 

The model performs best when a value of 0 is generated since no difference between total simulated 

and observed discharge occurs.  
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3.2.3.1.2 Nash-Sutcliffe Coefficient [Nash and Sutcliffe, 1970] 

Regarding the objective ‘good overall agreement of the hydrograph’, the Nash-Sutcliffe coefficient 

(NS) is the most widely used objective function in rainfall-runoff modeling. The Nash-Sutcliffe 

coefficient is shown below in equation 3.15:  

𝑁𝑆 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

2𝑛
𝑖=1

     (3.15) 

Where 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  represents the mean of the observed discharges and the other variables as defined 

before. It should be noted that NS emphasizes high flows because of the squaring of the difference 

with Qobs,i. The value of this objective function can vary between -∞ and 1, and the best model 

performance is when a value of 1 is generated. When a NS-value below 0 is generated, the mean 

observed discharge performs better compared to the simulated discharge, so in such a case the 

model should not be used.  

3.2.3.1.3 Nash-Sutcliffe coefficient for high flows (NSH) [Deckers, 2006] 

With respect to the objective ‘a good agreement of the peak flows with respect to timing, rate and 

volume’ several objective functions are used in the literature. One of them is the Nash-Sutcliffe 

coefficient for high flows and is described below.  

𝑁𝑆𝐻 = 1 −
∑  𝑄𝑜𝑏𝑠(𝑡𝑖) ≥ 𝑄ℎ𝑖𝑔ℎ

𝑛
𝑖 (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2

∑  𝑄𝑜𝑏𝑠(𝑡𝑖) ≥ 𝑄ℎ𝑖𝑔ℎ

𝑛
𝑖 (𝑄𝑜𝑏𝑠,𝑖 − 𝑄ℎ𝑖𝑔ℎ,𝑜𝑏𝑠,𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2      (3.16) 

The Nash-Sutcliffe coefficient for high flows is defined as the Nash Sutcliffe coefficient [Nash and 

Sutcliffe, 1970] but for discharge values above a selected high discharge threshold Qhigh. Where 

𝑄ℎ𝑖𝑔ℎ,𝑜𝑏𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean observed daily discharge above Qhigh. The value of  NSH can, like NS, vary 

between  -∞ and 1, and has an optimum value of 1. The thresholds Qhigh for sub basin Grande and 

Mamoré used in this study are 500 m3/s and 1,500 m3/s respectively.  These values are derived from 

the hydrographs of both basins, see figure 3.5, in a way that for each meteorological year the peak 

flows of the wet seasons are part of the calculation of NSH. 

In this research two different objective functions are used in the calibration process; one for the 

calibration of sub basin Grande and one for sub basin Mamore.  

For the upstream sub basin Grande it is preferred that the HBV model simulates the discharge as 

accurate as possible compared  to the observed discharge over the entire time period, because the 

outflow of the upstream basin is the inflow into the downstream basin. Thus, the objectives for the 

upstream sub basin are a good water balance and a good overall agreement of the shape of the 

hydrograph. Therefore, a multiple objective function Y  is used. Y is a function which combines the 

objective functions RVE and NS. The combined objective function Y is defined as [Akhtar et al., 2009]: 

𝑌 =
𝑁𝑆

1 + |𝑅𝑉𝐸|
     (3.17) 

The optimum value of NS is 1 and RVE has an optimum value of 0. This makes that the optimum value 

of Y is 1.  
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The downstream sub basin Mamoré has a different objective function compared to the upstream sub 

basin Grande. The objective for this sub basin is to find a good agreement of high flows with respect 

to timing, rate and volume and therefore NSH has been selected.  

3.2.4 Selection of calibration parameters 

Some parameters have a larger influence on the objective function and thus the model performance 

than other parameters. That is why these parameters need more attention in the calibration 

procedure. The calibration process is executed in two calibration steps: the first calibration and the 

final calibration. 

In the first calibration, eight model parameters are used to optimize the model for each sub basin 

separately. This is done by two MCSs: one for sub basin Grande and one for sub basin Mamoré, with 

100,000 runs each. Downstream sub basin Mamoré has to deal with the inflow of the discharge of 

upstream sub basin Grande. In order to calibrate sub basin Mamoré independently of the simulation 

of Grande, the observed discharge of Grande is used as the inflow into sub basin Mamoré, with a 

delay of 17 days (section 3.1.4), during the calibration process.  

In order to make the simulations realistic, the following selection of parameter sets is made. As 

mentioned before in section 3.1.2, the runoff generation routine of the HBV model consists of two 

components: fast runoff and slow runoff, which are generated in the fast and slow response box, 

respectively. The amount of fast runoff depends on the storage of the fast response box and two 

model parameters, kF and ALFA. The amount of slow runoff depends on the storage of the slow 

response box and one model parameter, kS. By executing a Monte Carlo Simulation the random 

chosen values of the parameters of the model can be generated in a way that the slow runoff will 

flow faster than the fast runoff and have a larger contribution during floods. Realistically, the slow 

runoff coefficient, kS, needs to be smaller than the so called ‘effective fast runoff coefficient’, kF-eff.  

The formula of the slow runoff can be rewritten into an equation for kS: 

𝑞𝑠 = 𝑆𝐺𝑊 ∗ 𝑘𝑆          (3.18)           →     𝑘𝑆 =
𝑞𝑠

𝑆𝐺𝑊
          (3.19)  

The formula of the fast runoff is: 

𝑞𝑓 = 𝑆𝑆𝑊
1+𝐴𝐿𝐹𝐴 ∗ 𝑘𝐹                        (3.20)  

The effective kF, kF-eff, is defined as the ratio of fast runoff qf and surface water storage SSW similar to 

kS  and combined with the equation 3.20of qf it can be rewritten as:  

 𝑘𝐹−𝑒𝑓𝑓 =
𝑞𝑓

𝑆𝑆𝑊
= 𝑘𝐹 ∗ 𝑆𝑆𝑊

𝐴𝐿𝐹𝐴         (3.21) 

So, kF-eff depends, besides two model parameters, on the surface water storage, SSW, which varies 

over time. Therefore, kF-eff is determined for each day the discharge is above a certain level, when the 

fast runoff component of the discharge should be the major contributor to the total discharge, 

compared to the slow runoff component. The boundary levels of the discharge of sub basin Grande 

and sub basin Mamoré above which kF-eff is determined are 500 m3/s and 1,500 m3/s respectively. 

These discharge thresholds are equal to the discharge thresholds used to calculate NSH. Then the 

mean value of kF-eff is determined for each run of the Monte Carlo Simulation for each sub basin.  
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The result of MCS is a list of parameter sets with corresponding values of the objective functions and 

mean kF-eff . The parameter sets for which the value of the mean kF-eff is larger than the value of the ks 

are selected for further analysis, the others are discounted.  

To select the most influential parameters to be calibrated in the final calibration, a univariate 

sensitivity analysis is performed. This means that the values of the optimum parameter set are varied 

once at a time while other parameter values are kept at a constant value. The parameters are all 

varied with the same factor over the scaled parameter values: 0.5, 0.75, 1.25 and 1.5. Then, a 

selection is made of the 4 or 5 most sensitive parameters for each sub basin which are used in the 

final calibration. The values of the optimum parameter set from the first calibration are used in the 

final calibration as default values for the less sensitive parameters. After the first calibration, the 

parameter ranges of the best performing parameter sets are examined, to check whether the ranges 

tend towards a cert value and should be adapted in the final calibration.  

Next the final calibration is executed and, like after the first calibration, a selection is made of the 

parameter sets for which the value of kF-eff is larger than the value of parameter kS.  

3.2.5 Validation procedure 

After the final calibration step, the validation procedure is executed. The goal of the validation 

procedure is to see whether the model is capable of making accurate predictions for other conditions 

then during the calibration period. The final calibration step results in optimum parameter sets for 

the objective functions for sub basin Grande and sub basin Mamoré. These parameter values are 

used for a period other than the calibration period, the validation period, see section 3.2.2. The 

evaluation of the performance of the calibrated HBV-model for the validation period is similar to the 

evaluation of the results of the calibration procedure. 

3.3 Forecasting 
In this study the focus is on flood forecasting, in order to be able to warn the people when a flood 

will occur. The meteorological input data in flood forecasting are usually based on ensemble  

weather predictions. In this study, perfect weather forecasts are used to predict floods. This means 

that at the forecast issue day, the precipitation and daily mean temperatures for the coming days are 

not based on weather forecasts, but are the measured precipitations and temperatures at the 

meteorological stations in the field. This, because no historical records of (ensemble) weather 

forecasts are available.  

For flood forecasting, the optimized parameter set obtained during the calibration process, is used to 

forecast the discharge for the validation period for 1 up to 10 days ahead.  

3.3.1 Updating 

Model predictions of runoff from a basin often differ from the observations [Wöhling et al., 2006]. By 

following an updating procedure the observations of the state of the basin up to the current time are 

used to improve the model prediction performance. The most natural method of forecast updating is 

state correction in which a direct or related measurement of a model state is used to adjust its value 

so as to improve forecast performance [Moore et al., 2005]. In this study, the ground water storage 

and the reservoir storage are updated on the forecast issue day, based on the observed discharge of 

that day. First the calibrated model is run for the calibration period with its best performing 

parameter set and the model state is analyzed. This run is called the ‘reference run’ in other recent 
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works [Fundel and Zapp, 2011; Roulin, 2007; Roulin and Vannitsem, 2005]. Empirical relations 

between the simulated discharge from sub basin Mamoré and the fast runoff, slow runoff and 

outflow out of the reservoir for the calibration period are used to divide the observed discharge 

between the fast runoff, slow runoff, the reservoir outflow and the discharge originating from sub 

basin Grande for the validation period. Equation 3.22 shows the composition of the observed 

discharge at Camiaco and the empirical relations are shown in equation 3.23 to 3.25.  

