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ABSTRACT

The design of an optimal road pricing scheme isartoivial problem. Following the Dutch
government’s kilometre charge plans, this papeuges on the optimization of link based toll levels
differentiated in space and time. The optimal l®lel design problem is formulated as a bi-level
mathematical program. In the upper level we minaran objective function, e.g. the average travel
time in the network, using a fixed number of pretegories. At the lower level a dynamic traffic
assignment model is used to determine the efféagferentiated road pricing schemes on the teaffi
system. Focus of the paper is on the upper-levergvbptimal toll levels are approximated. In the
optimization procedure different variants of a paitsearch algorithm are tested in a case study.
Inspection of the solution space shows that maogl lminima exist, so the selection of the initial
solution becomes important. In the case study hewgappears that in all local minima the value of
the objective function is almost the same, indiathe fact that many different toll schemes reisult
the same average travel time. The case studyasiakd to test the performance of the different
variants of the pattern search algorithm. It app#aat it is beneficial to change more variables at
time and to use a memory to remember where imprement the objective function has been made.
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INTRODUCTION

Within the world of traffic engineering, road prg is considered as a measure that may alleviate
several problems in the current transport systemgestion, environmental damage, use of
unsustainable recourses, use of space, etc. Saoessiul practical cordon based applications af roa
pricing exist (for instance Singapore, London, 8hmim). The Dutch government plans to develop a
link based, time, space, and vehicle type diffea¢ed toll system. Thus the amount of toll a cavedr
has to pay depends a. 0. on the number of kilomeltigen, but also on the time of travel, the route
chosen, and the vehicle. Main goal of this systto iachieve a fairer system where heavy users of
the transport system pay more than occasional umedswhere the toll-level follows demand: the
higher demand, the higher the price. Further, witbll system as proposed also other objectives may
be met. Model studies have shown that as a rektdtlaneasures problems concerning congestion,
CO, and air quality can be alleviated. Now this pagdairesses an important question: given a
network and a demand, what is an optimal toll sehémreach a certain policy objective.

This paper is structured as follows. Based on &@iserreview of the literature of optimizing
road pricing with dynamic traffic assignment mod#éhe problem is defined and formulated
mathematically, using a limited solution space.ofugon approach is then discussed, which resnlts i
a solution algorithm with different variants. Thariants of the solution algorithm are tested irasec
study with different initial solutions. We descrithee setup of these tests and the results in sdicgee
sections. Finally, conclusions are presented, diolyipossible future improvements of the framework.

Literaturereview
The problem of congestion pricing has been stufitead different modelling perspectives and under
various assumptions: marginal cost pricing / sedwesd pricing, different policy objectives, static
dynamic, fixed / elastic demand, link-based / gadked / zone-based pricing. In this study we did no
aim to carry out an extensive literature reviewtlma history of road pricing research. Such a revgew
for example given ifl). We focussed on dynamic models and bi-level modglpproaches for
optimizing road pricing measures.

In (2) a static elastic demand model with queues is girieha bi-level programming
approach is used to select the first best tolliolicy that replaces delays with an equivalent lefel
the tolls.(3) studied static second best pricing with perfentestrinformation and elastic demand.

Dynamic models with time varying network conditicasd link tolls have been addressg.
compares the effect of various pricing policiesifanm, time-varying, and step tollg)5) and(6)
developed dynamic first best pricing models foregahtransportation networks, with the important
drawback that application of the model is limiteddestination specific tolling. IfL) and(7), the
problem of optimal tolling is formulated as a bi¢ mathematical program. Supply, i.e. the transpor
network is modelled as a directed weighted gragtere/the weights are a combination of travel time
and toll, which may differ in time. Demand is mdddlas a given OD-matrix and is input to the
problem. In the upper level the policy objectivag(eninimization of congestion or total travel timg
formulated as objective function, which dependshenvalue of the design variables: the space and
time differentiated toll levels. Some of the stallelers’ demands (e.g. minimum and maximum price
levels) are formulated as constraints. Travel ticdeggend on the amount of traffic in the network.
These are determined in the lower level, where domme of a dynamic user equilibrium is assumed.
Thus in the upper level tolls are set to minimiaeihstance travel times, in the lower level trevél
times are determined, given the tolls. In ordesdlve the problem, an optimization was carriedfout
a small hypothetical network and a straightforwariding scheme (constant toll or two differentsoll
in two time periods, only at one tolling locatiofihe search algorithm that was used is a
straightforward exhaustive search algorithm, tlaat @anly be applied in very simple networks.

