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Abstract. Robustness of optimal solutions when solving network design problems is of great
importance because of uncertainty in future demand. In this research the optimization of in-
frastructure planning in a multimodal passenger transportation network is defined as a multi-
objective network design problem, with accessibility, use of urban space by parking, operat-
ing deficit and climate impact as objectives. In a case study in the city region of Amsterdam in
The Netherlands, the location of park and ride facilities, train stations and the frequency of
public transport lines are decision variables. The Pareto set is approximated by the Epsilon
Non-dominated Sorting Genetic Algorithm (e-NSGAII). In this case study, a demand forecast
for 2030 is used, but the underlying demand model always contains uncertainty to a certain
extent. Therefore, the differences are analyzed between Pareto sets resulting from solving the
network design problem using two other demand scenarios as well: a 2020 demand predic-
tion and a Transit-Oriented Development scenario. The Pareto solutions resulting from one
demand scenario are assessed based on a different demand scenario to test whether they are
still Pareto optimal under this different demand scenario. Furthermore, the values of the de-
cision variables of the solutions in the sets are compared. Results indicate that a different
transportation demand has a strong influence on the Pareto optimal performance of solutions
in the set: 70% of the solutions do not perform Pareto optimal any more if assessed using a
different transportation demand. However, the loss in objective function values is small (a 2%
decrease in hypervolume value), so although performance is not optimal any more in most
cases, loss in performance is limited. In addition, the resulting decision variables are relative-
ly insensitive for transportation demand.
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1 INTRODUCTION

Highly urbanized regions in the world nowadays face well known problems in the traffic
system, like congestion, use of scarce space in cities by vehicles and the emission of green-
house gases. Improving the integration of transportation networks of cars, public transport
(PT, which includes bus, tram, metro and train) and bicycles can be a cost effective solution to
alleviate these sustainability problems. Transfers can be made easier, resulting in more mul-
timodal trips, increasing the use of PT and bicycle and reducing the use of the car.

When infrastructure is planned by decision makers, the current practice is to design a few
alternatives based on expert judgment, have these alternatives assessed by a transport model
and choose the best performing alternative based on performance indicators related to the sus-
tainability objectives. However, the alternative is still likely to have room for improvement.
This is the reason for applying multi-objective optimization techniques in this context, to find
the best possible transportation network, taking multiple objectives and certain constraints
into account. The multiple objectives related to sustainability comprise various aspects, like
accessibility, livability, environmental impact and costs. Earlier research showed that these
objectives are opposed when optimizing the multimodal network, which means that a solution
which performs well for livability performs non optimal for accessibility. A multi-objective
optimization delivers the set of possibly optimal solutions, denoted as the Pareto optimal set,
see [1]. The problem at hand (i.e. the multimodal multi-objective NDP) is formulated as a bi-
level optimization problem, where the optimization of sustainability objectives forms the up-
per level, and the lower level is formed by individual travelers optimizing their own objec-
tives. The lower level is operationalized by a multimodal transport model. The modelling
framework was earlier described in [2].

The scores of the objectives of the transportation network designs in the Pareto set are in-
fluenced by a range of input data, like transportation demand, choice parameters, model struc-
ture and general parameters like oil prices. However, each of these input data is subject to a
certain level of uncertainty. Effects of variation of these uncertain aspects on output of trans-

portation models has received considerable attention in the literature, which is reviewed in [3].

However, in the same paper numerous undiscovered areas of research are identified. Since the
objective values are assessed based on the outcomes of the transportation model, the effect of
uncertainties on these outcomes is of interest.

Besides the effect on the objective values, these uncertainties also possibly affect the opti-
mal physical transportation network designs: the question is whether the resulting Pareto set
(i.e. decision support data) is sensitive to this uncertain input (taken from for example from
assumptions or external developments). This paper provides a method to analyze these uncer-
tainties in more detail as well as an application on a real large scale case. This will answer the
question whether a Pareto set still performs well when different circumstances will occur in
the future: if the Pareto set is robust with respect to an uncertain future or not. More specifi-
cally, the paper focusses on the robustness of the optimization result for a different transporta-
tion demand input.