𝑞𝑠𝑖𝑚(𝑡) = 𝑞𝑓(𝑡) + 𝑞𝑠(𝑡) + 𝑞𝑅(𝑡) + 𝑞𝐺𝑟𝑎𝑛𝑑𝑒 (𝑡 − 17)       (3.22) 

With qobs is the observed mean daily discharge measured at Camiaco [mm], 

qf is the daily fast runoff from the surface water of sub basin Mamoré [mm], 

qs is the daily slow runoff from the ground water of sub basin Mamoré [mm], 

qR is the daily outflow of the reservoir [mm], 

qGrande is the daily discharge from sub basin Grande with a maximum of qgMAX, see section 

3.1.5. 

 

The functions kqf , kqs and kqR  of the relations between qf, qs and qR respectively, and qsimM are 

determined with the data of the calibration period. Where qobsM is the daily discharge at Camiaco 

minus the contribution of the outflow of sub basin Grande, which has an approximated travel time of 

17 days, see section 3.1.4: 

𝑞𝑠𝑖𝑚𝑀(𝑡) = 𝑞𝑠𝑖𝑚(𝑡) − 𝑞𝐺𝑟𝑎𝑛𝑑𝑒(𝑡 − 17)         (3.23) 

 

The fractions of qf, qs and qR of qsimM are plotted against qsimM. The equations of the three trend lines 

through those three scatter plots are the functions kqf, kqs and kqR  which are functions of qobsM. In the 

updating procedure, the qf, qs and qR are updated by using the functions kqf, kqs and kqR as follows: 

 

𝑞𝑓(𝑡) = 𝑞𝑜𝑏𝑠𝑀 ∗ 𝑘𝑞𝑓              (3.24) 

𝑞𝑠(𝑡) =   𝑞𝑜𝑏𝑠𝑀 ∗ 𝑘𝑞𝑠             (3.25) 

𝑞𝑅(𝑡) = 𝑞𝑜𝑏𝑠𝑀 ∗ 𝑘𝑞𝑅                (3.26) 

 With   

𝑞𝑜𝑏𝑠𝑀(𝑡) = 𝑞𝑜𝑏𝑠(𝑡) − 𝑞𝐺𝑟𝑎𝑛𝑑𝑒(𝑡 − 17)         (3.27) 

The updated qf, qs and qR are used to update the surface water storage SSw, ground water storage SGW 

and reservoir storage SR are updated as follows: 

𝑆𝑆𝑊(𝑡 + 1) = (
𝑞𝑓(𝑡)

𝑘𝐹
)

(1/(1+𝐴𝐿𝐹𝐴))

      (3.28) 

𝑆𝐺𝑊(𝑡 + 1) =
𝑞𝑠(𝑡)

𝑘𝑆
                                 (3.29) 

𝑆𝑅(𝑡 + 1) =
𝑞𝑅(𝑡)

𝑘𝐹

(
1

1+𝐴𝐿𝐹𝐴
)

                   (3.30) 
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3.3.2  Evaluation of forecasting 

A variety of verifications and skill assessments are reported in the literature to evaluate the 

performance of forecasting [Cloke & Pappenberger, 2008; Roulin, 2007; Bartholmes et al, 2009]. The 

goodness of forecasts can be evaluated against its quality: the correspondence between the forecast 

and observations [Murphy, 1993; Molinari et al., 2013]. Most forecast models are probabilistic, 

because they use meteorological ensemble forecasts for producing predictions. This study uses 

perfect forecasts as input of the hydrological model, and thus is deterministic. The fact that the 

forecasts are deterministic, the different aspects (or attributes) to describe forecast quality is limited. 

The aspects to describe the forecast quality used in this study are accuracy, skill and reliability. 

According to Murphy [1993] these aspects are defined as: 

- Accuracy: the level of agreement between the forecast and observations (the difference 

between the forecast and the observation is the error: the lower the errors, the greater the 

accuracy).  

- Skill: Accuracy of forecasts of interest relative to accuracy of forecasts produced by stand of 

reference.  

- Reliability: The average agreement between forecast values and observed values.  

The overall accuracy of the forecasts in this study is described by the NS, RVE, Y and NSH. Skill 

measures that can be determined with a deterministic model are commonly calculated from  

contingency tables. Contingency tables are used  to assess the performance of flood forecasts. 

Contingency tables can be used to estimate the utility of hydrological forecasts and  indicate the 

forecast models ability to correctly anticipate the occurrence or non-occurrence of preselected 

events [Martina et al., 2005]. The four possible cases are given in a two-by-two contingency table, 

table 3.3.  

In this study two types of events are taken into account and are defined as: 

- Event type 1: ‘the exceedance of a discharge threshold at time step t’ 

- Event type 2: ‘the exceedance of a discharge threshold at time step t, with the condition that 

at time step t-1 this threshold was not exceeded’.  

Appendix C shows characteristics of the Mamoré river and its tributaries. The maximum capacity of 

the river Mamoré at Camiaco, the point of outflow of the basin considered in this study, is 3.9*103 

m3/s. In this study a threshold for a flood is 3.9*103 m3/s at Camiaco. Next to the flood threshold, 

another threshold is considered in this study: high water threshold with a value of 3.0*103 m3/s, 

which is the q80 of the calibration period. Event type 1 focuses on every time step that the discharge 

exceeds the discharge threshold and event type 2 focuses on start of an exceedance of the discharge 

threshold, i.e. the beginning of a flood or high water.  

Thus, four events are taken into account in this study: event type 1 with the flood threshold, event 

type 1 with the high water threshold, event type 2 with the flood threshold and event type 2 with the 

high water threshold.  
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Table 3.3: Two-by-two contingency table for the assessment of a threshold based forecasts 

 

  

 

 

With a total number of n observations, one can distinguish the total number of e event occurrences 

and non-occurrences e’ and the total number of w flood warnings and no-warnings w’. Four 

outcomes are possible: a hit, when an event occurred and a warning was issued; a miss, when an 

event occurred but no warning was issued; a false alarm, when a warning was issued, but an event 

did not occur; and a correct rejection, when no event occurred and no warning was issued (with h 

the total number of hits, m the total number of misses, f the total number of false alarms and c the 

total number of correct rejections). 

Next to the overall accuracy of the forecast in terms of NS, RVE, Y and NSH, the accuracy A can also be 

determined from the contingency table by dividing the sum of the hits and correct rejections by the 

total observations, see eq. 3.31: 

𝐴 =
ℎ + 𝑐

ℎ + 𝑐 + 𝑚 + 𝑓
=

ℎ + 𝑐

𝑛
        (3.31) 

The accuracy A value is ranges from 0 to 1, with 1 as the optimum value of A.  

The skill of a forecasting model can be represented on the basis of the hit rate H (eq 3.30) and the 

false-alarm rate F (eq 3.31) [Cloke and Pappenberger, 2009; Martina et al., 2005]. These ratios are 

also known as the probability of detection and the probability of false detection in other hydrological 

studies [Velázquez et al., 2010]. H and F indicate, respectively, the proportion of events for which a 

correct warning was issued and the proportion of non-events for which a false warning was issued by 

the forecast model. Both ratios can be easily evaluated from the contingency table [Mason, 1982; 

Demirel et al., 2013].   

𝐻 =
ℎ

ℎ + 𝑚
=   

ℎ

𝑒
        (3.32) 

𝐹 =  
𝑓

𝑐 + 𝑓
=  

𝑓

𝑒′
          (3.33) 

Hit rate H and false-alarm rate F have a value ranging between 0 and 1, with 1 as the optimum value 

of H and 0 as the optimum value of F.  

The reliability of a forecasts of a forecasting model can be represented by the hit ratio H’ (eq 3.34), 

which should not be mistaken with the previously discussed hit rate,  and conditional miss rate F’ (eq 

3.35) [Stephenson, 1999]. Where H’ is the proportion of warnings for which an event occurred and F’ 

is the proportion of forecasted non-events for which an event occurred. H’ is the probability of a 

correct warning and F’ is the probability of an incorrect non-warning, i.e. the probability of a miss.  

 Forecasts 

Observations Event (W) Non-event (W’) Total 

Event (E) h m e 

Non-Event  (E’) f c e’ 

Total w w’ n 
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𝐻′ =
ℎ

ℎ + 𝑓
=

ℎ

𝑤
          (3.34) 

𝐹′ =
𝑚

𝑚 + 𝑐
=

𝑚

𝑤′
          (3.35) 

The hit ratio H’ and miss rate F’ have a value ranging between 0 and 1, with 1 as the optimum value 

of H’ and 0 the optimum value of F’. The probability of a correct warning, F’, should be at least larger 

than the base rate B (eq 3.36), which is an estimate of the probability that the event will occur 

[Stephenson, 1999].  

𝐵 =
ℎ + 𝑚

ℎ + 𝑚 + 𝑓 + 𝑐
=  

𝑒

𝑛
         (3.36) 
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4 Results & Discussion 
The HBV model is run as described  in the methodology in section 3. The results of the first 

calibration (section 4.1), sensitivity analysis (section 4.2), final calibration (section 4.3), validation 

(section 4.4) and forecasting (section 4.5) are shown and discussed in this chapter.  

4.1 First calibration step 
First a Monte Carlo Simulation of 100,000 runs of the HBV-model is executed by varying eight 

parameters for both sub basins. The results of the first calibration of sub basin Grande and Mamoré 

are shown below. Figure 4.1 shows as a function of each parameter for the Grande the combined 

objective function value Y. Figure 4.2 shows as a function of each parameter for the Mamoré the 

combined objective function value NSH.  Only parameter sets with an objection function value above 

zero are shown and the results for which kf-eff  < ks are left out. 