In this paper we follow this approach and we develo optimization method that can be used
for larger networks, and also allows for more spaue time differentiation in toll schemes. Because
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the computation times involved to evaluate the oleeel, more intelligent search algorithms must be
used. Furthermore, we consider distance basednstisad of tolls per passage.

PROBLEM DEFINITION

As was mentioned in the introduction besides imjprgthe fairness of the transport system another
objective of the road authority for the introducitiof tolls might be to improve system performance
(for example to minimize average travel time). Tikiachieved by choosing optimal tolls within
realistic constraints and subject to the traffisigisment. The road authority selects feasible wiae
tolls to optimize its own objective function, whitetwork users face these tolls and adapt theterou
and departure time decisions to minimize theirvilial travel cost, resulting in changes in the
dynamic flow pattern. In response, the road authaevill adapt the tolls, and travellers will resgbn
again.

We now consider an ordered set of predefined piReg p,..., B.}, A< B<-.< R,
where p, =0 andp is in €/km. For each time windowa price 77, L1 P is assigned to each lirskin
the network. The order of the price in Bas defined in the following functioro(7z,,) = v if

7T, = P, . Aninitial assignment is based on the level o¥ige of the link, e.g. when the flow-

capacity ratio is high, the price of the link walso be high. Additionally, the location of theKifrural
versus urban) is important and in principle, everly could be assigned its own price. In this paper
however we reduced the solution space becausengaadél evaluation is time consuming. To achieve
this, the links and time windows are categorisegroups which will have the same toll level, based
on comparable level of service and location oflitle The initial assignment is based on the averag
level of service in the group. Starting from thii@h solution, we try to improve the toll setting
further. From a mathematical viewpoint, we chosade a discrete solution space, because gradient
based methods, like steepest descent or Powellsdhetequire a lot of computation time, because no
analytical gradient can be computed in this casevery iteration a numerical gradient has to be
computed and the line search sub problem has $olsed. For more information on these search
techniques, se@).

Notation

Sets and indices

a,bdA Links

ddD Nodes
idlab Origins

jaJ oo Destinations

t,wdOT Time windows

pUP Toll categories

riR, Routes between OD pajr
guG Groups of links

hOH Groups of time windows
Variables

k. Length time window (h)
I Length linka (km)

a

C Capacity linka (veh/h)

a
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Mg Index groups links: equals 1 if liris in link groupg, and equals 0 otherwise (binary)

6, Index groups time periods: equals 1 if time windevs in time window grouph, and
equals 0 otherwise (binary)

u, Average inflow on linka during time period (veh/h)

T, Average travel time on lin& during time period (h)

C,  Congestion indicator: equals 1uf, < 0.6s, and equals 0 otherwise

S, Free flow speed link (km/h)
Average speed on lirkduring time period (km/h)
N Total number of travellers in the network

Decision variable
T, The link price linka during time period (€/km)

at

Objective functions
Three different objective functions have been netesd. Minimization of average travel time is used
to test the optimization procedure. The total cetiga and total revenue are also investigated. The

objective functions are:

n)[inZZ(uatratkt)/ N 1)
min> > C,l.c, (2)

