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ABSTRACT  
 
The design of an optimal road pricing scheme is not a trivial problem. Following the Dutch 
government’s kilometre charge plans, this paper focuses on the optimization of link based toll levels 
differentiated in space and time. The optimal toll level design problem is formulated as a bi-level 
mathematical program. In the upper level we minimize an objective function, e.g. the average travel 
time in the network, using a fixed number of price categories. At the lower level a dynamic traffic 
assignment model is used to determine the effects of differentiated road pricing schemes on the traffic 
system. Focus of the paper is on the upper-level where optimal toll levels are approximated. In the 
optimization procedure different variants of a pattern search algorithm are tested in a case study. 
Inspection of the solution space shows that many local minima exist, so the selection of the initial 
solution becomes important. In the case study however it appears that in all local minima the value of 
the objective function is almost the same, indicating the fact that many different toll schemes result in 
the same average travel time. The case study is also used to test the performance of the different 
variants of the pattern search algorithm. It appears that it is beneficial to change more variables at a 
time and to use a memory to remember where improvement of the objective function has been made.  
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INTRODUCTION  
 
Within the world of traffic engineering, road pricing is considered as a measure that may alleviate 
several problems in the current transport system: congestion, environmental damage, use of 
unsustainable recourses, use of space, etc. Some successful practical cordon based applications of road 
pricing exist (for instance Singapore, London, Stockholm). The Dutch government plans to develop a 
link based, time, space, and vehicle type differentiated toll system. Thus the amount of toll a car driver 
has to pay depends a. o. on the number of kilometres driven, but also on the time of travel, the route 
chosen, and the vehicle. Main goal of this system is to achieve a fairer system where heavy users of 
the transport system pay more than occasional users, and where the toll-level follows demand: the 
higher demand, the higher the price. Further, with a toll system as proposed also other objectives may 
be met. Model studies have shown that as a result of toll measures problems concerning congestion, 
CO2 and air quality can be alleviated. Now this paper addresses an important question: given a 
network and a demand, what is an optimal toll scheme to reach a certain policy objective. 

This paper is structured as follows. Based on a concise review of the literature of optimizing 
road pricing with dynamic traffic assignment models, the problem is defined and formulated 
mathematically, using a limited solution space. A solution approach is then discussed, which results in 
a solution algorithm with different variants. The variants of the solution algorithm are tested in a case 
study with different initial solutions. We describe the setup of these tests and the results in succeeding 
sections. Finally, conclusions are presented, including possible future improvements of the framework. 
 
Literature review 
The problem of congestion pricing has been studied from different modelling perspectives and under 
various assumptions: marginal cost pricing / second best pricing, different policy objectives, static / 
dynamic, fixed / elastic demand, link-based / path-based / zone-based pricing. In this study we did not 
aim to carry out an extensive literature review on the history of road pricing research. Such a review is 
for example given in (1). We focussed on dynamic models and bi-level modelling approaches for 
optimizing road pricing measures. 

In (2) a static elastic demand model with queues is given and a bi-level programming 
approach is used to select the first best tolling policy that replaces delays with an equivalent level of 
the tolls. (3) studied static second best pricing with perfect driver information and elastic demand.  

Dynamic models with time varying network conditions and link tolls have been addressed. (4) 
compares the effect of various pricing policies (uniform, time-varying, and step tolls). (5) and (6) 
developed dynamic first best pricing models for general transportation networks, with the important 
drawback that application of the model is limited to destination specific tolling. In (1) and (7), the 
problem of optimal tolling is formulated as a bi-level mathematical program. Supply, i.e. the transport 
network is modelled as a directed weighted graph, where the weights are a combination of travel time 
and toll, which may differ in time. Demand is modelled as a given OD-matrix and is input to the 
problem. In the upper level the policy objective (e.g. minimization of congestion or total travel time) is 
formulated as objective function, which depends on the value of the design variables: the space and 
time differentiated toll levels. Some of the stakeholders’ demands (e.g. minimum and maximum price 
levels) are formulated as constraints. Travel times depend on the amount of traffic in the network. 
These are determined in the lower level, where some form of a dynamic user equilibrium is assumed. 
Thus in the upper level tolls are set to minimize for instance travel times, in the lower level the travel 
times are determined, given the tolls. In order to solve the problem, an optimization was carried out for 
a small hypothetical network and a straightforward pricing scheme (constant toll or two different tolls 
in two time periods, only at one tolling location). The search algorithm that was used is a 
straightforward exhaustive search algorithm, that can only be applied in very simple networks.  