 

Figure 4.1: Scatter plot of Y-values as a function of parameter values for the Grande for the 1
st

 calibration step. Only Y-

values above 0 are shown. 

 

Figure 4.2: Scatter plot of NSH values as a function of parameter values for the Mamoré for the 1
st

 calibration step. Only 

Y-values above 0 are shown. 



Page | 47  
 

Of the 100,000 runs for both sub basins, only 1.9 % and 1.2% of the parameter sets for sub basin 

Grande and sub basin Mamoré respectively  correspond to an objective function value above 0. Of 

the parameter sets which have a value above zero, the parameter sets which meet the criterion kF-eff 

> kS are selected. This results in 1,3% and 0.2% of the 100,000 runs for Grande and Mamoré 

respectively, see table 4.1.  

Table 4.1: Number of runs of the total of 100,000 runs, which satisfy criterion (1) an objective function value above 0 and 

(2) both criterion (1) and a kF-eff  value larger than the kS –value. Between brackets the corresponding percentages of the 

total number of runs. 

 Criterion 1 Criterion 2 

 Objective Function Objective function > 0 and kF-eff > kS 

 Y-value > 0 NSH-value > 0  

1
st

 calibration Grande 1,881 (1.9 %) - 1,295 (1.3%) 

Final calibration Grande 30,245 (30 %) - 30,245 (30 %) 

1
st

 calibration Mamoré - 1,196 (1.2 %) 248 (0.25 %) 

Final calibration Mamoré - 4,068 (4.1 %) 989 (0.99 %) 

 

Table 4.2 shows the results of the first calibration step of Grande quantitatively with the ranges of 

parameter values corresponding to the selection of runs with a Y-value:  > 0.2 and > 0.0. Table 4.3 

shows the results of the 1st calibration of Mamoré quantitatively with the ranges of parameter values 

corresponding to the selection of runs with a NSH-value:  > 0.5 and > 0.0.  This information gives 

insight whether the predefined parameter ranges were wide enough and whether it should be 

adapted for the final calibration step, see section 4.2. 

Table 4.2: Results of the parameter ranges of 1st calibration of Grande for parameters sets with a Y-value >0 and >0.2. 

Parameter  range:   FC 

[mm] 

BETA 

[-] 

LP 

[-] 

ALFA 

[-] 

KF 

[d-1] 

KS 

[d-1] 

PERC 

[mm d-1] 

CFLUX 

[mm d-1] 

min 100 1 0.1 0 0.0005 0.0005 0 0 

No.  of sets max 800 5 0.9 2 0.1 0.1 6 4 

39 min [Y > 0.2] 381 1.1 0.11 0.0 0.0018 0.0005 0.8 0.1 

 max [Y > 0.2] 799 4.8 0.79 1.2 0.10 0.09 5.0 4.0 

1,295 min [Y > 0.0] 252 1.0 0.10 0.0 0.0005 0.0005 0.1 0.0 

 max [Y > 0.0] 800 5.0 0.85 1.9 0.10 0.10 6.0 4.0 

 

Table 4.3: Results of the parameter ranges of 1st calibration of Mamore for parameters sets with a NSH-value >0 and 

>0.5. 

Parameter range   

 

FC 

[mm] 

BETA 

[-] 

LP 

[-] 

ALFA 

[-] 

KF 

[d-1] 

KS 

[d-1] 

PERC 

[mm d-1] 

CFLUX 

[mm d-1] 

 min 100 1 0.1 0 0.0005 0.0005 0 0 

No. of sets max 800 5 0.9 2 0.1 0.1 6 4 

12 min [NShigh > 0.5] 304 1.0 0.54 0.02 0.0036 0.0017 0.0 0.0 

 max [NShigh > 0.5] 751 3.6 0.90 0.33 0.0157 0.0169 5.9 2.6 

248 min [NShigh > 0.0] 301 1.0 0.11 0.00 0.0015 0.0009 0.0 0.0 

 max [NShigh > 0.0] 797 4.9 0.90 0.64 0.0751 0.0355 6.0 4.0 

 

The values of the optimum parameter sets of sub basin Grande and Mamoré are shown in table 4.4. 

The objective function of sub basin Grande, Y, has a value of 0.31. The objective function of Mamoré, 



Page | 48  
 

NSH, has a value of 0.69. Especially when the Y-values of both basins are compared, the discharge of 

sub basin Mamoré is simulated  much better than of sub basin Grande.  

Table 4.4: Parameter values of the optimum parameter set after the 1st calibration and the corresponding objective 

function values of Grande and Mamoré.  

1st Calibration - optimum parameter sets 

Sub basin FC 

[mm] 

BETA 

[-] 

LP 

[-] 

ALFA 

[-] 

KF 

[d-1] 

KS 

[d-1] 

PERC 

[mm d-1] 

CFLUX 

[mm d-1] 

Grande 733 2.62 0.229 0.431 0.0519 0.00067 1.19 0.42 

Mamoré 751 1.34 0.75 0.080 0.0074 0.0091 2.21 0.43 

 

4.2 Sensitivity analysis 
The optimum parameter sets of table 4.4 of Grande and Mamoré are used to execute two sensitivity 

analyses. The parameters are varied one at a time and the results are shown in figure 4.5 and figure 

4.6. In order to compare the parameter values with each other, the parameters are scaled i.e. the 

adapted value of the parameter is divided by the optimum value, see table 4.4.  

 

Figure 4.5: Results of the sensitivity analysis of the 8 parameters of sub basin Grande.  

The sensitivity analysis in figure 4.5 shows that Y is more sensitive to the parameters FC, BETA, ALFA 

and PERC than the other four parameters. Thus, parameters FC, BETA, ALFA and PERC are more 

important, therefore, these four parameters are varied in the final calibration step. The parameter 

values belonging to the optimum Y-value of the 1st calibration step, are the default values of the less 

sensitive parameters LP, kF, kS and CFLUX during the final calibration step (table 4.4). 

After analyzing the results presented in table 4.2, the parameter range of FC is adapted from 100 –

800 mm to 300-800 mm. The parameter ranges of the other three parameters are not adapted.  
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Figure 4.6: Results of the sensitivity analysis of the 8 parameters of sub basin Mamore. 

The results of the sensitivity analysis of the Mamoré in figure 4.6 show that NSH is more sensitive to 

the parameters BETA, LP, ALFA, kF and kS than the other three parameters. Thus, parameters BETA, 

LP, ALFA, kF and kS are more important and therefore, these five parameters are varied in the final 

calibration step. The parameter values belonging to the optimum NSH-value of the 1st calibration step 

are the default values of the less sensitive parameters FC, PERC and CFLUX during the final calibration 

step (table 4.4). 

The five parameters ranges of the parameters to be varied in the final calibration step for sub basin 

Mamoré are not adapted.  

  

0,25

0,35

0,45

0,55

0,65

0,75

0,5 0,7 0,9 1,1 1,3 1,5

o
b

je
ct

iv
e

  f
u

n
ct

io
n

 [
N

Sh
ig

h
] 

Scaled Parameter 

Scaled parameter values as a function of NSH 

FC

BETA

LP

ALFA

KF

KS

PERC

CFLUX



Page | 50  
 

4.3 Final calibration step 
Sub basin Grande is calibrated with the four parameters selected in the sensitivity analysis by 

executing MCS with 100,000 runs. Figure 4.7 shows as a function of each parameter for the Grande 

the combined objective function value Y, for parameter sets with a minimum Y-value of 0.0.  Sub 

basin Mamoré is calibrated with the five parameters selected after the sensitivity analysis by 

executing MCS with 100,000 runs. Figure 4.8 shows as a function of each parameter for the Grande 

the combined objective function value NSH, for parameter sets with a minimum NSH-value of 0.0.  

Table 4.1 shows that of the 100,000 runs for both sub basins, 30.2 % and 4.1 % of the parameter sets 

for sub basin Grande and sub basin Mamoré respectively  correspond to an objective function value 

above 0. Of the parameter sets which have a value above zero, the parameter sets which meet the 

criterion kF-eff > kS are selected. This results in 30.2% and 0.99% of the 100,000 runs for Grande and 

Mamoré respectively. These percentages of the final calibration step are considerably higher, than 

those of the first calibration step (see table 4.1).  

 

Figure 4.7 : Scatter plot of Y-values as a function of parameter values for the Grande for the final calibration step. Only Y-

values above 0 are shown. 

 

Figure 4.8: Scatter plot of NSH values as a function of parameter values for the Mamoré for the final calibration step. Only 

NSH-values above 0 are shown. 

The shapes of the scatter plots of parameter BETA, PERC and ALFA of sub basin Grande (see figure 

4.7) give confidence that their optimum values are actually the global optimum values. This because 

the scatter plot shows a curve with the highest Y-value on top of this curve. The shape of the scatter 

plot of parameter FC gives less confidence that  the optimum parameter value is the actual optimum 

value. The scatter plot shows an ascending line towards the upper boundary of the parameter range 
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of FC.  It seems that the parameter range of parameter FC for sub basin Grande (300 mm – 800 mm) 

of the final calibration step is too narrow. Subsequently, the upper boundary with a value of 800 mm, 

should have been adapted after the first calibration step to a higher value, in order to gain more 

confidence that the optimum value of FC corresponding to the highest value of the objective function 

is actually the optimum value.  

