
 
 

 

  

Abstract— The optimization of infrastructure planning in a 
multimodal passenger transportation network is formulated as 
a multi-objective network design problem, with accessibility, 
use of urban space by parking, operating deficit and climate 
impact as objectives. Decision variables are the location of park 
and ride facilities, train stations and the frequency of public 
transport lines. For a real life case study the Pareto set is 
estimated by the Epsilon Non-dominated Sorting Genetic 
Algorithm (ε-NSGAII), since due to high computation time a 
high performance within a limited number of evaluated 
solutions is desired. As a benchmark, the NSGAII is used. In this 
paper Pareto sets from runs of both algorithms are analyzed 
and compared. The results show that after a reasonable 
computation time, ε-NSGAII outperforms NSGAII for the most 
important indicators, especially in the early stages of algorithm 
executions. 

I. INTRODUCTION 
IGHLY urbanized regions in the world nowadays face 
well-known sustainability problems in transport 

systems, like congestion, use of scarce space in cities by 
vehicles and the emission of greenhouse gases. A shift from 
car to public transport (PT) modes can alleviate these 
problems. Better utilization of the existing PT infrastructure 
without the need for large investments in new infrastructure 
may be achieved by facilitating an easy transfer from private 
modes (bicycle and car) to PT modes (bus, tram, metro and 
train). This can be done by network developments that enable 
multimodal trips, like opening new Park and Ride (P&R) 
facilities, opening new train stations or changing existing or 
opening new PT service lines. 

When we want to determine which investments can best be 
done, we also have to take into account the way in which 
travelers may alter their travel behavior, as a result of changes 
in the network. As a result our approach is a bi-level 
optimization problem, where in the upper level the network 
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authority tries to find the best sustainable network, where 
travelers try to find the best travel options for themselves 
Sustainability is generally defined by multiple indicators, so 
in this paper we adopt a multi-objective network optimization 
approach (see also [1]). This enables us to find a set of 
Pareto-optimal network solutions, providing insight into 
tradeoffs between the different objectives (see also [2]). 

Network design problems (NDPs) have received a lot of 
attention in the literature, in many different versions. One 
subclass of problems is the transit network design problem, 
which has been studied in various ways [3]. Another subclass 
of problems is the unimodal road network design problem, 
which has also been studied in various ways [4]. 

Applications in a multimodal context are less common, but 
they do exists, for example road link capacity and bus routes 
[5] or pricing of private and public links [6]. The NDP is 
considered to be a multi-objective optimization problem in 
only a limited number of cases (for example [7-10]). To our 
knowledge, [5] is the only paper where multi-objective 
optimization and a multimodal NDP are combined. In their 
work, decision variables include both new street construction 
and lane additions / allocations as well as redesign of bus 
routes. Their focus was on the development of a metaheuristic 
to solve the bi-level problem. In fact they compared the 
performance of a hybrid genetic algorithm and a hybrid clonal 
selection algorithm for multiple test networks. In a number of 
papers metaheuristics were applied for solving the transit 
network design problem. For example [11-13] used a genetic 
algorithm and [14] used simulated annealing. [15] tested both 
scatter search and a genetic algorithm and [16] used a 
metaheuristic called GRASP (Greedy Randomized Adaptive 
Search Procedure). 

Previously, the evolutionary algorithm NSGAII [17] was 
used in a similar network optimization study, with focus on 
how the choice for random seeds influences the performance 
of NSGAII [18]. It appeared that specifically for the lower 
level, computation times were considerable. In addition to 
that, in this paper the case study is extended, leading to 
doubling of the calculation time needed for one function 
evaluation. This extension is desired, since a more detailed 
modelling of the underlying design problem leads to a more 
accurate calculation of objective function values. Therefore, 
in this paper we concentrate on the performance of an 
adaption of the NSGAII approach called ε-NSGAII that 
requires less solutions to be evaluated, and thus may improve 
computation times [19]. For this we applied both ε-NSGAII 
and the traditional NSGAII for a real life design case of a 
multimodal network in the metropolitan region of Amsterdam 
in the Netherlands.  
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The remainder of this paper is organized as follows. 
Section 2 first mathematically defines the problem and 
describes the algorithms used to solve it. Section 2 also 
describes the practical case study that was solved in this 
paper. Section 3 presents the results of both algorithms 
applied to the case study, using various performance 
indicators. Finally, section 4 contains the conclusions and 
suggestions for further research.  