In this paper we follow this approach and we develop an optimization method that can be used 
for larger networks, and also allows for more space and time differentiation in toll schemes. Because 
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the computation times involved to evaluate the lower level, more intelligent search algorithms must be 
used. Furthermore, we consider distance based tolls instead of tolls per passage.   
 
PROBLEM DEFINITION 
 
As was mentioned in the introduction besides improving the fairness of the transport system another 
objective of the road authority for the introduction of tolls might be to improve system performance 
(for example to minimize average travel time). This is achieved by choosing optimal tolls within 
realistic constraints and subject to the traffic assignment. The road authority selects feasible values for 
tolls to optimize its own objective function, while network users face these tolls and adapt their route 
and departure time decisions to minimize their individual travel cost, resulting in changes in the 
dynamic flow pattern. In response, the road authority will adapt the tolls, and travellers will respond 
again. 

We now consider an ordered set of predefined prices 1 1 2{ ,..., }, ...m mP p p p p p= < < < , 

where 1 0p ≥  and p is in €/km. For each time window t a price at Pπ ∈  is assigned to each link a in 

the network. The order of the price in set P is defined in the following function: ( )ato vπ =  if 

at vpπ = . An initial assignment is based on the level of service of the link, e.g. when the flow-

capacity ratio is high, the price of the link will also be high. Additionally, the location of the link (rural 
versus urban) is important and in principle, every link could be assigned its own price. In this paper 
however we reduced the solution space because each model evaluation is time consuming. To achieve 
this, the links and time windows are categorised in groups which will have the same toll level, based 
on comparable level of service and location of the link. The initial assignment is based on the average 
level of service in the group. Starting from the initial solution, we try to improve the toll setting 
further. From a mathematical viewpoint, we chose to use a discrete solution space, because gradient 
based methods, like steepest descent or Powel’s method, require a lot of computation time, because no 
analytical gradient can be computed in this case. In every iteration a numerical gradient has to be 
computed and the line search sub problem has to be solved. For more information on these search 
techniques, see (8). 
 
Notation 
 
Sets and indices 

,a b A∈  Links 

∈d D   Nodes 
∈ ⊆i I D  Origins 
∈ ⊆j J D  Destinations 

,t w T∈  Time windows 

p P∈   Toll categories  

ijr R∈   Routes between OD pair ij  

g G∈   Groups of links 

h H∈   Groups of time windows 
 
Variables 

tk  Length time window t (h) 

al  Length link a (km) 

ac  Capacity link a (veh/h) 
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agµ  Index groups links: equals 1 if link a is in link group g, and equals 0 otherwise (binary) 

whθ  Index groups time periods: equals 1 if time window w is in time window group h, and  

equals 0 otherwise (binary) 

atu  Average inflow on link a during time period t (veh/h) 

atτ  Average travel time on link a during time period t (h)  

atC  Congestion indicator: equals 1 if 0.6υ ≤at as  and equals 0 otherwise 

as  Free flow speed link a (km/h) 

atυ  Average speed on link a during time period t (km/h) 

N  Total number of travellers in the network 
 
Decision variable 

atπ  The link price link a during time period (€/km) 

 
Objective functions 
Three different objective functions have been researched. Minimization of average travel time is used 
to test the optimization procedure. The total congestion and total revenue are also investigated. The 
objective functions are: 

min ( ) /
at

at at t
a t

u k N
π

τ∑∑     (1) 

min
at

at a a
a t

C l c
π ∑∑      (2) 

max
at

at at t a
a t p

u k l
π

π∑∑∑     (3) 