The shapes of the scatter plot of parameter kS, kF and ALFA of sub basin Mamoré (see figure 4.8) give 

confidence that their optimum values set are actually the global optimum values for the same reason 

for parameters BETA, PERC and ALFA of sub basin Grande, as described above. Because the number 

of points in the scatter plot of sub basin Grande are a factor 7 larger than those of sub basin 

Mamoré, the curves of the scatter plots are less smooth for sub basin Mamoré.  The shapes of the 

scatter plots of the parameters LP and BETA of sub basin Mamoré give less confidence that the 

optimum parameter value is the actual optimum value. The scatter plot of LP shows an ascending 

line and the scatter plot of BETA shows a descending line, which indicates that the boundaries of 

both parameter ranges (LP: 0.1 – 0.9 and BETA: 1 – 5) are too narrow. The upper boundary of the 

parameter range of LP and the lower boundary of the parameter range of BETA should have been 

adapted after the first calibration. But the value of BETA has a boundary condition that is should be 

>1. It seems that the parameter range of the final calibration step for LP is are too narrow and the 

parameter range for BETA is wide enough.  

The values of the optimum parameter sets of sub basin Grande and Mamoré are shown in table 4.5. 

The objective function of Grande, Y-value, has a value of 0.39. The objective function of Mamoré, 

NSH, has a value of 0.72. The objective function values of both sub basins are higher compared to the 

objective function values of the optimum parameter sets of the 1st calibration. The simulated 

discharge with the optimum parameter set for Grande and the observed discharge at Abapó for the 

calibration period are shown in figure 4.9. The simulated discharge with the optimum parameter set 

for Mamoré, the observed discharge at Camiaco, the observed discharge at Abapó and the reservoir 

volume are shown in figure 4.10.  

Table 4.5: Parameter values of the optimum parameter sets after the final calibration step and the corresponding 

objective function values of Grande and Mamoré. 

Final Calibration step - optimum parameter sets 

Sub basin FC 

[mm] 

BETA 

[-] 

LP 

[-] 

ALFA 

[-] 

KF 

[d-1] 

KS 

[d-1] 

PERC 

[mm d-1] 

CFLUX 

[mm d-1] 

KF-eff NS RVE Y NSH 

Grande 795 1.65 0.23 0.43 0.052 0.00067 2.1 0.42 0,14 0.42 0.066 0.39 - 

Mamoré 751 1.37 0.87 0.12 0.0059 0.0060 2.21 0.43 0.011 0.82 0.082 0.76 0.72 
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Figure 4.9: Hydrograph of the observed Qobs and simulated discharge Qsim of Grande after the final calibration. 

The hydrographs of QsimG and QobsG show four wet periods, see figure 4.9. The hydrograph of the QsimG 

shows lower peak discharges in comparison with QobsG for the first three wet periods,  but at the 

fourth wet period, some peaks of QsimG are higher than the peaks of QobsG. These differences may be 

caused by the set-up of the model, where the areal mean precipitations is just based on  a few 

meteorological stations.  

In general QsimG underestimates the observed discharge peaks. These underestimations may  be 

caused by the value of parameter FC, because the model run with the optimum parameter values 

shows that the direct runoff, qd, for every time step is 0. As equation 3.2 shows, the direct runoff is 

controlled by the soil moisture storage, the precipitation and the field capacity. Because direct runoff 

never occurs, the field capacity is never reached. This means that the runoff is generated through the 

soil moisture box into the upper and lower response box, which is a slower.  

In the dry periods the QsimG shows a flat hydrograph that overestimates the observed discharge. It 

seems that the base flow, the slow runoff, is overestimated by the model. Further, some of the 

observed discharge peaks are completely missed by the simulated discharge, which could be caused 

by the estimation of the areal mean precipitation, which differs from the actual precipitation, which 

can be locally variable.  
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Figure 4.10: Hydrograph of Mamore of the observed discharge, simulated discharge, observed discharge of Grande and 

storage of the reservoir after the calibration. 

The simulated discharge QsimM follows the hydrograph of the observed discharge QobsM reasonably 

well at the rise of a high discharge peak, but underestimates the height of such a peak and at the fall 

of a high discharge peak the model tends to react slower than the observed discharge, see figure 

4.10. The objective function of the model during the calibration was NSH, which calculates the NS-

value for all discharges above the threshold 1,500 m3/s. The aim of the calibration was to simulate 

the periods of high water. Low water periods are less important in this study and therefore not taken 

into account in de calibration process. This is visible in the relatively large differences between the 

hydrographs of Qobs Mamoré and Qsim Mamoré when Qobs is below the threshold 1,500 m3/s.  

The peaks of the observed discharge of the Grande are visible with a lag time of 17 days  in the 

simulated discharge.  

The Mamoré sub basin is also modeled with the simulated discharge of sub basin Grande as inflow 

instead of the observed discharge. The results in terms of the objective function are shown in the 

table 4.6. Notice that the values of the four objective functions show that the model performs better 

with the simulated discharge of the Grande than with the observed discharge.  
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Table 4.6: Values of the objective functions of Mamore with observed and simulated discharge of Grande as input into 

the Mamore basin. 

 

 

The hydrograph of the simulated discharge with the simulated discharge of the Grande as inflow and 

the observed discharge of Mamoré are shown in the figure 4.11 below.  

 

Figure 4.11: Hydrograph of Mamore of the observed discharge, simulated discharge with simulated discharge of Grande 

and simulated discharge with observed discharge of Grande after the calibration. 

The hydrographs of Qsim with QobsG as input (green line of figure 4.11) and Qsim with QsimG as input (red 

line of figure 4.11) look quite similar, with the difference that  the red line is slightly fluctuating at 

peak discharges compared to the green line, which can be explained by fact that this are the same 

differences visible in the calibration of sub basin Grande, see figure 4.9.  
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4.4 Validation 
In the validation procedure, the parameter values derived in the calibration are used to run the 

model for another period. The validation period follows after the calibration period from 8-8-2006 till 

7-5-2009, see figure 3.5. Since the calibration of sub basin Mamoré performs better when the 

simulated discharge of sub basin Grande QsimG is used as input, compared to the observed discharge 

of sub basin Grande QobsG, QsimG is used as input during the validation run of sub basin Mamoré with 

the same lag time of 17 days as used in the calibration.  

In figure 4.12 and figure 4.13 the outcome of the validation runs is shown. The blue line is the 

observed discharge and the red line is the simulated discharge. Figure 4.13 shows the simulated 

discharge of the Grande and the storage of the reservoir as well. When looking at figure 4.12, the 

same trend is visible as in the calibration process: in the dry periods an overestimation of the 

observed discharge by the model and at discharge peaks, the model is not able to simulate the height 

of the peaks of sub basin Grande. But in comparison to the calibration procedure in the validation 

period the model is able to simulate the discharge peaks in terms of timing, where in the calibration 

run some of the discharge peaks are missed by the model. The reason for this could be that the 

estimated areal mean precipitation for the validation period are estimated closer to the actual 

precipitation in terms of timing.  

 

Figure 4.12: Hydrograph of the discharge of sub basin Grande after validation. 

When looking at the results of the validation of sub basin Mamoré, figure 4.13, like sub basin Grande, 

the same trends are noticeable as in the calibration process: overestimation of the discharge after a 

peak discharge. The simulated discharge of the second wet period of the validation period is highly 

fluctuating, due to the outflow of the reservoir. Further, as opposed to the simulated discharge of 

the calibration period, the height of the discharge peaks are reached and especially during the 

second high water period, overestimated. This could be caused by the poor estimation of the areal 

mean precipitation and the contribution of outflow of the reservoir to the total discharge. 

0

2000

4000

6000

8000

10000

12000

14000

16000

m
e

an
 d

ai
ly

 d
is

ch
ar

ge
 [

m
3

/s
] 

Date 

Observed and simulated discharges of sub basin Grande for the 
validation period 

Qobs Grande
Qsim Grande



Page | 56  
 

 

 

Figure 4.13: Hydrograph of Mamore of the observed discharge, simulated discharge, simulated discharge of Grande and 

storage of the reservoir after the validation. 

Table 4.7 shows the objective functions of the calibration and validation in order to compare both 

periods. Notice the increase in the Y-value of sub basin Grande from 0.39 in the calibration to 0.54 in 

the validation. This is a surprising result, since the parameter values are optimized during the 

calibration procedure in order to see how well these parameter values perform for another period. 

The reason for this could be that the meteorological input data of the validation period are much 

closer to the actual meteorological input data of the calibration period. Another reason could be that 

observed discharge data of the calibration period is of less quality than the validation period.   

The NSH value of sub basin Mamoré decreased from 0.74 in the calibration to 0.51 in the validation. 

The overestimation of the simulated discharge during the second wet period could be a major 

contributor to this performance difference.   

Table 4.7: Results Validation of Grande and Mamoré basins. 

 

 

0,00E+00

1,00E+04

2,00E+04

3,00E+04

4,00E+04

5,00E+04

6,00E+04

7,00E+04

8,00E+04

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

R
e

se
rv

o
ir

 v
o

lu
m

e
 [

m
3 ]

 

m
e

an
 d

ai
ly

 d
is

ch
ar

ge
 [

]m
3 /

s]
 

Date 

Observed and simulated discharges of sub basin Mamoré for the validation 
period 

Qobs Mamoré
Qsim Mamoré
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Reservoir volume

  NS RVE Y NSH 

Grande Calibration 0.42 0.066 0.39 - 

 Validation 0.60 -0.098 0.54 - 

Mamoré Calibration  0.79 0.089 0.73 0.72 

 Validation 0.67 0.21 0.55 0.51 
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4.5 Forecasting 

4.5.1 Reference run 

The optimized parameter set obtained during the final calibration is used to run the model again for 

the calibration period. For each time step the fractions of fast runoff qf, slow runoff qs and outflow of 

the reservoir qR to simulated mean daily discharge qsimM are determined. These fractions are plotted 

against the simulated daily discharge qsimM and shown in figure 4.14, 4.15 and 4.16. The black line in 

these figures is the trendline through these points.  