Robustness is defined in various ways: robustness can be included as one of the objective
functions during optimization, it can be included by creating a design that is flexible for future
circumstances or it can be assessed after optimization. There are a few examples of multi-
objective network design studies that include robustness in one of those three ways.

Examples of the first way are Santos [4] and Sharma [5]. Santos [4] defines robustness as
one of the objective values in terms of reserve capacity in the network. In that case, the inter-
pretation is the robustness of transportation networks themselves: the extent to which these
networks perform well under disruptive circumstances, like a blocked link due to an accident
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or extreme flows due to an event with a lot of visitors, like a concert. Although such a defini-
tion would make sense in the multimodal context of the problem considered in this paper,
methods to cope with this interpretation of robustness of transportation networks in a multi-
modal context do not exist yet, according to Van Nes et al. [6]. Sharma [5] uses an additional
objective, namely variance of the total travel time next to travel time itself, to integrate ro-
bustness for demand uncertainty into the network design problem.

The second possibility is described in [7], where a flexible investment scheme is intro-
duced as a decision variable as an answer to demand uncertainty. The concept of designing
strategies instead of single solutions is also called Dynamic Adaptive Policy Pathway [8],
which, when combined with a multi-objective optimization algorithm, can lead to a Pareto
optimal set of pathways, that is flexible with respect to future developments.

The third option is demonstrated by Kasprzyk [9], who integrates uncertainty in an itera-
tive decision making process: first, by multi-objective optimization the Pareto set is deter-
mined. After that, for every Pareto solution the ranges that objectives may cover under
different (uncertain) circumstances are calculated by evaluating the objective value for a
range of so called ‘states of the world’, generated by Monte Carlo simulation.

Following the latter line of thought, in this paper robustness of optimal solutions is tested
after optimization, due to the long computation times involved with the optimization problem
at hand. This research is a first step to incorporate robustness into the design of transportation
networks in a multimodal and multi-objective context. In addition, this research also tests the
sensitivity of the Pareto set for model input: testing whether Pareto optimal solutions still per-
form well under different circumstances and by analyzing differences between Pareto sets re-
sulting from optimization processes with different transportation demand assumptions. To the
best of our knowledge, this approach has not been applied earlier.

The remainder of this paper is structured as follows. Section 2 defines the optimization
problem, where first attention is given to its mathematical properties, formulation in this mul-
ti-objective context and definition. Then, objective functions, study area and decision varia-
bles in the case study are specified. To conclude the problem formulation, the demand
forecasts, the lower level model and the solution method are described. Section 3 defines the
methods and indicators that are used to in the robustness analysis. Section 4 presents the re-
sults of the comparison between optimization results using different demand input. Finally,
section 5 contains the conclusions of the paper.

2  OPTIMIZATION PROBLEM

2.1 Bi-level problem

The transportation network design problem is often solved as a bi-level optimization prob-
lem, to correctly incorporate the reaction of the transportation system users to network chang-
es, as is for example argued by [10]. In our research, the network design problem is regarded
as a bi-level system as well (see figure 1). The upper level represents the behavior of the net-
work authority, optimizing system objectives. In the lower level the travelers minimize their
own generalized costs (e.g. travel time, cost), by making individually optimal choices in the
multimodal network, considering variety in travel preferences among travelers. The network
design in the upper level interacts with the behavior of the travelers in the network: the lower
level. This is put into operation by a transport model, which assumes a stochastic user equilib-
rium (no driver can unilaterally change routes to improve his/her perceived generalized travel
costs). For any network design the planner chooses, the transport model yields a network state
(e.g. travel times and loads), from which the values of all objective functions can be derived.
The equilibrium in the lower level is a constraint for the upper level problem.