 
Constraints 
To reduce the solution space we use link groups and time window groups. All links are assigned to a 
unique group and within a group all links get the same price. The same holds for the time windows. 
This is enforced by the following constraints:  

m

m

(1 ) , ,

(1 ) , ,

µ µ π π

µ µ π π

− + ≥ ∀ >

− − + ≤ ∀ >

∑

∑

ag bg at bt
g

ag bg at bt
g

p a b a t

p a b a t
  (4) 

m

m

(1 ) , ,

(1 ) , ,

θ θ π π

θ θ π π

− + ≥ ∀ >

− − + ≤ ∀ >

∑

∑

th wh at aw
h

th wh at aw
h

p a t w t

p a t w t
  (5) 

In this formulation the toll level is not free, but has to be chosen from a limited number of price 
categories: 

1{ ,..., }at mP p pπ ∈ =      (6) 

In the lower level it is determined how the travellers respond to the tolls that were set in the upper 
level. It is assumed that users of the system may alter their routes and departure times. This is 
modelled as a dynamic stochastic user equilibrium (DSUE), where users minimize their individual 
perceived generalized costs (a weighted sum of toll, travel time, and schedule delays). The use of 
perceived costs achieves a more realistic user equilibrium, because not every individual from a 
heterogeneous population experiences the same disutility for the same route (e.g. comfort, speed, nice 
views, etc.). This results in the constraint:  
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,∀atu satisfies DSUE a t    (7) 

Solution space 
The mathematical formulation is such that the solution space is discretized in several ways. First in the 
upper level, the toll level is discretized by stating that the price is an element of P, links are divided 
into link group from a set G, and the time is divided into intervals in H. Thus we are trying to find 
optimal values for matrix Π , with elements hg Pπ ∈ . Thus the number of possible solutions for Π is 

*G H
P , which is huge (e.g. 5 price categories, 4 time windows, and 3 link groups yield 2.4*108 

possible solutions). 
 
SOLUTION APPROACH 
 
For the lower level DSUE we have used a macroscopic dynamic equilibrium model (INDY), see (9), 
(10), To INDY a departure time choice model was added as described in (11), see Figure 1. Input for 
the model are a network, an OD-matrix, a PAT-profile, a fixed route set, and a toll setting. 

 
FIGURE 1  Computation of the effects of a toll setting. The procedure terminates when DSUE is reached. 
 
One run of the lower level model is time consuming and an exhaustive grid search of all possible 
solutions becomes already infeasible with a only a limited number of price categories, link groups and 
time windows. As an alternative, a local search algorithm is used, which is called pattern search (12). 
Such an algorithm starts with an initial solution, and considers whether neighbors of this solution give 
improvement or not. In our case a neighbor is defined as follows: 
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Definition 
1Π  is called a (h,g)-neighbor of 2Π  if 1 2 , ( , ) ( , )fe fe f e h gπ π= ∀ ≠  and 1 2( ) ( ) 1hg hgo oπ π− =  where 

( )hgo vπ =  if hg vpπ = , as defined earlier. 

Furthermore, 1Π  is the right (h,g)-neighbor of 2Π  if they are (h,g)-neighbors and 
1 2( ) ( ) 1hg hgo oπ π− =  and the left (h,g)-neighbor if 1 2( ) ( ) 1hg hgo oπ π− = −  

 
When no neighbor gives an improvement anymore, the algorithm terminates. When the objective 
function is convex and continuous, this is the global minimum. However, in (1) was showed that the 
objective function can already be non convex in a simple three link network, so it is likely that the 
objective function is non convex in a general network. Moreover we here consider a discrete 
formulation of the problem. The optimal toll setting from the optimization algorithm will therefore 
likely be a local minimum. There exist search algorithms that are capable of escaping from a local 
minimum, like tabu search, simulated annealing and genetic algorithms, see for example (13). 
However, these algorithms use many function evaluations (model runs on the lower level) which is 
computational expensive so, we have chosen to concentrate on the pattern search algorithm. 
 