 

Figure 4.14: The fractions of fast runoff qf of the discharge qsimM to the discharge qsimM for each time step (blue dots) and 

the trendline in black through those points. 

 

Figure 4.15: The fractions of slow runoff qs of the discharge qsimM to the discharge qsimM for each time step (blue dots) and 

the trendline in black through those points. 
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Figure 4.16: The fractions of outflow of the reservoir qR of the discharge qsimM to the discharge qsimM for each time step 

(blue dots) and the trendline in black through those points. 

The logarithmic relations between the fraction values and the simulated discharge are shown in table 

4.8,  together with the corresponding Pearson’s coefficients R.  

Table 4.8: Logarithmic equations of the trendlines of figure 14, figure 15 and figure 16 with the corresponding value of R.  

Equation  Pearson’s coefficient R 

𝒌𝒒𝒇 = 𝟎. 𝟐𝟓 ∗ 𝐥𝐧(𝒒𝒔𝒊𝒎𝑴) − 𝟏. 𝟑  0.93 

𝒌𝒒𝒔 = −𝟎. 𝟐𝟕 ∗ 𝐥𝐧(𝒒𝒔𝒊𝒎𝑴) + 𝟐. 𝟒 0.96 

𝒌𝒒𝑹 = 𝟎. 𝟎𝟑𝟑 ∗ 𝐥𝐧( 𝒒𝒔𝒊𝒎𝑴) − 𝟎. 𝟐𝟒 0.40 

 

The trendlines of the fractions of fast runoff and slow runoff to the simulated discharge fit quite well, 

with a R value of 0.93 and 0.96 respectively. But the trendline of the fraction of outflow of the 

reservoir to the simulated discharge does not fit well, with a R value of 0.40. This means that there is 

no clear relation between the magnitude of the discharge and the fraction of the outflow of the 

reservoir (see also fig 4.16). Which makes sense, because the reservoir storage is controlled by the 

simulated discharge of Grande, which makes the outflow of the reservoir dependent of the simulated 

discharge of Grande, see equation 3.13 in section 3.1.5.  In the calibration period the reservoir fills 

roughly twice at high water periods; during the first high water period of the first hydrological year 

and during the high water period of the fourth hydrological year. This explains the two descending 

lines of points of the scatter plot of figure 4.16. The randomness of the fractions of qR to qsimM 

between qsimM = 3,000 m3/s and qsimM = 3,400 m3/s is caused by the refills of the reservoir in the 

fourth wet period, see figure 4.10. Because the fraction of qR to qsimM is small (up to 6%) and thus has 

not a large influence on the simulated discharge. Therefore equation 5.3 is, despite its uncertainty, 

used in this study for updating and forecasting discharges.  

The equations of kqf, kqs and kqR of table 4.8 are used for updating as described in section 3.7, with the 

difference that qsimM is substituted for qobsM.  
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4.5.2 Forecasting 

The HBV-model is run using the updating method,  described in section 3.3, and the 1 to 10 days 

ahead forecasted discharges are determined for the validation period with ‘perfect’ weather 

predictions. In order to observe the differences between the forecasting days, only the results of  

forecasted discharge of 3, 6 and 10 days ahead are shown in figure 4.17. The results in terms of 

accuracy are shown in table 4.9. 

 

Figure 4.17: Results of the updating procedure with forecasted discharges of 3, 6 and 10 days ahead.  

Table 4.9 shows that the forecasted discharges up to 10 days ahead perform better in terms of the 

objective functions NS, RVE, Y and NSH compared to the reference simulated discharge without 

reservoir updating. The more days ahead the discharges are forecasted, the less accurate they 

perform in terms of the values of the objective functions, which makes sense.  

The hydrographs of the forecasted discharges seems to approach the observed discharge reasonably 

well, especially compared to the simulated discharge. The results shown in table 4.9 endorse this 

performance. When looked closely to figure 4.17, the hydrographs of the forecasted discharges tend 

to approach the observed hydrographs with a delay of the forecasting time (3, 6 and 10 days). Also 

the trend of the simulated discharge is visible in the corresponding forecasted discharges, as you 

would expect.   
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Table 4.9: Results of the updating procedure of forecasted discharges 1 to 10 days ahead in terms of objective functions 

with as reference the not-updated simulated discharge.  

 NS RVE Y NSH 

Qsim  0.55 0.67 0.21 0.51 

Qforecast 1 day 0.99 -0.01 0.99 0.99 

Qforecast 2 days 0.98 -0.01 0.97 0.96 

Qforecast 3 days 0.97 -0.02 0.95 0.93 

Qforecast 4 days 0.96 -0.03 0.93 0.90 

Qforecast 5 days 0.95 -0.04 0.91 0.86 

Qforecast 6 days 0.94 -0.05 0.89 0.83 

Qforecast 7 days 0.92 -0.05 0.88 0.79 

Qforecast 8 days 0.91 -0.06 0.86 0.76 

Qforecast 9 days 0.89 -0.07 0.84 0.72 

Qforecast 10 days 0.88 -0.08 0.82 0.69 

 

The results of forecasting 1 up to 10 days ahead in terms of skill are shown in contingency tables, 

table 4.10 to 4.13.  

As mentioned before (section 3.3.2) this study takes two types of events into account:  

- Event type 1: ‘the exceedance of a discharge threshold at time step t’ 

- Event type 2: ‘the exceedance of a discharge threshold at time step t, with the condition that 

at time step t-1 this threshold was not exceeded’.  

The contingency tables of event type 1 of the 1 to 10 days ahead forecasts, with as reference the 

simulated discharge without updating, are shown in table 4.10 and 4.11, together with the accuracy 

hit rates, false-alarm rates, miss rates, hit ratios and the base rates. Table 4.10 shows the results of 

the event type 1 for high water with a threshold of 3,000 m3/s and table 4.11 shows the results of the 

event type 1 for floods with a threshold of 3,900 m3/s as described in section 3.3.2.  

Table 4.10: Contingency tables (with number of hits h, number of misses m, number of false-alarms f and number of 

correct rejections c) of the 1 up to 10 days ahead forecasted discharges and the reference simulated discharges and their 

accuracy A, hit rates H, false-alarm rates F, hit ratios H’, miss rate F’ and the base rate B of the event type 1 with 

threshold of 3,000 m
3
/s for the validation period. 

Event type 1 

High water level 

Contingency tables 

h        m          f         c 
 

A 

 

H 

 

F 

 

H’ 
 
F’ 

 
B 

Qsim  268 45 84 607 0.87 0.86 0.12 0.76 0.07 0.31 

Qforecast 1 day 303 10 8 683 0.98 0.97 0.01 0.97 0.01 0.31 

Qforecast 2 days 296 17 10 681 0.97 0.95 0.01 0.97 0.02 0.31 

Qforecast 3 days 287 26 12 679 0.96 0.92 0.02 0.96 0.04 0.31 

Qforecast 4 days 279 34 11 680 0.96 0.89 0.02 0.96 0.05 0.31 

Qforecast 5 days 276 37 11 680 0.95 0.88 0.02 0.96 0.05 0.31 

Qforecast 6 days 275 38 10 681 0.95 0.88 0.01 0.96 0.05 0.31 

Qforecast 7 days 268 45 6 685 0.95 0.86 0.01 0.98 0.06 0.31 

Qforecast 8 days 267 46 6 685 0.95 0.85 0.01 0.98 0.06 0.31 

Qforecast 9 days 266 47 6 685 0.95 0.85 0.01 0.98 0.06 0.31 

Qforecast 10 days 264 49 7 684 0.94 0.84 0.01 0.97 0.07 0.31 
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Table 4.11: Contingency tables (with number of hits h, number of misses m, number of false-alarms f and number of 

correct rejections c) of the 1 up to 10 days ahead forecasted discharges and the reference simulated discharges and their 

accuracy A, hit rates H, false-alarm rates F, hit ratios H’, miss rate F’ and the base rate B of the event type 1 with 

threshold of 3,900 m
3
/s for the validation period. 

Event type 1 

Flood level 

Contingency tables 

h          m            f         c 
 

A 

 

H 

 

F 

 

H’ 
 
F’ 

 
B 

Qsim  168 19 44 773 0.94 0.90 0.05 0.79 0.02 0.19 
Qforecast 1 day 183 4 2 815 0.99 0.98 0.00 0.99 0.00 0.19 
Qforecast 2 days 179 8 4 813 0.99 0.96 0.00 0.98 0.01 0.19 
Qforecast 3 days 171 16 7 810 0.98 0.91 0.01 0.96 0.02 0.19 
Qforecast 4 days 162 25 11 806 0.96 0.87 0.01 0.94 0.03 0.19 
Qforecast 5 days 155 32 11 806 0.96 0.83 0.01 0.93 0.04 0.19 
Qforecast 6 days 144 43 12 805 0.95 0.77 0.02 0.92 0.05 0.19 
Qforecast 7 days 140 47 8 809 0.95 0.75 0.01 0.95 0.05 0.19 
Qforecast 8 days 137 50 8 809 0.94 0.73 0.01 0.94 0.06 0.19 
Qforecast 9 days 136 51 7 810 0.94 0.73 0.01 0.95 0.06 0.19 
Qforecast 10 days 133 54 6 811 0.94 0.71 0.01 0.96 0.06 0.19 

 

Table 4.10 shows that the accuracy A of the forecasted discharges 1 to 10 days ahead (A ≥ 0.94) is 

higher than the accuracy of the simulated discharges (A = 0.87), for events type 1 with a high water 

level threshold. This difference is caused by the relatively low number of correct rejections of Qsim 

compared to the Qforecasts. This is confirmed by the False-Alarm rates of Qsim and Qforecasts:  F of 

Qsim is 0.12 and the F of Qforecasts ≤0.02. In terms of hit rates for the high water threshold, the 

Qforecasts up to 7 days ahead perform better than Qsim, see table 4.10. The probabilities of a 

correct warning H’, are high for Qforecasts (H’ is close to 1). Although the probability of a correct 

warning H’ is less high for Qsim, compared to Qforecasts, it is much higher than the base rate B. The 

probability of a miss F’ is low for Qsim and the Qforecasts (F’ ≤ 0.07), which is partly caused by the 

high number of correct rejections.  