549



Ties Brands, Luc J.J. Wismans and Eric C. van Berkum

Upper level:
Minimization system objectives
concerning sustainability

Network state
Loads, speeds

Network design:
Multimodal facilities

Lower level:
User equilibrium problem:
multimodal assignment

Figure 1: The bi-level optimization problem.

2.2 Mathematical formulation

We define a decision vector y (or a solution), that consists of V' decision variables:
y= { Vst Vo't yV} . Y is the set of feasible values for the decision vector y (also called de-
cision space). The objective vector Z (consisting of W objective functions,
Z= {Zl,- L, -,ZW}) depends on the value of the decision vector y . Every Z is part of the
so called objective space, and in principle Z may be any value in R”, but depending on its
meaning, an objective function may be subject to natural bounds. In this paper we will suffice
with a formulation that states that the lower level should be in user equilibrium (see also sec-
tion 2.7). For a more detailed formulation of the optimization problem we refer to [2].

min Z(y), subject to

yeY (D)
G(N,A(Ca()_/)),L(C,()_/)),S(CS()_/))) satisfies SUE for q

2.3 Multi-objective optimization: Pareto optimality

Mathematically, the concept of Pareto optimality is as follows. If we assume two de-
cision vectors y,y €V, then y is said to strongly dominate y iff Z (y )<Zw(y )Vw
(also written as v, < v, ) Addltlonally, ). is said to weakly dominate (or cover) v, iff
Z (y )< (y YW w (also written as Y, -<y ). All solutions that are not weakly dominat-
ed by another known solution are p0551b1y optimal for the decision maker: these solu-
tions form the Pareto-optimal set P.

2.4 Network and demand definition

The multimodal transportation network is defined as a directed graph G, consisting of node
set IV, link set 4, a line set L and a stop set U. For each link one or more modes are defined
that can traverse that link with a certain speed and capacity: the link characteristics C, . Trans-
portation zones and act as origins R and destinations S and are subsets of N. Total fixed trans-
portation demand ¢ is stored in a matrix with size |R|X|S|. Furthermore, transit service lines L
are defined as ordered subsets 4; within 4 and can be stop services or express services. PT
flows can only traverse transit service lines. Transit stations or stops U are defined as a subset
within . Consequently, a line / traverses several stops. The travel time between two stops
and the frequency of a transit service line / are line characteristics C,. Access / egress modes
and PT are only connected through these stops. Whether a line calls at a stop « or not, is indi-

550



Ties Brands, Luc J.J. Wismans and Eric C. van Berkum

cated by stop characteristics C, . All together, the transportation network is defined by
G(N,A,L,S), where A, L and § are further specified by C,, C, and C, .

2.5 Objective functions

In this paper we consider 4 policy objectives related to sustainability, concerning accessi-
bility, use of urban space by parking, climate impact and costs. These objectives are opera-
tionalized as follows (more details can be found in [2]). In our case of a fixed total demand,
total travel time is used to represent accessibility in Z, . The urban space used by parking is
represented by the number of car trips to or from zones that are classified as highly urban, be-
cause such a trip requires a parking space that cannot be used for other urban land uses (Z, ).
These alternative land uses give additional value to property [11]. Operating deficit of the PT
system is formulated as Z,, rather than as a budget constraint, to provide explicit insight in
the relation between costs and other objectives. Cost parameters follow from Dutch PT oper-
ating practice. CO, emissions represent climate impact (Z,). All 4 objectives are to be mini-
mized.

2.6 Study area

The case study area covers the Amsterdam Metropolitan Area in The Netherlands (Figure
2). This area has an extensive multimodal network with pedestrian, bicycle, car and transit
infrastructure. Transit consists of 586 bus lines, 42 tram and metro lines and 128 train lines,
which include local trains, regional trains and intercity trains. Bicycles can be parked at most

bus stops and at all train stations. A selection of transit stops facilitates park-and-ride transfers.

Origins and destinations are aggregated into 102 transportation zones. Important commercial
areas are the city centres of Amsterdam and Haarlem, the business district in the southern part
of Amsterdam, the harbour area and airport Schiphol. Other areas are mainly residential, but
still small or medium scale commercial activities can be found.