Variants of pattern search 
The design variables of this problem consist of the toll matrix Π . The basic pattern search algorithm 
in this research is given in Algorithm 1. The objective function value can be seen as a function of the 
toll setting π : ( )z π . 
 
Algorithm 1 

n = iteration number, nπ  = toll vector in iteration n, 0π  = initial toll vector,d  = dummy variable 

Initialise: n=1, 1 0:π π=  
FOR h = 1 to |H| 
 FOR g = 1 to |G| 

  Now suppose (w.l.o.g.) nhg vpπ =  

  Define 1:hg vd p += (if the right (h,g)-neighbor of nπ  exists) 

  IF 11( ,..., ,..., ) ( )n n n
hg HGz d zπ π π<  

  THEN 1
1:n

hg vpπ +
+= , : 1n n= +  

  ELSE 1:hg vd p −=  (if the left (h,g)-neighbor of nπ  exists) 

  IF 11( ,..., ,..., ) ( )n n n
hg HGz d zπ π π<  

  THEN 1
1:n

hg vpπ +
−= , : 1n n= +  

  ELSE 1 :n
hg vpπ + = , : 1n n= +  

 END 
END  
This loop is repeated until no improvement in ( )z π  occurs anymore.  
 
The way to select the next variable 
When little is known about the shape of the objective function, it is hard to determine the best order in 
which to select variables. However, the order of the variables can have influence on the results and the 
speed of the search algorithm, because the order determines the route of the algorithm through the 
solution space. In Algorithm 1 this order is determined by the structure of the FOR loop. The order can 
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as well make the algorithm terminate in another local minimum. Another aspect of this topic is to use 
a single order or to use multiple orders when a new loop begins. These multiple orders can be 
predetermined, random, or use information of former iterations. In Table 1 an overview is given of the 
experiments on this topic in this research.  
 
TABLE 1  Properties of the variants of pattern search tested in this research 
Pattern search Way to select next variable When improvement 
P1 Like in algorithm 1 Like in algorithm 1 
P2 Change g and h in the FOR loops in algorithm 1 Idem as P1 
P3 Change all variables within a group at the same time 

i.e. compute 11 1 2( ,..., , ..., ,..., )n n
h h hG HGz d d dπ π  or 

compute 11 1 2( ,..., , ..., ,..., )n n
g g Hg HGz d d dπ π  

Idem as P1 

P4  
 

Randomly select a hgπ  from the set of variables 

without a label. When a variable gives no 
improvement, add a label to it. 

Idem as P1 

P5 Idem as P2.  WHILE 

11( ,..., ,..., ) ( )n n n
hg HGz d zπ π π< , 

define 2hg vd p +=  etc. or 

2hg vd p −=  etc. 

P6 Idem as P1, but after the first execution of the FOR 
loop, skip variables which did not give 
improvement in the former FOR loop.   

Save the new value of the 
variable, add variable to the 
improvement list, and select the 
next variable. 

Former iterations are stored in each variant 
 
When a solution gives improvement 
What to do after improvement is an important question, because it can influence the direction in which 
the algorithm develops. One strategy is to stay with a variable when improvement is occurred with the 
argument that it is likely that more improvement is possible in this variable (P5, see Table 1). This 
strategy has the danger that it ignores other directions in which more improvement is possible. To 
prevent this phenomenon a strategy can be used in which after improvement in one variable, the new 
value is saved, but a next variable is selected (P1 to P4). Finally, in P6 the improved variables are 
stored in an improvement list. These variables are tried to improve further in the next iterations, until 
no further improvement is possible. Then, all variables are tried again to be improved, etc.  
 
CASE STUDY 
 
The modelling framework is applied to a case study, in order to gain information on the shape of the 
objective function and the behaviour of the variants of the search algorithm.  

The test network based on the real network of the town of Delft in the western part of the 
Netherlands. It contains two main highways: the A13 and the A4. The rest of the network consists of 
urban roads (see Figure 2). The network further consists of 12 centroids, 137 links and 90 nodes. 
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FIGURE 2  The test network. 
 