II. PROBLEM DEFINITION 

A. Bi-level problem 
We formulate the transportation network design problem 

as a bi-level optimization problem, since we want to 
incorporate the behavioral response of travelers to network 
changes, as was argued by [20-22]. The upper level represents 
the decision making of the transport network authority, which 
is reflected by the optimization of multiple system objectives, 
such as total travel time or the emission of greenhouse gases. 
In the lower level we assume that travelers try to find the best 
travel options for themselves, which is reflected by the 
maximization of their own utility which is usually based on 
several attributes such as travel time or travel cost. In this 
study we consider two main decision processes, i.e. route 
choice and mode choice, where also the choice for a 
combination of different modes is considered to be feasible. 
For this lower level, we assume a generalization of the 
traditional stochastic user equilibrium (e.g. see [23]) as the 
situation in which no driver believes he or she can improve 
his/her utility by unilaterally changing route or mode. Every 
network configuration that is considered in the upper level is 
input for the lower level. The equilibrium situation that is 
determined in the lower level now yields all the necessary 
input to determine the values of the multiple objective 
functions. So the bi-level approach regards this problem as a 
network optimization problem where the lower level is a 
constraint. 

B. Definition of network and demand 
The multimodal transportation network is defined as a 

directed graph G, consisting of node set N, link set A, a line 
set L and a stop set U (see Table 1). For each link a one or 
more modes are defined that can traverse that link with a 
certain speed and capacity: the link characteristics aC . 
Origins r R∈  and destinations s S∈ are a subset of N. Total 
fixed transportation demand rsq  is stored in a matrix with size 
|R|×|S|, that contains trips from origin to destination (OD). 
Furthermore, transit service lines l L∈ are defined as ordered 
subsets Al within A and can be stop services or express 
services. PT flows can only traverse transit service lines. 
Transit stations or stops u U∈  are defined as a subset within 
N. Consequently, a line l traverses several stops. The travel 
time between two stops and the frequency of a transit service 
line l are stored as line characteristics lC . Access / egress 
modes and PT are only connected through these stops. A 
combination of using a specific access mode, PT and a 
specific egress mode, is defined as a mode chain M. Whether 
a line calls at a stop u or not, is indicated by stop 

characteristics uC . All together, the transportation network is 
defined by ( , , , )G N A L U , where A, L and U are further 
specified by aC , lC  and uC . 

C. Optimization problem 
We define a decision vector y  (or a solution), that consists 
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aν  
pν  

 H 
hπ  

hφ  
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hσ  
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 I 
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Transportation network and demand 
Multimodal transportation network 
Node set N 
Link set A 
Line set L 
Stop set U 
Origin set, destination set 
Characteristics of link a  
Subset of links that is traversed by line l 
Characteristics of line l 
Characteristics of stop u 
Set of mode chains 
Set of car routes for OD pair r,s 
set of PT routes for OD pair r,s on mode chain m 
Route flow for car, route flow for PT mode chains 
Vehicle link flow, vehicle flow vector 
Passenger link flow per transit line, passenger flow vector 
Car route, vehicle link flow indicator 
PT route, passenger link and line indicator 
PT route, vehicle link indicator 
Cost function for car links 
Cost function for PT links per transit line 
Route costs for car, route costs for PT 
Combined costs for PT mode chains 
Combined costs for PT 
Fraction of travelers on OD pair r,s in PT mode chain m, 
choosing route k 
Fraction of PT travelers on OD pair r,s choosing mode 
chain m 
Total OD demand, car OD demand 
PT OD demand (from r to s), PT OD demand vector 
Logit parameters for mode choice, PT mode chain choice, 
PT route choice 
 