Zggpstad

5

Figure 2: Map of the study area, showing transportation zones, railways, roads.
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2.7 Decision variables

In the network of the study area, 37 decision variables are defined related to transfer facili-
ties or to PT facilities. The decision variables are based on regional policy documents and on
interviews with policy makers in the study area. For every potential network development, a
decision variable y, is defined in advance (see table 1). Opening / closure of train stations, in-
tercity status of train stations and opening / closure of park and ride (P&R) facilities are repre-
sented by binary variables. For transit line frequency, a discrete set of choice options is
predefined, depending on the expected load for that transit line. Network developments are
only included as a candidate location if spatial and capacity constraints are met. For example,
a P&R facility is only potentially opened if the corresponding station is served by PT. The
characteristics of links, lines and stops that are not candidate locations are fixed at one value.
Furthermore, the car and bicycle networks are assumed to be fixed. In this case, the feasible
region Y contains approximately 7*10'® possible decision vectors.

Decision var- Possible val- Represents

iable index v ues of y, real value Description

1-6 {0,1} Existence Opening / closure of train stations
7-9 {0,1} Existence Intercity status of train stations
10-16 {o0,1} Existence Opening / closure of P&R facilities

17,21,22,24  {0,,2,1} {0,4,8,12} Frequency of bus lines

23930

18,19,20,23 {0,£,2,1} {0,2,4,6} Frequency of bus lines

93930

25-32,3436  {0,4} {0,2} Frequency of local train lines
33,35 10,%,2,1} {0,2,4,6} Frequency of local train lines
37 {0,1} Existence Extension of a tram line

Table 1: Overview of decision variables in the multimodal network design problem.

2.8 Transportation demand forecasts

In this case study, a demand forecast for 2030 is used as the reference situation. This fore-

cast is based on a scenario study on the expected spatial developments in the Netherlands [12].

This paper tests the differences between Pareto sets, resulting from solving the network de-
sign problem using three realistic different demand scenarios. Besides this 2030 demand fore-
cast, these scenarios involve the 2020 demand forecast and a Transit-Oriented Development
(TOD) demand forecast. The 2020 demand forecast is based on the same scenario study and
represents a situation with smaller growth due to the economic crisis. The TOD demand fore-
cast contains the same level of economic growth as the 2030 demand forecast, but all growth
(like new jobs and new houses) takes place in the vicinity of a train station, instead of spread
out throughout the whole region. Realizing such a situation would require a strong and con-
sistent policy and is difficult to realize [13]. However, in this demand scenario these devel-
opments are assumed.

2.9 Lower level model

The lower level model calculates the network flows through the multimodal network.
Therefore, transportation demand is assumed to be fixed, but mode choice and route choice of
travelers is flexible. As defined in the previous section, the decision variables typically in-
volve multimodal trip making, for example a park and ride facility involves combining car
and PT to a park and ride trip and a new train station may involve combining bicycle and PT
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to a bike and ride trip. To correctly take into account these effects, combinations of different
access and egress modes are defined in mode chains. These mode chains are seen as separate
modes in the mode choice model, which comprises a nested logit model with choice between
car and PT in the main nest and choice between mode chains in the PT subnest. More details
of this model can be found in [14].

2.10 Solution method

The optimization problem defined in equation 1 is solved using the evolutionary algorithm
&-NSGAII [15]. This method was earlier shown to outperform the well-known predecessor of
the algorithm NSGAII [16] when applied to the problem at hand in [17], especially when lim-
ited function evaluations are possible due to high computation time. A more detailed descrip-
tion of the algorithm can be found in the same paper.