The time period is an AM peak, from 7:00 AM to 9:00 AM. In order to include some warm-up and 
cool down time to fill and empty the network, the modelled time period is from 6:00 AM to 10:00 
AM. Some fixed preferred arrival time profile is used, corresponding to this peak period. In the 
situation without tolls ( 0,0Π  is a matrix filled with zero’s), the average travel time in the network is 

0,0( ) 28.1minz Π = . Most traffic travels along the A13: at 7.30AM queues start to form there in front 
of on- and off-ramps. Around 8PM smaller queues develop on the A4 and on the urban roads. So a 
clear distinction exists between busy highways (A13), quiet highways (A4), and other roads (town).  

Now the sets H, G, and P are defined. In this test network it is chosen to create three link 
groups: { ,A13,A4}G town= . The morning peak is divided in 4 time-intervals of each 30 minutes, so 

{7 : 00 7 :30,7 :30 8 : 00,8 : 00 8 :30,8 :30 9 : 00}H = − − − − . The warm-up and cool-down period 
have no toll. This results in 12 variables to be optimized. Then five price categories ranging from 
€0.00 per km to €0.20 per km are defined, with a step size of €0.05, so 

{0.00,0.05,0.10,0.15,0.20}P = . 
 
The initial solution 
A carefully chosen, initial solution can strongly contribute to the fast achievement of a good solution. 

In Table 2 three different values for 0Π  are presented. Most analyses in this research have been 
executed with 0,1Π . This initial toll vector is based on the reference run, with busy roads getting a 
higher price. The other two initial solutions are chosen such that they differ significantly from 0,1Π . 

Note that the z value of 0,3Π  is higher than the situation without tolls. This means that tolls are set on 
wrong locations and times in a way that travellers are driven into congestion.  
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TABLE 2  Three initial toll solutions 
 Initial solution 1: 

0,1Π  
0,1( ) 25.25minz Π =  

 Initial solution 2: 
0,2Π  

0,2( ) 27.83minz Π =   

Initial solution 3: 
0,3Π  

0,3( ) 31.95minz Π =  

Toll level (€/km) Toll level (€/km) Toll level (€/km) 
Time period town A13 A4 

 
town A13 A4  town A13 A4 

6:00-7:00 0 0 0 0 0 0 0 0 0 
7:00-7:30 0 0 0 0.20 0.20 0.20 0 0.20 0 
7:30-8:00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0 0.20 
8:00-8:30 0.15 0.20 0.15 0.20 0.20 0.20 0 0.20 0 
8:30-9:00 0.05 0.10 0.05 0.20 0.20 0.20 0.20 0 0.20 
9:00-10:00 0 0 0 

 

0 0 0  0 0 0 
 
EXPERIMENTAL RESULTS 
 
In this section the results of the numerical experiments are presented. First, all 6 variants of the pattern 
search algorithm are tested with initial solution 0,1Π . The three best variants are selected, and their 
behaviour using the other initial solutions is then tested. Finally the effect on two different objective 
functions is investigated.   
 

TABLE 3  Results achieved with the different pattern search algorithms using initial solution 0,1Π  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance of the variants of pattern search 
In Table 3 the results of all 6 variants of pattern search with 0,1Π  are presented. P4 has a random 
component, so it is executed 4 times with different random seeds (sub-variants P4-1 – P4-4). The 
number of iterations in the table corresponds to the number of toll settings that is evaluated in the 
lower level. So only a tiny part of the complete solution space of 2.4*108 possible solutions is 

searched. In this section and in the next section 10 different local minima were found (*
1Π  to *

10Π ), so 

indeed the objective function is not convex. The best objective function value is an average travel time 

of 22.90 minutes, compared to 0,1( ) 25.25minz Π = . This value is achieved by two different search 

algorithms at two different local minima *2Π  and *
3Π . Both computation time and objective function 

Search 
algorithm 

*Π  *
1( )z Π  

(min) 