Table 4.11 shows that the accuracy A of the Qforecasts (A ≤ 0.94) is at least as good as the accuracy 

of Qsim (A = 0.94) for events type 1 with a flood level threshold. Notice the difference in formation of 

A: Qsim has a relatively low number of correct rejections (thus a high number of false alarms), but a 

relatively high number of hits (thus a low number of misses) compared to the Qforecasts. By the 

determination of A, no distinctions are made between one hit and one correct rejections. Otherwise, 

a miss has an equal weight as a false-alarm in determining accuracy A, where in reality a miss of an 

event causes more damage than an false-alarm. The difference in performance between Qsim and 

Qforecasts is noticeable when looking at the hit rate H. From forecasts 4 days ahead to 10 days 

ahead, Qsim performs better in terms of hit rates H and miss rates F’.  The false-alarm rates F of 

event type 1 with a flood level threshold are low, due to the small number of false alarms and the 

high number of correct rejections, where Qsim performs the worst compared to the Qforecasts.  

In general  for event type 1 for both thresholds applies that as the number of forecasting days ahead 

increase, the accuracy A and the hit rates H decrease. For both thresholds for event type 1 applies 

that hit ratios are higher for the Qforecasts compared to Qsim, nevertheless for both Qsims are 

applies that the hit ratios are above the base rate B.  
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The contingency tables of event type 1 of the 1 to 10 days ahead forecasts, with as reference the 

simulated discharge without updating, are shown in table 4.10 and 4.11, together with the hit rates, 

false-alarm rates and odds. Table 4.12 shows the results of the event type 2 for high water with a 

threshold of 3,000 m3/s and table 4.13 shows the results of the event type 1 for floods with a 

threshold of 3,900 m3/s as described in section 3.3.2.  

Table 4.12: Contingency tables (with number of hits h, number of misses m, number of false-alarms f and number of 

correct rejections c) of the 1 up to 10 days ahead forecasted discharges and the reference simulated discharges and their 

accuracy A, hit rates H, false-alarm rates F, hit ratios H’, miss rate F’ and the base rate B of the event type 2 with 

threshold of 3,000 m
3
/s for the validation period. 

Event type 2 

High water level 

Contingency tables 

 h       m         f          c 
 

A 

 

H 

 

F 

 

H’ 
 
F’ 

 
B 

Qsim  0 6 8 990 0.99 0 0.01 0.00 0.01 0.01 

Qforecast 1 day 0 6 10 988 0.98 0 0.01 0.00 0.01 0.01 

Qforecast 2 days 0 6 9 989 0.99 0 0.01 0.00 0.01 0.01 

Qforecast 3 days 0 6 9 989 0.99 0 0.01 0.00 0.01 0.01 

Qforecast 4 days 0 6 8 990 0.99 0 0.01 0.00 0.01 0.01 

Qforecast 5 days 0 6 8 990 0.99 0 0.01 0.00 0.01 0.01 

Qforecast 6 days 0 6 10 988 0.98 0 0.01 0.00 0.01 0.01 

Qforecast 7 days 1 5 7 991 0.99 0.17 0.01 0.13 0.01 0.01 

Qforecast 8 days 1 5 10 988 0.99 0.17 0.01 0.09 0.01 0.01 

Qforecast 9 days 0 6 8 990 0.99 0.01 0.01 0.00 0.01 0.01 

Qforecast 10 days 0 6 8 990 0.99 0.01 0.01 0.00 0.01 0.01 

 

Table 4.13: Contingency tables (with number of hits h, number of misses m, number of false-alarms f and number of 

correct rejections c) of the 1 up to 10 days ahead forecasted discharges and the reference simulated discharges and their 

accuracy A, hit rates H, false-alarm rates F, hit ratios H’, miss rate F’ and the base rate B of the event type 2 with 

threshold of 3,900 m
3
/s for the validation period. 

Event type 2 

Flood level 

Contingency tables 

 h       m         f             c 
 

A 

 

H 

 

F 

 

H’ 
 
F’ 

 
B 

Qsim  0 2 5 997 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 1 day 1 1 3 999 1.00 0.5 0.00 0.25 0.00 0.00 

Qforecast 2 days 0 2 5 997 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 3 days 0 2 10 992 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 4 days 0 2 9 993 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 5 days 0 2 10 992 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 6 days 0 2 10 992 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 7 days 0 2 9 993 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 8 days 0 2 12 990 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 9 days 0 2 11 991 0.99 0 0.01 0.00 0.00 0.00 

Qforecast 10 days 0 2 13 989 0.99 0 0.01 0.00 0.00 0.00 

 

In general, for event type 2 the number of events (hits+misses) are small, 6 and 2 for the high water 

level threshold and flood level threshold respectively. The amount of hits of event type 2 of the 

simulated discharges and forecasted discharges is very low; 3 hits out of 88 events. Due to the high 

correct rejections of both thresholds, the accuracy A is high (A ≥ 0.98), the false-alarm rates are low 

(F ≤ 0.01) and the miss rates are low (F’ ≤ 0.01). Due to the rarity of the occurrence of events and the 
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even rarer occurrence of a hit, table 4.12 and 4.13. The contingency table gives the clearest insight in 

the performance of Qsim and the Qforecasts of event type 2. The analyses by the rates, ratio are of 

less importance since they are biased by the small amount of events.   

Despite the fact that the performance of the forecast presented by the objective function NSH, see 

table 4.9,  is very promising, they are barely able to forecast the beginning of a flood. An explanation 

for this could be that the objective function used in the calibration procedure was not sufficient 

enough for the goal of the evaluation of the model performance. Calibrating with a combined 

objective function with  the hit rate and false-alarm rate embedded should perhaps lead to better 

results in forecasting the start of a flood.   
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5 Conclusions and recommendations 
The conclusions of the study are the answers to the research questions stated in section 1.3. In 

section 5.1 the conclusions of the research are summed up. After that, in section 5.2, some 

recommendations for further research are listed.  

5.1 Conclusions 
The objective of this study is to set up and evaluate the hydrological HBV-model to simulate 

discharges and forecast floods of the Mamoré River at the city of Trinidad. This to be able to warn the 

people in the area of Trinidad when the Mamoré River water level will reach alarming levels, so 

people can evacuate and take action to limit the flood damage.  

This research contains three research questions in order to reach the research objective. The first 

question forms the foundation in order to answer the second research question and the second 

research question itself forms the foundation in order to answer the third research question.  

The first research question is: 

1. What is the best HBV configuration for the Mamoré River basin given the available data? 

A data analysis has been executed to select the meteorological stations which are used in the 

research to determine the input data and to determine the sub basins with corresponding discharge 

stations. This data analysis showed that the Mamoré basin for this study can be divided best into two 

sub basins: sub basin Grande with outflow at discharge station Abapo and sub basin Mamoré with 

outflow at discharge station Camiaco. Grande is the upstream basin with its outflow into the 

downstream basin Mamoré.  

The areal mean precipitation is determined with Thiessen polygons. Four approaches to deal with the 

elevation differences between the measuring stations and the areal mean elevation are considered 

(Appendix B) and the approach with no correction factor for elevation turned out to be the most 

suitable for this study.  

The discharge of upstream sub basin Grande goes through sub basin Mamoré to become the 

combined outflow of the total basin at Camiaco. The lag time of the discharge of Grande through 

Mamoré is determined by a correlation study and resulted in a lag time of 17 days.  

Inundation maps of recent floods show that inundations occur within the sub basin Mamoré around 

the tributary Grande. This is confirmed by the fact that the peak discharges of sub basin Grande 

exceed the peak discharges of the outflow of the total basin at Camiaco. Therefore, a reservoir has 

been added in the HBV model in sub basin Mamoré, to deal with the floods within the sub basin 

Mamoré due to the contribution of the discharge from sub basin Grande. Further it the outflow of 

the reservoir can be described by the same non-linear equation as for the fast runoff component of 

the HBV-model.  

Research question 2 stated:  

2. How well does the HBV-model perform with the available data for the Mamoré River basin in 

simulating discharges? 
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For sub basin Grande the model parameters FC, BETA, ALFA and PERC were found to be the most 

sensitive to the objective function and thus are varied in the final calibration step in order to obtain 

the optimum parameter set. The Y value of the optimum parameter set after the first calibration step 

was 0.31 and the Y value of the optimum parameter set after the final calibration step was 0.39. This 

improvement of the Y value after the final calibration step shows that the parameter values have 

been improved.  

For sub basin Mamoré the model parameters BETA, LP,  ALFA, kF and kS were found to be the most 

sensitive to the objective function and thus are varied in the final calibration step in order to obtain 

the optimum parameter set. The NSH value of the optimum parameter set after the first calibration 

step was 0.69 and the NSH value of the optimum parameter set after the final calibration step was 

0.72. Also this improvement of the objective function after the final calibration step shows that the 

parameter values have been are improved.  

The shapes of the scatter plots of parameter BETA, PERC and ALFA of sub basin Grande and 

parameter kS, kF and ALFA of sub basin Mamoré give confidence that their values of the optimum 

values are actually the global optimum values.   