3 METHOD FOR ROBUSTNESS ANAYSIS

As stated in the introduction, in this paper the robustness of the optimization framework is
tested by investigating the sensitivity of the resulting Pareto set with respect to transportation
demand input. This is done by assessing the extent to which the optimization result (i.e. the
Pareto set) still performs Pareto optimal under different demand input, by comparing the set
with the Pareto set that was optimized using that demand. Because the solution method is sto-
chastic in the nature the optimization process is executed twice for each transportation de-
mand, resulting in 6 Pareto sets being calculated. In this section first the notation is
formalized. Next, indicators are defined that are used to identify similarities and differences
between sets of solutions.

3.1 Notation

The set of N’ solutions P’ :{Z{’Xé""=li//} is defined as the Pareto set resulting from
process j, which includes all non-dominated solutions with respect to all calculated solu-
tions. P’ is the j-th outcome of our multi-objective optimization problem (eq. 1): one
approximation of the Pareto-optimal set. The j-th execution of the algorithm is also de-
noted as run j. Each run j has a corresponding transportation demand ¢* for which that
Pareto set was optimized. In addition, for each run j the objective values are calculated
for other demands ¢, resulting in Q objective vectors Z‘ (y’i/ ) calculated for every ele-
ment or solution yf . These objective vectors consist of W_objective functions, denoted
by index w: Z”()_/;_"—):{Z{’ @) ZE @ s Z &) } The Pareto set optimized for demand
q*, calculated for another demand g is denoted as P, .

3.2 Indicators

A main distinction to be made is to determine the differences between sets of solu-
tions in objective space and in decision space. When focusing on the objective space, the
main question to be answered is whether Pareto solutions optimized for one demand
scenario, still perform Pareto optimal under different demand scenario, or at least per-
form reasonably well. When focusing on the decision space, the main question to be an-
swered is whether different decision variables perform optimal under different demand
scenarios. Earlier work paid more attention to these two types of indicators [2], a de-
tailed description can be found there. Here, we provide a brief description of the indica-
tors used. The first three indicators (minimum value per objective, hypervolume and set
coverage) relate to objective values. It is expected that Pareto sets that are optimized us-
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ing a certain demand ¢, perform better on these indicators than Pareto sets that are opti-
mized using a different demand ¢, and are evaluated using demand ¢. The last three in-
dicators are used to indicate differences between decision vectors of Pareto sets. This
provides insight to the extent to which a different demand leads to different Pareto solu-
tions to be found.

Minimum values per objective value

The minimum objective value attained by Pareto set j for every objective function in-
dicates the extent to which set j covers the entire Pareto front for every objective dimen-
sion. Eq. 2 results in w values per Pareto set: the best values per objective.

MIN,(P)=minZ,(y')  Vw )
X/EP/ -

Hypervolume

Hypervolume is also called space coverage or S-metric, denoted as SSC(P’). It is im-
plemented as in [18]. In the 2-dimensional case it determines the area that is covered by
the Pareto set with respect to a reference point (the star in figure 3). The reference point
is defined such that it is dominated by all solutions in the Pareto set. Because the maxi-
mum values of the objective functions are not known, we choose a conservative point,
based on the evaluated solutions. In the 3-dimensional case area is replaced by volume,
and in the more dimensional case by hypervolume. The higher the hypervolume value,
the better, since the problem at hand is a minimization problem.

*
()

z(»)

Figure 3: hypervolume 2-D visualisation.

Set coverage

The set coverage or C-metric, see equation XX that is taken from [19], indicates the
level in which the solutions in P’ are weakly dominated by at least one solution in set
P’ so a higher value indicates a better set coverage of P’/ over P’ .

ey e y'<y”
Crs(P’, P’y == e

)