TTat

maxy > > u,mkl, (3)
a a t p

Constraints
To reduce the solution space we use link groupdiemewindow groups. All links are assigned to a

unique group and within a group all links get thene price. The same holds for the time windows.
This is enforced by the following constraints:

pm(:l'_le'lagll'[bg)-'-]Tat2 nbt D a’b> a’t
9

(4)
_pm(l_zluaglubg)-l_ﬂatsn-bt D a’b> a’t
9

pm(l_zethewh)-l-ﬂatZ”aw D a’t’W> t
h

®)
_pm(l_zethewh)+ﬂatSﬂaw D a't'W> t
h

In this formulation the toll level is not free, bhas to be chosen from a limited number of price
categories:

T, UP={p,.... B} (6)
In the lower level it is determined how the tragedlrespond to the tolls that were set in the upper
level. It is assumed that users of the system rtaytheir routes and departure times. This is
modelled as a dynamic stochastic user equilibriD®UYE), where users minimize their individual
perceived generalized costs (a weighted sum qfttallel time, and schedule delays). The use of
perceived costs achieves a more realistic uselileguin, because not every individual from a
heterogeneous population experiences the samditidot the same route (e.g. comfort, speed, nice
views, etc.). This results in the constraint:
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u, satisfiesDSUE O a (7)

Solution space

The mathematical formulation is such that the sotuspace is discretized in several ways. Firshén
upper level, the toll level is discretized by stgtthat the price is an elementRflinks are divided
into link group from a se&B, and the time is divided into intervalskh Thus we are trying to find

optimal values for matrixX1, with elementsz,, L1 P . Thus the number of possible solutionsIfois

|P|‘GWH‘ , which is huge (e.g. 5 price categories, 4 timedeivs, and 3 link groups yield 2.4®10
possible solutions).

SOLUTION APPROACH

For the lower level DSUE we have used a macrosabpiamic equilibrium model (INDY), s€®),
(10), To INDY a departure time choice model was addedeeasribed ir{11), see Figure 1. Input for
the model are a network, an OD-matrix, a PAT-pepfd fixed route set, and a toll setting.

Total demand PAT = Preferred Arvival Time
FETT = Free Flow Travel Time
PAT profile POT = Praferred Depariure Time
FETT | g DTA = Dhmamic Traffic Assignmeni
A 4 TT = Traval Time
Tnitial dynamic DT = Departure Time Chaice
demand (FD'T)
Fized route set M INDY (DTA) P Toll
setting
TT Toll
LERES: LERES:

v v

Generalised travel

costs ¥ 11,0
Total generalised Schedule delay
costs ¥ 11,0 1 costs L.k
DTC

h

Danamic demand ¥ 1.t

FIGURE 1 Computation of the effects of atoll setting. The procedure ter minates when DSUE isreached.

One run of the lower level model is time consumang an exhaustive grid search of all possible
solutions becomes already infeasible with a orignéed number of price categories, link groups and
time windows. As an alternative, a local searclo@dlym is used, which is called pattern segt).
Such an algorithm starts with an initial solutiand considers whether neighbors of this solutiee gi
improvement or not. In our case a neighbor is @efias follows:
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Definition
M* is called a (h,g)-neighbor &1 > if 77}, = 775, 0(f ,€) # (h, ) and‘o(n,ﬁg) - o(nﬁg)‘ =1 where
o(7,,) = Vvif 7., = p,, as defined earlier.

Furthermore1* is the right (h,g)-neighbor dfl? if they are (h,g)-neighbors and
o(71,,) — o(71;,) =1 and the left (h,g)-neighbor d(77,,) — o(77,) = -1

When no neighbor gives an improvement anymorealdparithm terminates. When the objective
function is convex and continuous, this is the glahinimum. However, iifl) was showed that the
objective function can already be non convex iimgk three link network, so it is likely that the
objective function is non convex in a general nekw®oreover we here consider a discrete
formulation of the problem. The optimal toll setfifrom the optimization algorithm will therefore
likely be a local minimum. There exist search aitgpons that are capable of escaping from a local
minimum, like tabu search, simulated annealing gentktic algorithms, see for examfila).
However, these algorithms use many function evedoat(model runs on the lower level) which is
computational expensive so, we have chosen to otrate on the pattern search algorithm.