Number of iterations 
to termination of 
algorithm 

P1 *
5Π  23.11 80 

P2  *
4Π  23.07 95 

P3 *
7Π  23.34 38 

P4-1 *
2Π  22.90 74 

P4-2 *
10Π  24.22 22 

P4-3 *
10Π  24.22 37 

P4-4 *
10Π  24.22 51 

P5 *
10Π  24.22 42 

P6 *
3Π  22.90 65 
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value are used to assess the variants. The best result is achieved by P6: this variant only uses 65 
iterations to find the best value. P4 also achieved this value in P4-1, but in P4-2 to P4-4 a much worse 
local minimum has been found, so overall this is not a good variant. P1 and P2 achieved a little worse 
objective function value, but used considerably more iterations to reach that value, so the performance 
is worse. P3 has a little worse objective function value again, but uses less iterations to reach this 
value. P5 does not achieve a good average travel time value in this case and it uses many iterations, so 
it is not a good variant. The development of the average travel time throughout iterations when 
executing the best three variant (P1, P3, and P6) is compared in Figure 3, which illustrates the 
performance differences of these algorithms. 

FIGURE 3  The development of the average travel time value throughout iterations, using the pattern 
search algorithms P1, P3 and P6. 
 
Different initial solutions 
Since the objective function is not convex and because we use a local search algorithm like pattern 
search, the chance of ending up in a local minimum is high. The search algorithm variants are 
therefore tested with 2 other initial solutions. In Table 4 the results are presented and it can be 
concluded that all three variants perform quit good. In fact the impact of another initial solution on the 
end solution of the objective function is relatively small. Yet, this is also the result of the flat shape of 
the objective function since each combination of initial solution and variant of pattern search results in 
another end-solution but the values of the objective function are comparable. Thus, the objective 
function is such that many local minima (toll-settings) exist, that produce almost equal average travel 
times. The only difference is the number of iterations that is required. Obviously the worse the initial 
solution is the longer it takes to reach an optimum. Further it appears that variant P3 needs the least 
amount of iterations for all initial solutions 
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TABLE 4  The effect of different initial solutions 
Search 
algorithm 

Initial 
toll 
solution 

Resulting 
toll 
setting 

Objective 
function 
value (min) 

Number of iterations 
to termination of 
algorithm 

P1 0,1Π  *
5Π  23.11 80 

P1 0,2Π  *
8Π  23.46 125 

P1 0,3Π  *
6Π  23.30 95 

P3 0,1Π  *
7Π  23.34 38 

P3 0,2Π  *
5Π  23.11 74 

P3 0,3Π  *
9Π  23.68 91 

P6 0,1Π  *
3Π  22.90 65 

P6 0,2Π  *
1Π  22.72 139 

P6 0,3Π  *
6Π  23.30 110 

 
Differences between local minima 
As mentioned earlier, 10 different local minima were found ( *

1Π  to *
10Π ). In every resulting toll 

setting, a similar structure can be observed, which follows the peak in the traffic demand: the tolls start 
low, then increase, and finally decrease again. In each of these local minima, 22 0.20π = , so here it is 

clear that the toll should be on the maximum level. For the other variables different combinations 
occur, within the mentioned rough structure. Furthermore, in most local minima the toll values in link 
group ‘town’ are lower than in the other two link groups.  

In order to illustrate these observations, Table 5 shows three examples of these local minima: 

the best found solution *
1Π , a solution with relatively low toll values, *3Π , and a solution with a 

relatively bad average  travel time value, *
10Π , which quite differs from *

1Π  and is close to initial 

solution 0,1Π .  
 
TABLE 5  Three local minima 

 *
1Π  

*
1( ) 22.72minz Π =  

 *
3Π

*
3( ) 22.90minz Π =   

*
10Π

*
10( ) 24.22minz Π =  

Toll level (€/km) Toll level (€/km) Toll level (€/km) 
Time period town A13 A4 

 
town A13 A4  town A13 A4 

6:00-7:00 0 0 0 0 0 0 0 0 0 
7:00-7:30 0 0 0.05 0 0 0 0 0 0 
7:30-8:00 0.15 0.20 0.15 0.20 0.20 0.10 0.20 0.20 0.20 
8:00-8:30 0 0.05 0.20 0 0.15 0.10 0.05 0.20 0.15 
8:30-9:00 0 0.10 0.20 0 0.10 0.10 0.05 0.15 0.05 
9:00-10:00 0 0 0 