Optimization problem and results 
Decision vector 
Set of feasible decision vectors 
Length of decision vector y  
Objective vector upper level 
Objective function lower level 
Length of objective vector Z . 
Number of optimization processes 
Set of solutions calculated during optimization process j 
Pareto set from optimization process j: all non-dominated 
solutions in jφ  
Number of solutions in Pareto set j 
 
Genetic parameters 
Archive size 
Population size 
Number of generations (index h) 
Set of archive solutions in generation h 
Set of offspring solutions in generation h 
Union of archive and offspring in generation h 
Set of solutions in mating pool in generation h 
Mutation rate 
Number of restarts 
Size of ε-archive at restart i 
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of V discrete decision variables: { }1, , , ,v Vy y y y= . Y  is 
the set of feasible values for the decision vector y  (also 
called decision space). The objective vector Z  (consisting of 
W objective functions, { }1, , , ,w WZ Z Z Z= ) depends on 
the value of the decision vector y . Every Z  is part of the so 
called objective space, and in principle Z  may be any value 
in W , but depending on its meaning, an objective function 
may be subject to natural bounds. 

The resulting multi-objective optimization problem 
(MOOP) is defined in (1-15). The lower level program in 
(3-15) is based on the formulation in [23]. The characteristics 

aC , lC  and uC  of A, L and U depend on the decision vector 
y . These characteristics define the multimodal transportation 

network G. Feasibility constraint (2) should be satisfied to 
define a transportation network that is physically within 
reach. Constraint (3) represents the lower level optimization 
problem, that optimizes modal split and flows in the network 
from the travelers perspective and has equations (4-15) as 
constraints. The modal split model is a nested logit model 
[24], defined in formulas (3) and (12).  

Constraint (4) ensures that the sum of car route flows and 
PT demand are equal to the total demand rsq , where 
multimodal trips are included in PT demand: we see such 
trips as PT trips with various access and egress modes. 
Constraint (5) is a non-negativity constraint for car route 
flows. Note that PT route flows are nonnegative by the 
definitions in constraints (6-7). (6) ensures positive PT 
demand. (7) distributes PT demand over various mode chains 
and PT routes, using the fractions in constraints (12-13): (13) 
defines the route fractions for PT trips per mode chain: the PT 
model contains multiple routing, where trips are distributed 
among sensible routes using a logit model. Constraint (12) 
defines the mode chain fractions for PT trips. Constraint (10) 
calculates the OD based generalized costs per mode chain as a 
weighted average of route costs, to correctly take into account 
combined waiting costs of multiple transit lines. Constraint 
(9) calculates the logsum (the combined costs of all mode 
chains) to represent OD based PT costs. Constraints (8) and 
(11) define the relation between link costs and route costs, for 
car and for PT. The link costs ( , )a at x y  and ˆ ( )alt y  depend on 
y through the link and line characteristics aC  and lC . 

Finally, constraints (14-15) define the vehicle and passenger 
link flows based on car and PT route flows. Note that PT 
routes may contain car links, in the case of the use of a P&R 
facility in the route (see constraint 14). On the other hand, car 
routes never include PT passenger links, as can be observed in 
constraint (8). 
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D. Solution methods 
The MOOP defined in (1-15) is an NP-hard problem, since 

the bi-level linear programming problem is already an 
NP-hard problem [25]. Therefore, the problem is 
computationally too expensive to be solved exactly for larger 
networks, so we rely on a heuristic. For solving 
multi-objective problems, the class of genetic algorithms is 
often used, because these algorithms have a low risk of 
ending up in a local minimum, do not require the calculation 
of a gradient and are able to produce a diverse Pareto set [26].  