Variants of pattern search

The design variables of this problem consist ofttlematrix 1. The basic pattern search algorithm
in this research is given in Algorithm 1. The obijee function value can be seen as a function ef th
toll setting 77: z(77) .

Algorithm 1
n = iteration numberz" = toll vector in iteration nzz° = initial toll vectord = dummy variable
Initialise: n=1, 77 := 71°
FOR h =1to |H|
FOR g=1to |G|

Now suppose (W.I.o.gJ)TQg =p,
Define dhg '= P, (if the right (h,g)-neighbor of7" exists)

IF (73, ... Ay - T )< 2@ )
THEN 77,;" = p,,;, N:i=n+1
ELSE dhg = p,, (if the left (h,g)-neighbor of7" exists)

IF (7}, ... Ay - T )< 2@ )
THEN 77,;" = p,,, n:i=n+1

ELSE 71;" = p,, ni= n+1
END
END
This loop is repeated until no improvementa(rz) occurs anymore.

Theway to sdect the next variable

When little is known about the shape of the obyectunction, it is hard to determine the best oider
which to select variables. However, the order efwlariables can have influence on the results laad t
speed of the search algorithm, because the ordemdees the route of the algorithm through the
solution space. In Algorithm 1 this order is deteraa by the structure of the FOR loop. The order ca
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as well make the algorithm terminate in anothealloginimum. Another aspect of this topic is to use
a single order or to use multiple orders when a lo@p begins. These multiple orders can be
predetermined, random, or use information of foritezations. In Table 1 an overview is given of the
experiments on this topic in this research.

TABLE 1 Propertiesof thevariants of pattern search tested in thisresearch

Pattern search| Way to select next variable Whemakgment
P1 Like in algorithm 1 Like in algorithm 1
p2 Changg andh in the FOR loops in algorithm 1 Idem as P1

P3 Change all variables within a group at the stime | Idem as P1

i.e.computez(rzy,...,d,;,d,,...,0¢ ,...7T | OF
compute (7, ...,y , Gpg -y Qg Tl
P4 Randomly select a7, from the set of variables |ldem as P1

without a label. When a variable gives no
improvement, add a label to it.
P5 Idem as P2. WHILE

2oy T )< 200 ),

defined,, = p,,, etc. or

dny = P, etc.

P6 Idem as P1, but after the first execution off&R | Save the new value of the
loop, skip variables which did not give variable, add variable to the
improvement in the former FOR loop. improvement list, and select the

next variable.

Former iterations are stored in each variant

When a solution givesimprovement

What to do after improvement is an important questbecause it can influence the direction in which
the algorithm develops. One strategy is to stap wivariable when improvement is occurred with the
argument that it is likely that more improvemenpdssible in this variable (P5, see Table 1). This
strategy has the danger that it ignores other titirex in which more improvement is possible. To
prevent this phenomenon a strategy can be usetighwafter improvement in one variable, the new
value is saved, but a next variable is selecteddf®4). Finally, in P6 the improved variables are
stored in an improvement list. These variabledréed to improve further in the next iterationstilin

no further improvement is possible. Then, all valea are tried again to be improved, etc.

CASE STUDY

The modelling framework is applied to a case stirdprder to gain information on the shape of the
objective function and the behaviour of the vasaoftthe search algorithm.