 

0 0 0  0 0 0 
 
Effects on total revenue and total congestion 
Until now all tests were performed where the objective function was the average travel time. Earlier 
other objective functions were defined, i.e. the total revenue and total congestion. In Table 6 for all 
local minima the values of the three objective functions are listed. 
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TABLE 6  The values of three different objective functions 

*Π  
Average travel 
time (min) 

Total  
revenue (104 €) 

Total congestion 
(106)  

*
1Π  22.72 2.6 2.9 
*
2Π  22.90 2.3 3.2 
*
3Π  22.90 2.2 2.9 
*
4Π  23.07 2.4 2.9 
*
5Π  23.11 2.3 2.9 
*
6Π  23.30 2.4 2.9 
*
7Π  23.33 2.3 2.8 
*
8Π  23.46 2.8 3.0 
*
9Π  23.68 2.1 3.2 
*
10Π  24.22 2.8 2.8 

 
The total revenue of the different toll settings varies highly: the highest revenue is 35.5% higher than 
the lowest revenue, while the corresponding average travel time only differs 6.6%. The value of the 
total congestion is a dimensionless indicator for the level of congestion in the network, where longer 
links and links with a higher capacity are weighted higher, see equation (2). The total congestion level 
also varies differently than the average travel time. This is probably caused by the indicator 
formulation of the congestion objective function: a link is either congested or not, while the travel time 
on a link can vary continuously.  

Optimization with respect to another objective function would thus result in different 
solutions, as could be expected. In the case of average travel time minimization, the resulting toll 
settings in most cases have higher tolls on the A4 than on the roads in the town. So apparently, the 
average travel time decreases when the traffic is guided through the town, which may for example 
from the viewpoint of liveability or an environmental viewpoint be an undesirable situation. This 
confirms that the objective function should be chosen with care and the resulting toll setting should be 
carefully considered, because otherwise undesirable effects on other objectives could occur.  
 
CONCLUSIONS 
 
The optimal toll level design problem is formulated as a bi-level mathematical program and an 
approximation approach is presented for finding the optimal toll levels in space and time 
differentiated, link based pricing, with the objective to minimize average travel time. Different 
variants of the search algorithm have been compared and the effect of a different initial solution is 
treated. 

Application of different variants of the pattern search algorithm to the case study showed that 
it is possible to achieve considerable improvements in the value of the average travel time compared 
with the situation without tolls and with an initial toll solution. Multiple local minima have been 
found, but the average travel time value is comparable in most local minima. So different toll settings 
are roughly the same by means of the policy objective. Other political arguments, like the expected 
revenue of these toll settings, can determine which exact toll setting is to be implemented. The risk to 
end up in a bad local minimum is small, because different initial solutions all gave acceptable 
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solutions. The initial solution has influence on the speed of the algorithm: when it is far away from the 
optimal solution, it takes longer to reach a local minimum than when it is already close.  

When the algorithm saves in what variables improvement has been made, better average travel 
time values have been achieved within the same computation time. When the algorithm changes more 
than one variable at a time, considerably shorter computation times can be achieved with only slightly 
worse average travel time values. When all variants of pattern search are compared, a weak relation 
exists between computation time and achieved average travel time value: long computation times 
achieve better average travel time values. 

This paper showed that it is possible to apply a pattern search algorithm in this context. When 
this framework is applied in practice, it is yet only computationally feasible with little space and time 
differentiation and a few price categories, so this definition is important. Furthermore, the definition of 
the objective function strongly determines the resulting toll setting, so it should be carefully 
considered. 

It is likely that general findings in this research also apply for other networks, though this is 
not shown in this paper. Future application of this framework to other networks is recommended. 
When this framework is applied to bigger networks, further improvements in the lower level are 
needed. The behaviour of other search algorithms in this context like simulated annealing is as well an 
interesting topic for future research.  
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