More specifically, we use algorithms NSGAII and 
ε-NSGAII developed in respectively [27] and [19]. Both 
algorithms optimize multiple objectives simultaneously, 
searching for a set of non-dominated solutions, i.e. the Pareto 
set. NSGAII has been successfully applied by researchers to 
solve multi-objective optimization problems in traffic 
engineering and proved to be efficient for this type of 
problems with respect to other types of genetic algorithms [1, 
28]. For ε-NSGAII, [19] found that on their test problems 
ε-NSGAII appeared to perform better than NSGAII in terms 
of attained hypervolume and distance to the real Pareto set, 
especially in the early stage of the algorithm. Especially this 
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good performance in limited number of iterations is very 
beneficial for computationally highly expensive problems, 
like our optimization problem. In this paper we test the 
performance of both algorithms on a real world optimization 
problem with expensive objective function calculation. This 
generates additional insights in the performance of especially 
ε-NSGAII, since literature only provides limited evidence of 
the operational performance of ε-NSGAII. 

 
1) NSGAII 

Within NSGAII, the mating selection is done by binary 
tournament selection with replacement. In addition to this 
mating process, a random mutation operator is applied to a 
(small) fraction ϕ  of solutions from each generation, to 
promote the exploration of unexplored regions in the decision 
space. These aspects of the algorithm make that the result is 
an approximation of the true Pareto set. In case an infeasible 
solution is generated during either recombination or 
mutation, that solution is discarded and a new solution is 
generated by repeating the recombination or mutation 
operator until a feasible solution is generated. 

The fitness value is calculated in two steps. In the first step 
(non-dominated sorting), the solutions are ranked based on 
Pareto dominance. All solutions in the Pareto set receive rank 
1. In the next step, these solutions are extracted from the set 
and all Pareto solutions in the remaining set receive rank 2, 
etc. In the second step, the solutions are sorted within these 
ranks based on their crowding distance. Crowding distance 
calculation requires sorting of the population according to 
each objective value. The extreme values for each objective 
are assigned an infinite value, assuring that these values 
survive. All intermediate solutions are assigned a value equal 
to the difference in the normalized function values of two 
adjacent solutions. Concluding, the crowding distance value 
(and thus the fitness value) is higher if a solution is more 
isolated, promoting a more diverse Pareto set. The algorithm 
in steps (for more details, the reader is referred to [17]): 

Step 1: Initialization: Set population size pν , which is 
equal to the archive size aν , the maximum number of 
generations H, and generate an initial population 0φ . Set 

0h =  and 0π = ∅ . 
Step 2: Fitness assignment: Combine archive hπ  and 

offspring hφ , forming h h hϑ π φ= ∪  and calculate fitness 
values of solutions by dominance ranking and crowded 
distance sorting. 

Step 3: Environmental selection: Determine new archive 
1hπ +  by selecting the aν  best solutions out of hϑ  based on 

their fitness. 
Step 4: Termination: If h H≥  or another stopping criteria 

is satisfied, determine Pareto set P from the set of all 
calculated solutions { }0 Hφ φ φ= ∪ ∪  (non-dominated 
solutions).  

Step 5: Mating selection: Perform binary tournament 
selection with replacement on 1hπ +  to determine the mating 
pool of parents 1hσ + . 

Step 6: Variation: Apply recombination (uniform 
crossover) and mutation operators to the mating pool 1gσ +  to 
create offspring 1hφ + . Set 1h h= +  and go to step 2. 

 
2) ε-NSGAII 
ε-NSGAII has NSGAII as a basis, but adds two main 

elements: ε-dominance and restarts with adaptive population 
sizing (see Fig. 1).  

 
Initial
population

NSGA-II until
convergence

After fixed
number of 
restarts I: STOP

ε-archive of size Ei

2Ei newly generated
random solutions

Starting
population for
next restart

 
Fig. 1.  The main loop of the ε-NSGAII algorithm 
 
For every objective, an ε-value has to be set, resulting in an 

ε-grid in the objective space. In this way, every Pareto 
solution is placed within one ε-box (see Fig. 2). This allows 
the user to specify the precision of the algorithm for each 
objective. The concept of ε-dominance is defined as follows. 

As a first step, only one Pareto solution is chosen to 
represent an ε-box. If that box contains more than one Pareto 
solution, the solution that is closest to the vertex of the 
hyperbox with minimum objective value for all objectives is 
chosen. When determining this distance, the Euclidian 
distance is calculated, using the specified ε-values to 
normalize the objective values.  