The test network based on the real network ofdhentof Delft in the western part of the
Netherlands. It contains two main highways: the Ah#8 the A4. The rest of the network consists of
urban roads (see Figure 2). The network furthesistsiof 12 centroids, 137 links and 90 nodes.
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10

Urban roads

w0

{ \ Motorways

8
FIGURE 2 Thetest network.

The time period is an AM peak, from 7:00 AM to 9ABI. In order to include some warm-up and
cool down time to fill and empty the network, thedelled time period is from 6:00 AM to 10:00
AM. Some fixed preferred arrival time profile isags corresponding to this peak period. In the

situation without tolls [1°° is a matrix filled with zero’s), the average trhtime in the network is
z(M°°) = 28.1min. Most traffic travels along the A13: at 7.30AM ges start to form there in front
of on- and off-ramps. Around 8PM smaller queuestigvon the A4 and on the urban roads. So a
clear distinction exists between busy highways (Afj8iet highways (A4), and other roads (town).
Now the set#l, G, andP are defined. In this test network it is chosenreate three link
groups:G ={townA13,A4} . The morning peak is divided in 4 time-intervaleach 30 minutes, so
H={7:00-7:30,7:30- 8:00,8:06 8:30,8:30 9:( The warm-up and cool-down period
have no toll. This results in 12 variables to b&rozed. Then five price categories ranging from
€0.00 per km to €0.20 per km are defined, withep size of €0.05, so
P ={0.00,0.05,0.10,0.15,0.2.

Theinitial solution
A carefully chosen, initial solution can stronglyntribute to the fast achievement of a good satutio

In Table 2 three different values f61° are presented. Most analyses in this researchtieere
executed with%*. This initial toll vector is based on the refereman, with busy roads getting a
higher price. The other two initial solutions at®sen such that they differ significantly fram’*.

Note that the z value dfl®? is higher than the situation without tolls. Thigams that tolls are set on
wrong locations and times in a way that travel@esdriven into congestion.

TRB 2009 Annual Meeting CD-ROM Paper revised from original submittal.



T. Brands, E.C. van Berkum, D.H. van Amelsfort 10

TABLE 2 Threeinitial toll solutions

Initial solution 1: Initial solution 2: Initial solution 3:
|—|0,1 |—|0,2 |—|0,3

z(M°" = 25.25min z(M°?) =27.83min z(M°%) =31.95min

Toll level (€/km) Toll level (€/km) Toll level (€/km)
Time period| town | A13 A4 town | Al13 A4 town | Al3 A4
6:00-7:00 0 0 0 D 0 0 0 0 0
7:00-7:30 0 0 0 0.20 0.20| 0.20 0| 0.20 0
7:30-8:00 0.20| 0.20 0.20 0.200.20| 0.20 0.20 0| 0.20
8:00-8:30 0.15| 0.20 0.1% 0.200.20| 0.20 0| 0.20 0
8:30-9:00 0.05| 0.10 0.0% 0.200.20| 0.20 0.20 0| 0.20
9:00-10:00 0 0 0 0 0 0 0 0 0

EXPERIMENTAL RESULTS

In this section the results of the numerical expernits are presented. First, all 6 variants of #ieem

search algorithm are tested with initial solutidii*. The three best variants are selected, and their
behaviour using the other initial solutions is thested. Finally the effect on two different objeet
functions is investigated.

TABLE 3 Results achieved with the different pattern search algorithmsusing initial solution mnes

Search | ° n Number of iterations

: z(M,) r ol

algorithm . to termination of
(min) algorithm

P1 M, 23.11 80

P2 M, 23.07 95

P3 M, 23.34 38

P4-1 M, 22.90 74

P4-2 M, 24.22 22

P4-3 M, 24.22 37

P4-4 N, 24.22 51

P5 M, 24.22 42

P6 M, 22.90 65

Performance of the variants of pattern search

In Table 3 the results of all 6 variants of pattsearch with[1°" are presented. P4 has a random

component, so it is executed 4 times with differamdom seeds (sub-variants P4-1 — P4-4). The
number of iterations in the table corresponds éonttimber of toll settings that is evaluated in the

lower level. So only a tiny part of the completéusion space of 2.4*10possible solutions is

searched. In this section and in the next sectibdifferent local minima were found; to M},), so
indeed the objective function is not convex. Thstlebjective function value is an average travakti
of 22.90 minutes, compared &§1°") = 25.25min. This value is achieved by two different search