This indicator is usually used to compare two Pareto sets. However, in this paper the
set that is compared with (set P’" or set 2) is not necessarily a Pareto set (i.e. not all so-
lutions in the set perform Pareto optimal with respect to each other), since its solution
were optimized for a different demand g *. Figure 4 shows the relations between pairs of
solutions that may exist in the 2-dimensional case, where set 2 contains solutions that
are dominated by a solution in its own set. For set 2, this results in three different types
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of solutions: the solution dominates a solution in set 1, it is dominated by a solution in
set 1, or neither of the two. In the latter case, note that the solution in set 2 performs Pa-
reto optimal with respect to set 1. For set 1, this results in four different types of solu-
tions: as additional type it is possible that a solution is dominated by a solution in set 2
and at the same time dominates another solution in set 2 (the triangle in figure 4). The
set coverage CTS(setl,set2) equals the fraction of solutions in set 2 that is dominated by
at least 1 solution in set 1 (indicated by the open squares in figure 4), but in this paper
all types of solutions are presented in the results section. When it comes to a robust per-
formance of the optimization framework, it would be good if a lot of solutions in set 2
are within the type ‘star’, since that implies Pareto optimality without dominating a so-
lution in set 1 (that was optimized for that specific demand).

[ ] @ set 1 solution that dominates
[ set 1 solution that is dominated
O A Setl solution that both
dominates and is dominated
* * Set 1 solution that is neither
* dominated nor dominates
* O set 2 solution that dominates
[] set 2 solution that is dominated

O
) ﬁ 7’1{ Set 2 solution that is neither
A O dominated nor dominates

Objective 1

Objective 2
>
O

Figure 4: different types of solutions that can be distinguished concerning set coverage.

Average distance between Pareto solutions

The average distance (in the decision space) between the solutions in two Pareto sets
P’ and P’ (where j may also be equal to j ), see eq. 4.

N; N ) R
AD(P’,P") = LLsz(y? V) )
Nj Nj- 1=

This indicator uses a distance function, which can be any distance function defined for two
solutions as d( yl’ , yl’ ). In this paper the distance function is defined as in eq. 5.

. . V . .
d(y' .y =Yyl -vh|. (5)
v=1

Average distance to the closest Pareto solution

The distance of an element in P’ to the closest element (i.e. most similar in decision space)
in Pareto set P/', averaged over all elements P/, see eq. 6. A low value indicates higher sim-

ilarity (the extreme case AND(P’,P’)=0 holds). The same distance function is used (see eq.
5).

2., pin, Ay} (©)

AND(P’,P") = L_
Nj i1 E{I.,

Average difference of nonzero decision variables fraction
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This indicator compares the fractions of nonzero decision variables in two sets (eq. 7). The
fraction p; of solutions in Pareto set j that has a positive value for decision variable y, char-
acterizes the values of that decision variable of the solutions in the set: decision variable y,
represents the existence of a measure in the transportation network, so a higher fraction for
variable y,  implies a larger ability to attain (Pareto) optimal solutions by implementing that
measure. The x -function defines the nonzero relation. To indicate the difference between Pa-
reto set j and j’, the absolute difference between these fractions is calculated, averaged over
all V decision variables. The closer this value is to 0 for two Pareto sets, the more similar the
sets are. If this value is equal to 0, both sets contain all decision variables to the same extend.
With other words, in that case both sets assess the effectiveness of the decision variables in
the problem at exactly the same level.

.
, where p/ = Ni > k(). where x(y]) = {
i=1

1
AFD(P',P") ==Y
( )=

i=1

0 ify,=0
1 otherwise

pl-p! )

4 RESULTS

This section contains the optimization results using different demand forecasts. Firstly, the
relation between 2020 demand objective values and 2030 demand objective values is given, to
illustrate the impact of a different transportation demand on these objective values. Secondly,
the objective values are compared by presenting the minimum values per objective, the hy-
pervolume values and the set coverage for pairs of sets. For each of the three demand fore-
casts, two outcomes of the optimization process with a different random seed are presented (6
Pareto sets in total). Thirdly, the decision variables of Pareto sets that were optimized for a
different demand are compared by using the defined indicators.