In the validation procedure, sub basin Grande performs even better, in terms of its objective 

function, for the validation period compared to the calibration period: 0.54 vs 0.39. Sub basin 

Mamoré performs for the validation period worse than for the calibration period. In terms of their 

objective function values:  0.51 vs 0.72.  

The third and final research question is: 

3. How well does the HBV model perform in forecasting floods of the Mamoré River? 

The forecasted discharges of 1 to 10 days ahead performed quite well considering the objective 

function. The NSH values of the forecasts lie between 0.99 for one day ahead and 0.69 for 10 days 

ahead. These performances are an improvement compared to the simulated discharge, which had a 

NSH value of 0.51. The overall accuracy of the HBV model in forecasting discharges, using perfect 

forecasts, is high and the forecasts up to 10 days ahead are more accurate than the simulated 

discharges.  

The accuracies A of the forecasts up to 10 days ahead (A ≥ 0.94) are at least higher than the 

accuracies of the simulated discharges in forecasting event type 1 ‘the exceedance of a discharge 

threshold at time step t’  for the high water level and the flood level threshold. Accuracy A has a 

value between 0 and 1, with 1 as optimum value, thus the performance of the forecasts in terms of 

accuracy are considered as good for the event type 1.  

The skill of the model in forecasting high water and flood levels up to 10 days ahead in terms of 

False-alarm rates F is better than the skill of the model in simulating high water and flood levels. 

Partly due to the high number of correct rejections the false-alarm rates F, which have a value 

between 0 and 1, of the forecasts are ≤0.02. The skill of the model in forecasting high water and 

flood levels up to 10 days ahead in terms of hit rate H are decreasing as the forecasting days ahead 

are increasing. Nevertheless, hit rates H of the high water level of the forecasts up to 7 days ahead 

are higher than the hit rate of the simulated discharges and the hit rates H of the flood level of the 
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forecasts up to 3 days ahead are higher than the hit rate of the simulated discharges. At least the 

forecasts up to 3 days ahead perform well in terms of skill for the event type 1 for both thresholds.   

The reliability of the forecasts up to 10 days ahead for event type 1 in terms of the probability of a 

correct warning H’ is high (H’ ≥ 0.92) for the high water and flood level threshold.  The reliabilities of 

simulated discharges are 0.76 and 0.79 for the high water level and the flood level respectively. 

These values are much higher than the base rates, which has a value of 0.31 and 0.19 for the high 

water level and the flood level respectively. The reliability of the forecasts up to 10 days ahead for 

event type 1 in terms of probability of an incorrect non-warning (miss rate F’), decreases sharply as 

the forecasting days ahead are increasing for the high water and flood level thresholds. This is not 

directly visible in the miss rate F’, because the number of correct rejections is high.  

When looking at the contingency table of event type 2 ‘the exceedance of a discharge threshold at 

time step t, with the condition that at time step t-1 this threshold was not exceeded’, the 

performance of the forecasts is very poor for the high water and flood level thresholds. In other 

words, event type 2 is the start of a high water or flood period.  In the validation period, 6 high water 

periods and 2 flood periods occurred. Out of all the 80 events (2 events for flood threshold plus 6 

events for high water threshold times 10 forecasts) the model was able to forecast 2 events and 

missed 78 events. Due to the small number of event (and thus the small number of hits and misses) 

and the large number of correct rejections the evaluation in terms of accuracy, skill and reliability is 

not meaningful.  

In conclusion, the overall accuracy of the forecasts increase as the prediction days decrease and is 

higher than accuracy of the simulated discharges. The accuracy A, skills F and H and reliabilities F’ 

and H’ of the forecasts up to 3 days ahead of event type 1 are higher than the simulated discharges 

for both the high water and flood level. However, as a decision maker, you are also interested in 

ability of a model to forecast the start of a high water or flood level threshold exceedance, event 

type 2. This to give a high water or flood warning to the people in the area, so they are able to 

evacuate and limit the flood damage. Unfortunately, the model is barely able to forecast and 

simulate events of type 2 for both high water and flood level thresholds.  

5.2 Recommendations 
There are several recommendations for further research which are derived from the discussion and 

the conclusions of this research: 

First of all the meteorological input data of the HBV model in this study have been determined using 

measuring stations in the basin area and Thiessen polygons. The measuring stations are unevenly 

distributed over the area and given that the area is spatially variable in terms of annual mean 

temperature, annual mean precipitation, elevation and climate classification to Köppen-Geiger, the 

method used in this study  to determine areal mean precipitation and potential evapotranspiration 

has large uncertainties. Further research should be aimed at increasing the quality of the 

meteorological input data. For example, remote sensing could be applied to increase the quality of 

the model input.  

The number of sub basins of this study is small compared to other HBV studies with similar total 

basin size.  Therefore, in combination with the spatially variability of the basin, more discharge 
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measuring stations should be set up in the study area at strategic locations in the study area to be 

able to simulate and forecast the discharges at Camiaco.  

To cope with the fact that the peak discharges of sub basin Grande exceeds the peak discharges of 

the outflow of the total basin, some assumptions are made. The assumption is made that 

inundations take place inside sub basin Mamoré and therefore, a reservoir has been added to the 

HBV model. Some assumptions are made concerning the discharge threshold above which the inflow 

of the reservoir is generated and assumptions are made concerning the outflow of the reservoir. 

Further research should be aimed on finding out what actual happens in the area and how this could 

be modelled. 

The aim of this research was to forecast floods of the Mamoré River. The results presented in section 

4.5.2., showed that the model used and the methodology followed was barely able to forecast 

floods. The objective function of the calibration of the downstream basin was the Nash-Sutcliffe 

coefficient for high flows NSH, with the objective of  ‘a good agreement of the peak flows with respect 

to timing, rate and volume’. This study showed that this objective function for this study area was not 

adequate to forecast beginning of high water and floods. Further research should be aimed at 

calibrating with another objective function which is aimed at beginning of high water and floods, like 

skill measure hit rate H.   

This study showed that the travel time of the discharge of sub basin Grande through sub basin 

Mamoré is quite long, compared to the forecast time ahead. In order to better forecast discharges at 

Camiaco, the basin should be decreased in size and more discharge measuring stations at 

strategically locations should be set up, to be able to use the observed inflows into the adjusted 

basin. This approach can been seen as a combination of a neural network model and the HBV model.   
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Appendix A: Data analysis 

Discharge stations 

An overview is given, in table A.1,  of the discharge stations of the Mamoré River basin, their ID’s, 

which correspond with the IDs in figure A.1, and the years when records were made. Because in this 

study we are interested in predicting discharge at the city of Trinidad, the  IDs of those discharge 

stations which are close to Trinidad are marked with *<ID>*. The overview in figure A.1 shows that 

the different discharge locations recorded daily discharge not evenly over time. For a solid calibration 

and validation, the calibration time and validation time need to be as large as possible. For this 

reason a selecting is made for the discharge stations and locations which are used in this study. 

These discharge stations are marked in green in figure A.1. The selection of these discharge stations 

resulted in a distribution of the basin into three sub basins: Grande, Ichilo and Rio Mamoré, where 

the outflow of the first two basins are inflow of the last one mentioned, see figure A.2.  

Table A.1. Overview of the names of the discharge stations of the Mamoré River basin, their ID and the years when 

records were made.  
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Figure A.1: Map of the Mamoré River basin, the Mamoré River, the inundated area of the 2007 floods and the locations 

of the discharge stations and main cities of Bolivia [QGIS data provided by Centro Agua Bolivia]. 

 

Figure A.2: Map of Bolivia with the Mamoré River basin, Mamoré River, sub basins and their discharge stations and main 

cities of Bolivia. The pink area is the sub basin Grande with discharge station Apabo, the yellow area is sub basin Ichilo 

with discharge station Puerto Villarroel and the purple area is sub basin Rio Mamore with discharge station Camiaco. 
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Meteorological stations 

The locations meteorological stations which held records of the weather data are presented in figure 

A.3. It is clear that the stations are not spread evenly over the area of Bolivia and there are large 

areas without stations and small areas where the stations are grouped together. Further, the data 

analysis showed that a small amount stations kept records of daily huminity, atmospheric preasure, 

wind speed and direction. But they all recorded daily precipiatation and mean temperature.  

 

Figure A.3: Map of Mamoré River basin, Mamoré River, the locations of the discharge stations of the three sub basins, 

the locations of the hydrological stations in Bolivia and the main cities of Bolivia [QGIS data provided by Centro Agua 

Bolivia]. 
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Appendix B: Areal mean precipitation: 4 different approaches 
To generate the areal mean precipitation a couple of different approaches have been executed. All 

approaches use the Thiessen polygons method as basis. The area of each sub basin is divided into 

several areas which is represented by a precipitation and temperature measure station. Precipitation 

varies over the area and will increase with the increase of height. The measure stations are 

commonly situated a populated area or valley,  which leads to a difference between the areal mean 

elevation and the elevation of the measure station. The areal mean elevation for each Thiessen 

polygon is determined in QGIS with a Digital Elevation Map (DEM) of the area.   

Next, three approaches to coop with the height difference and one approach without any elevation 

correction for precipitation are presented. To check whether the approach is suitable for each sub 

basin a volume check is executed in which each sub basin have to meet two boundary conditions: 

- the observed discharge qobs [mm] needs to be smaller than the precipitation P [mm] [qobs < 

P]. 

- the precipitation needs to be smaller than the summation of the potential 

evapotranspiration etp [mm] and the observed discharge [P <  etp +qobs]. 