algorithms at two different local minirriéi*2 and I'I;. Both computation time and objective function
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value are used to assess the variants. The battiseachieved by P6: this variant only uses 65
iterations to find the best value. P4 also achigheivalue in P4-1, but in P4-2 to P4-4 a muchssor
local minimum has been found, so overall this isangood variant. P1 and P2 achieved a little worse
objective function value, but used considerablyeriterations to reach that value, so the performanc
is worse. P3 has a little worse objective functiatue again, but uses less iterations to reach this
value. P5 does not achieve a good average traweMalue in this case and it uses many iteratsms,

it is not a good variant. The development of therage travel time throughout iterations when
executing the best three variant (P1, P3, andP&mpared in Figure 3, which illustrates the
performance differences of these algorithms.

255
2T S
o —_—
=
— 245 P3 |
2
= 24 |
(]
o
S 235
(]
>
<
237 »»»»»»»»»»»»»»»»»»»»»»»»»»»»»»
225 TTTTTTT T T T I T T T T T T T T T T T T T T T T T I T T I T T T T T T T T T T T T T T T T T TTTTT
0 10 20 30 40 50 60 70 80
Iteration number

FIGURE 3 The development of the average travel time value throughout iterations, using the pattern
sear ch algorithms P1, P3 and P6.

Different initial solutions

Since the objective function is not convex and heeave use a local search algorithm like pattern
search, the chance of ending up in a local minirhigh. The search algorithm variants are
therefore tested with 2 other initial solutionsTiable 4 the results are presented and it can be
concluded that all three variants perform quit gdodact the impact of another initial solution the
end solution of the objective function is relativemall. Yet, this is also the result of the flaape of
the objective function since each combination dfdhsolution and variant of pattern search resirit
another end-solution but the values of the objedtwction are comparable. Thus, the objective
function is such that many local minima (toll-sedt$) exist, that produce almost equal averageltrave
times. The only difference is the number of itemasi that is required. Obviously the worse theahiti
solution is the longer it takes to reach an optimBuorther it appears that variant P3 needs the leas
amount of iterations for all initial solutions
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TABLE 4 Theeffect of different initial solutions

Search |Initial |Resulting| Objective | Number of iterations

algorithm | toll toll function to termination of
solution| setting | value (min) | algorithm

P1 ot M, 23.11 80

P1 o2 |-|*8 23.46 125

P1 res3 |-|*6 23.30 95

P3 res |-|’; 23.34 38

P3 o2 |-|*5 23.11 74

P3 res |-|; 23.68 91

P6 ot n, 22.90 65

P6 o2 |-|I 22.72 139

P6 res |-|*6 23.30 110

Differences between local minima

As mentioned earlier, 10 different local minima wéound @'II to I'I;O). In every resulting toll
setting, a similar structure can be observed, wiattbws the peak in the traffic demand: the tcliart
low, then increase, and finally decrease agaieabh of these local minimaz,, = 0.20, so here it is

clear that the toll should be on the maximum lekel. the other variables different combinations
occur, within the mentioned rough structure. Furtigge, in most local minima the toll values in link
group ‘town’ are lower than in the other two linkogps.

In order to illustrate these observations, Tabébd&wns three examples of these local minima:
the best found solutiofil; , a solution with relatively low toll values$], and a solution with a
relatively bad average travel time vald@,,, which quite differs fronT1; and is close to initial

solutionm%*,

TABLE 5 Threelocal minima

I_Il ﬂ3 ﬂ10
z(M})=22.72min z(M3) =22.90min Z(M,) =24.22min
Toll level (€/km) Toll level (€/km) Toll level (€/km)

Time period| town | A13 A4 town | Al13 A4 town | Al3 A4
6:00-7:00 0 0 0 0 0 0 0 0 0
7:00-7:30 ( 0| 0.05 0 0 0 0 0 0
7:30-8:00 0.1% 0.20] 0.15 0.20, 0.20] 0.10 0.20] 0.20] 0.20
8:00-8:30 g 0.05] 0.20 0| 0.15] 0.10 0.05/ 0.20] 0.15
8:30-9:00 g 0.10] 0.20 0| 0.10{ 0.10 0.05/ 0.15] 0.05
9:00-10:00 @ 0 0 0 0 0 0 0 0