4.1 Relation between 2020 and 2030 demand objective function values

Figure 5 shows the relation between objective function values of the same network designs,
calculated for two different demand scenarios (2020 demand and 2030 demand). It can be ob-
served that operating deficit (Z,) shows an almost linear relation, because operating costs do
not depend on demand and operating revenue almost linearly increases with demand. On the
other hand, travel time (Z, ) shows a scattered plot, indicating that travel time is highly non-
linear, because of the complex network behavior of travelers. CO, emissions (Z,) and urban
space used by parking (Z,) both show a comparable, approximately linear relation between
2020 demand values and 2030 demand values. Especially for travel time, the relation between
2020 demand values and 2030 demand values is unstructured, indicating that solutions opti-
mized for one demand are probably not performing optimal any more when assessed using a
different demand.
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239+

2385

2375¢

Total travel time (hours) 2020 demand
N
8

Figure 5: Relation between a) travel time b) urban space used by parking ¢) PT operating deficit d) CO, emis-
sions calculated using 2020 demand (vertical axis) and 2030 demand (horizontal axis). Each dot in the figure
represents one solution, i.e. one multimodal transportation network design.
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4.2 Objective value comparison

Minimum values per objective

Table 2 shows the normalized minimum values per objective for each Pareto set qu* , - This
normalization is applied over all Pareto sets that are calculated for a certain demand ¢ (over a
column in table 2). It can be observed that for travel time, the best values occur in the sets that
were optimized for the corresponding demand. This is in line with the observation in figure 5
that the travel time objective function is highly dependent on the demand input, so that opti-
mizing for a different demand results in different optimal solutions to be found. For the other
objectives, the best values also occur in sets that were not optimized for the corresponding
demand. This is also in line with the observations in figure 5, since a solution that performs
optimal using one demand is likely to perform similarly when a different demand is used.
This can also be observed directly in table 2, especially for CO, emissions: the scores of the

-2 -15

x10'

Urban space used (#cars) 2020 demand

Total CO2 emissions (tons) 2020 demand

1360

TA3

712

TR

709

7.08

7.07

7.06F

7.05

7041

7.03

7.02

1385

1380

1375

1370

o
1365
A

i
7.06 7.08 71
Urban space used (#cars) 2030 demand

1410

1416 1418 1420 1422 1424

Total CO2 emissions (tons) 2030 demand

same Pareto set (in a row) are comparable for the three different demand results.
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Total travel time Space used by parking Operating deficit CO, emissions

q q q q

q*

2020 2030 TOD 2020 2030 TOD 2020 2030 TOD 2020 2030

TOD

2030

100.15 100.00 100.11 100.05 100.00 100.02 104.54 101.23 101.61 100.01 100.00
100.20  100.04 100.16 100.03 100.00 100.02 102.22 100.20 100.28 100.01 100.00

100.02
100.05

2020

100.00 100.17 100.14 100.00 100.05 100.00 100.36 100.55 100.00 100.00 100.01

100.00
100.00

TOD

100.15 100.04 100.00 100.03 100.02 100.03 100.00 101.07 100.09 100.04 100.03

1
2
3
4 100.06 100.08 100.18 100.02 100.05 100.03 104.14 101.58 101.86 100.01 100.00
5
6 100.17 100.16 100.04 100.10 100.04 100.04 103.13 100.00 100.19 100.03 100.06

100.02
100.06

Table 2: normalized minimum values per objective, for each Pareto set P A , that was optimized for demand ¢ *
and for which the objective function values are calculated for demand q.

Hypervolume

Table 3 shows the normalized hypervolume values for each Pareto set Pq’;, , and the number
of solutions N; in each Pareto set. This normalization is applied over all Pareto sets that are
calculated for a certain demand ¢ (over a column in table 3). In all cases the best performing
Pareto set (per column) is the set that was optimized for the corresponding demand. In most
cases this is also true for the second best performing Pareto set. However, one combination
can be found where a Pareto set optimized for a different demand (run 5, TOD) outperforms
the set optimized for the corresponding demand (run 4, 2020). In general, the hypervolume
values of Pareto sets optimized for a different demand are only slightly lower.

q
* j N 2020 2030 TOD

2030 1 203 97.64 99.90 98.02

2 229 98.15 = 100.00 98.17
2020 3 303 100.00 98.33 98.98
4
5

197 98.50 98.63 9741
226 98.63 99.27 =~ 100.00
6 157 97.30 98.08 99.25

Table 3: the hypervolume values for each Pareto set P; , that was optimized for demand ¢ * and for which the
objective function values are calculated for demand g.