The  assumption is made that the determination of the precipitation is the factor with the highest 

uncertainty compared to the potential evapotranspiration and the observed discharge.  The potential 

evapotranspiration etp [mm] has been determined following the Thornthwaite method, as described 

in mm. The data of the observed discharges is given by the Bolivian government and the method 

which is used to determine the values is unknown. The volume check is measured in mm/y and is 

executed for five hydrological years, which all start on the 1st of August and end on the 31st of 

October. The records of the observed discharge qobs are converted from a value in m3/s to mm/y. This 

to adequately perform a volume check  and the daily precipitation and etp are summed for each 

hydrological year. The observed discharge of the Mamore sub basin is calculated by subtracting the 

qobs [mm/y] of the two upper sub basins Grande and Ichilo from the total qobs [mm/y] of the whole 

basin.   

1. +10%/ 100m - approach 

The first approach assumes that the precipitation increases with 10% for every 100 meter increase in 

elevation.  This is a common rule with is used more often in other research studies. The results for 

each sub basin of this approach are shown in the table below. If the approach does not meet the 

condition, the value is shown in red. 

Grande  [+10 % P / +100 m]  

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 793 123 984 861 -68 

aug 2003 - jul 2004 776 115 905 790 -14 

aug 2004 - jul 2005 727 98 862 764 -37 

aug 2005 - jul 2006 672 155 1081 926 -254 

aug 2006 - jul 2007 714 166 982 816 -102 

Ichilo [+10 % P / +100 m] 

meteorological year etp  [mm/y] qobs [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2001 - jul 2002 1121 2397 2356 -41 1162 

aug 2002 - jul 2003 112 2624 2097 -527 639 

aug 2003 - jul 2004 1127 2023 2059 36 1091 

aug 2004 - jul 2005 1222 1762 1955 193 1029 

aug 2005 - jul 2006 1181 2135 2001 -134 1315 
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As shown in the table, in particular the sub basins Grande and Ichilo do not meet the conditions. For 

sub basin Grande the precipitation is overestimated with this approach, because the summation of 

the etp and discharge are smaller than the P for each hydrological year. With this approach the 

precipitation for the Ichilo basin is underestimated, because for 60% of the hydrological years the 

observed discharge exceeds the precipitation. 

2. Correction factor per sub basin - approach 

For the second approach first a correlation between height and precipitation is made for each sub 

basin. With a more annually mean isohyets map and a DEM in QGIS, a couple of points for each sub 

basin are examined. With these points the trend line is obtained and a correction factor for each sub 

basin is made. This correction factor is used for all of the Thiessen polygons of that specific sub basin 

to calculate the areal mean precipitation. The results are shown in the table below. 

 

 

 

 

 

 

 

 

 

 

Similar to the +10% correction factor approach, the sub basins Grande and Ichilo do not meet the 

boundary conditions. The areal mean precipitation is overestimated for sub basin Grande and 

underestimated for sub basin Ichilo. The results of the volume check of sub basin Grande and Ichilo 

with this approach are even worst compared to the  +10% correction factor approach. 

3. Correction factor per Thiessen polygon – approach 

This approach is similar to the ‘correction factor per sub basin approach’, but instead of a height 

correction factor for each sub basin, a height correction is made for each Thiessen polygon in the 

three sub basins. The results are shown in the table below. 

Mamore [+10 % P / +100 m] 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 1432 719 1790 1071 361 

aug 2003 - jul 2004 1393 601 1697 1096 297 

aug 2004 - jul 2005 1436 468 1636 1168 268 

aug 2005 - jul 2006 1369 757 1906 1149 220 

aug 2006 - jul 2007 1271 698 2069 1371 -100 

Grande  [P correction factor obtained per sub basin] 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 793 123 1630 1507 -714 

aug 2003 - jul 2004 776 115 1444 1329 -553 

aug 2004 - jul 2005 727 98 1475 1377 -650 

aug 2005 - jul 2006 672 155 1779 1624 -952 

aug 2006 - jul 2007 714 166 1541 1375 -661 

Ichilo [P correction factor obtained per sub basin] 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] Qobs < P P <  etp + qobs 

aug 2001 - jul 2002 1121 2397 1927 -470 1591 

aug 2002 - jul 2003 112 2624 1742 -882 994 

aug 2003 - jul 2004 1127 2023 1722 -301 1428 

aug 2004 - jul 2005 1222 1762 1544 -218 1440 

aug 2005 - jul 2006 1181 2135 1686 -449 1630 

Mamore [P correction factor obtained per sub basin] 

meteorological year etp  [mm/y] qobs [mm/y] P [mm/y] qobs  < P P <  etp +  qobs 

aug 2002 - jul 2003 1432 719 1756 1037 395 

aug 2003 - jul 2004 1393 601 1707 1106 287 

aug 2004 - jul 2005 1436 468 1621 1153 283 

aug 2005 - jul 2006 1369 757 1931 1174 195 

aug 2006 - jul 2007 1271 698 2009 1311 -40 
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The results show an underestimation of the yearly areal mean precipitation for the sub basin Ichilo. 

This underestimation is even larger than the results of the two previous approaches shown above. 

The results of sub basin Grande shows values within both boundary conditions. Sub basin Mamore 

shows results with an overestimation of the yearly areal mean precipitation.   

4. No correction factor - approach 

This approach does not use a correction factor for height for the areal mean precipitation. This 

means the area of each Thiessen polygon will just be represented by its measure station. The results 

of this approach are shown in the table below. 

 

 

 

 

 

 

 

 

 

 

 

Grande  [P correction factor obtained per Thiessen polygon] 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 793 123 568 445 348 

aug 2003 - jul 2004 776 115 511 396 380 

aug 2004 - jul 2005 727 98 495 397 330 

aug 2005 - jul 2006 672 155 617 462 210 

aug 2006 - jul 2007 714 166 564 398 316 

Ichilo  [P correction factor obtained per Thiessen polygon] 

meteorological year etp [mm/y] qobs [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2001 - jul 2002 1121 2397 1778 -619 1740 

aug 2002 - jul 2003 112 2624 1614 -1010 1122 

aug 2003 - jul 2004 1127 2023 1599 -424 1551 

aug 2004 - jul 2005 1222 1762 1428 -334 1556 

aug 2005 - jul 2006 1181 2135 1567 -568 1749 

Mamore  [P correction factor obtained per Thiessen polygon] 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 1432 719 3046 2327 -895 

aug 2003 - jul 2004 1393 601 2951 2350 -957 

aug 2004 - jul 2005 1436 468 2756 2288 -852 

aug 2005 - jul 2006 1369 757 3322 2565 -1196 

aug 2006 - jul 2007 1271 698 3378 2680 -1409 

Grande  [P no correction] 

meteorological year etp  [mm/y] qobs [mm/y] P [mm/y] qobs   < P P <  etp  + qobs 

aug 2002 - jul 2003 793 123 546 423 370 

aug 2003 - jul 2004 776 115 497 382 394 

aug 2004 - jul 2005 727 98 485 387 340 

aug 2005 - jul 2006 672 155 605 450 222 

aug 2006 - jul 2007 714 166 549 383 331 

Ichilo  [P no correction] 

meteorological year etp [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2001 - jul 2002 1121 2397 1968 -429 1550 

aug 2002 - jul 2003 112 2624 1778 -846 958 

aug 2003 - jul 2004 1127 2023 1754 -269 1396 

aug 2004 - jul 2005 1222 1762 1572 -190 1412 

aug 2005 - jul 2006 1181 2135 1716 -419 1600 

Mamore  [P no correction] 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 1432 719 1784 1065 367 

aug 2003 - jul 2004 1393 601 1699 1098 295 

aug 2004 - jul 2005 1436 468 1636 1168 268 

aug 2005 - jul 2006 1369 757 1920 1163 206 

aug 2006 - jul 2007 1271 698 2054 1356 -85 
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The results show once again an underestimation of the areal mean precipitation for sub basin Ichilo. 

An explanation for these underestimations could be that the calculations of the observed discharge 

for this sub basin is systematically done wrong. Another aspect which could have led to the failure of 

meeting the boundary conditions is the fact that none of the meteorological measure stations are 

location within the borders of sub basin Ichilo. Data of measure stations outside sub basin Ichilo 

needs to be extrapolated to calculate the areal mean precipitation, which means that the sources  

are less related to the area they represent.  

 

From 3 to 2 sub basins 

Because sub basin Ichilo failed to meet the boundary conditions for all four approaches, the decision 

is merge sub basin Ichilo and sub basin Mamore, which off course leads to one sub basin less.  

A volume check is executed for this new sub basin following the two areal mean precipitation 

approaches for with sub basin Grande met the boundary conditions: ‘no correction factor’-approach 

and ‘correction factor per Thiessen polygon’ approach. The results of these volume checks are shown 

in the table below. 

 

The results of new, larger, sub basin Mamore shows a failure of meeting the boundary conditions 

with ‘correction factor per Thiessen polygon’-approach.  The areal mean precipitation is 

overestimated with this approach.  

In conclusion, to meet the boundary conditions in the volume checks the sub basins Ichilo and 

Mamore need to merge. Further, out of the four approaches described, ‘no correction factor ‘-

approach seems to be the best approach to determine the areal mean precipitation for this basin. 

 

  

Mamore   P no correction P corre. per  polygon 

meteorological year etp  [mm/y] qobs  [mm/y] P [mm/y] qobs  < P P <  etp + qobs P [mm/y] qobs  < P P <  etp + qobs 

aug 2002 - jul 2003 1267 1071 1783 712 555 3146 2075 -808 

aug 2003 - jul 2004 1233 872 1706 834 399 3064 2192 -959 

aug 2004 - jul 2005 1268 704 1629 925 343 2819 2115 -847 

aug 2005 - jul 2006 1214 1043 1896 853 361 3400 2357 -1143 

aug 2006 - jul 2007 1120 1132 2057 925 195 3478 2346 -1226 
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Appendix C 
Tables copied from Rodal (2008) showing  characteristics of the sections of river Mamoré and its 

tributaries. 

 

 

 