Effectson total revenue and total congestion

Until now all tests were performed where the olpyectunction was the average travel time. Earlier
other objective functions were defined, i.e. thaltoevenue and total congestion. In Table 6 fbr al
local minima the values of the three objective fions are listed.
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TABLE 6 Thevalues of three different objective functions

Average travegTotal Total congeson
n time (min)  |revenue (10€) [(10°)
M 02,72 2.6 2.9
M5 02.90 2.3 3.2
M 02.90 2.2 2.9
M, 03.07 2.4 2.9
M 03.11 2.3 2.9
M 03.30 2.4 2.9
r’ 03.33 2.3 2.8
Mg 03.46 2.8 3.0
My 03.68 2.1 3.2
Mo a2 2.8 2.8

The total revenue of the different toll settingsi@s highly: the highest revenue is 35.5% highanth
the lowest revenue, while the corresponding avetiaye! time only differs 6.6%. The value of the
total congestion is a dimensionless indicator lerlevel of congestion in the network, where longer
links and links with a higher capacity are weighibégher, see equation (2). The total congestioallev
also varies differently than the average travettiithis is probably caused by the indicator
formulation of the congestion objective functiorirk is either congested or not, while the travele
on a link can vary continuously.

Optimization with respect to another objective fiime would thus result in different
solutions, as could be expected. In the case ghgedravel time minimization, the resulting toll
settings in most cases have higher tolls on théhad on the roads in the town. So apparently, the
average travel time decreases when the traffigigegl through the town, which may for example
from the viewpoint of liveability or an environmeahtiewpoint be an undesirable situation. This
confirms that the objective function should be @mowith care and the resulting toll setting shdagd
carefully considered, because otherwise undesiedf#ets on other objectives could occur.

CONCLUSIONS

The optimal toll level design problem is formulagsia bi-level mathematical program and an
approximation approach is presented for findingapemal toll levels in space and time
differentiated, link based pricing, with the objgetto minimize average travel time. Different
variants of the search algorithm have been companddhe effect of a different initial solution is
treated.

Application of different variants of the patterrasgh algorithm to the case study showed that
it is possible to achieve considerable improvemintke value of the average travel time compared
with the situation without tolls and with an initiall solution. Multiple local minima have been
found, but the average travel time value is comgaren most local minima. So different toll setting
are roughly the same by means of the policy objectdther political arguments, like the expected
revenue of these toll settings, can determine whigtt toll setting is to be implemented. The tsk
end up in a bad local minimum is small, becauseint initial solutions all gave acceptable
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solutions. The initial solution has influence op 8peed of the algorithm: when it is far away fribie
optimal solution, it takes longer to reach a lao&imum than when it is already close.

When the algorithm saves in what variables impraaminnas been made, better average travel
time values have been achieved within the same gtatipn time. When the algorithm changes more
than one variable at a time, considerably shoderpgutation times can be achieved with only slightly
worse average travel time values. When all variahtmttern search are compared, a weak relation
exists between computation time and achieved aedragel time value: long computation times
achieve better average travel time values.

This paper showed that it is possible to applyteepasearch algorithm in this context. When
this framework is applied in practice, it is yetyonomputationally feasible with little space amnte
differentiation and a few price categories, so tl@fnition is important. Furthermore, the defioitiof
the objective function strongly determines the itasgi toll setting, so it should be carefully
considered.

It is likely that general findings in this reseailo apply for other networks, though this is
not shown in this paper. Future application of fhésnework to other networks is recommended.
When this framework is applied to bigger netwoflsther improvements in the lower level are
needed. The behaviour of other search algorithrisisncontext like simulated annealing is as well a
interesting topic for future research.
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