TOD

Set coverage

Figure 6 shows an example of a classification into the types of solutions that were defined
in section 3.2, using the results of the case study for a 2-dimensional case, where the two ob-
jectives are urban space used by parking and operating deficit. In this example, set 1 is the
Pareto set optimized for these 2 objectives and is shown in red. Set 2 is the set that was opti-
mized for a different demand. Note, that this set contains solutions that are dominated by so-
lutions in the set itself. Furthermore, it mainly contains solutions that are dominated by set 1,
but it also contains a solution that dominates a set 1 solution.
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Figure 6: A 2-dimensional example plot showing the different types of solutions (set 1 in red, set 2 in blue,
where the + symbol corresponds to the triangle in figure 4.

Table 4 shows the average values for the different type of solutions, where set 1 is the set
optimized for the corresponding demand and set 2 is the set optimized for a different demand.
The shapes (circle, star, triangle / +, square) correspond with the possible relations between
solutions presented in figure 4. The results show that only 30% of the solutions still perform
Pareto optimal under different demand circumstances (circle or star in set 2). On the other
hand, it is good to see that only 12% of the set 1 solutions (that were optimized for that specif-
ic demand: triangle or square) is dominated by a solution that was optimized for a different
demand. So a large difference can be observed in coverage between the two types of set, but
as is indicated by figure 6 and by the hypervolume scores, the differences are small.

circle star triangle square
Set 1 70% 18% 9% 3%
Set 2 8%  22% 0% 70%

Table 4: set coverage values of different types.

4.3 Decision variable comparison

This section compares values of decision variables for solutions in the pairs of Pareto sets.
A distinction is made between sets where g*=g¢g*' and sets where g*# ¢*'. In words, the
first pairs of sets where optimized for the same transportation demand and differences be-
tween the sets are caused by the random nature of the solution algorithm. The second pairs of
sets were optimized for different transportation demand, so these differences are both caused
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by the random nature of the solution algorithm, as well as by this different demand input. The
results for the three indicators defined in section 3.2 are shown in table 5. These numbers in-
dicate that the resulting decision vectors only have slightly more differences when optimized
for a different demand than differences that are cause by the random nature of the optimiza-
tion (heuristic) algorithm.

q* =q *1 q* #q * 1
AD(P.,P.) 9.4 9.6
AND(P/,P.) 4.1 44
AFD(P.,P.) 0076  0.086

Table 5: Differences between sets concerning decision variables: comparison between pairs of sets optimized for
the same transportation demand and pairs of sets optimized for a different transportation demand.

5 CONCLUSIONS

In the passenger transportation network design problem, the demand forecast used is an
important assumption. Although demand forecasts are usually based on thorough models and
methods, these forecasts always contain a certain amount of uncertainty. This paper showed
the impact of a different demand assumption on the results of a multi-objective optimization
of a multimodal transportation network.

It can be concluded that a different transportation demand has a strong influence on the Pa-
reto optimal performance of solutions in the set: a majority of the solutions does not perform
Pareto optimal any more if assessed using a different transportation demand. On the other
hand, the loss in objective function values seems to be small: although performance is not op-
timal any more in most cases, loss in performance is limited.

The decision variables only show slightly more differences when optimized for a different
demand than differences that are caused by the random nature of the used optimization heuris-
tic. This indicates that the resulting decision variables are insensitive for transportation de-
mand.

These two observations underpin that the exact demand forecast used is not very important,
since its influence on the result is not big: the decisions to be taken are comparable, while the
objective values achieved are not very much worse. In the context of policy measures that
promote multimodal trip making, the measures that are optimal in one future situation, are
near optimal in a different future situation.
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