As a second step, boxes that are dominated by another box 
(i.e., have a worse or equal objective value for every 
objective) are eliminated. The objective value for a box is 
chosen to be the minimum value of all objectives in the box 
(similar to the vertex of the hyperbox used to find the best 
Pareto solution per ε-box in step 1). The solutions that are 
contained by every remaining ε-box are denoted as the 
ε-Pareto set.  

During every generation of the NSGAII algorithm, in 
which the Pareto set is determined by non-domination 
sorting, the ε-Pareto set is also determined and saved in an 
ε-archive. This ε-archive is updated every generation by 
applying ε-dominance over the union of the archive of 
generation h-1 and the Pareto set of generation h. When no 
progress is made any more in the ε-archive for a specified 
number of generations, a restart is activated, where the 
starting population after the restart consists of the ε-archive, 
replenished with new randomly generated solutions. The 
generation size after the restart depends on the size of the 
ε-archive: the larger the archive, the larger the generation 
size. The setting of ε is very important, since it determines the 
tradeoff between precision and speed of the algorithm.  
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Fig. 2.  Illustration of ε-dominance for the 2 objective case. Top: step 1, 
choosing 1 solution per ε-box. Bottom: step 2, applying dominance to the 
ε-boxes: the light grey boxes are dominated by the darker boxes.  
 

E. Case study 
The case study area covers the Amsterdam Metropolitan 

Area in The Netherlands (Fig. 3). This region is characterized 
by dense concentrations of housing, employment and 
facilities, high costs for parking in city centers due to the 
scarcity of space, and congested road networks. Origins and 
destinations are aggregated into 102 transportation zones. 
Important commercial areas are the city centers of 
Amsterdam and Haarlem, the business district in the southern 
part of Amsterdam, the harbor area and airport Schiphol. 
Other areas are mainly residential, but still small or medium 
scale commercial activities can be found. We assume a fixed 
demand for transportation that is based on the mentioned 
socio-economic characteristics of the area and is taken from 
the regional transportation model (named Venom), that is 
used for planning by the authorities [29]. Travelers are served 
by an extensive multimodal network with pedestrian, bicycle, 
car and transit infrastructure. Transit consists of bus, tram, 
light rail, bus rapid transit, metro, local train, regional train 
and intercity train. Bicycles can be parked at most stops and 
stations, and 36 transit stations facilitate park-and-ride 
transfers. 

  
1) Decision variables 

At various locations in this transportation network, 36 
decision variables are defined: 

- Frequencies of 12 train lines, that can take 2 or 4 
different discrete values 

- Frequencies of 8 major bus lines, that can take 4 
different discrete values 

- Opening or closing of 7 park-and-ride facilities (binary 
variable) 

- Opening or closing of 6 train stations (binary variable) 
- Marking 3 train stations as express station or not (binary 

variable).  
All decision variables are denoted as vy  and are contained in 
vector y . Binary variables are directly represented in the 
genetic string. Variables that can take 4 different values are 
represented by 2 genes in the genetic string. In total, decision 
space Y contains approximately 7E+10 different values for 
the decision vector y . 

 
2) Objective functions 

In this paper we consider 4 objectives which we want to 
minimize: total travel time in the whole network, urban space 
used by parking, operating deficit of the public transport 
system and climate impact of the transport system. The values 
of the objective functions are calculated as follows based on 
loads and travel times in the network ( , , , )G N A L U and on 
demand matrices after applying the lower level. Total travel 
time involves travel time of car users and PT  users. Urban 
space used by parking follows from demand matrices for car 
and Park and Ride. Operating deficit is the difference 
between operating costs and operating revenues, that depend 
on PT ridership. Finally, CO2 emissions are calculated from 
network loads using emission factors. More details on 
objective function calculation can be found in [18]. 
 

Almere
Amsterdam

Haarlem

Zaanstad

Hoofddorp
Schiphol

 
Fig. 3.  The study area of the case study, containing various urban areas, 
roads, railroads, train lines and bus lines. 
 

3) Parameter settings 
To limit computation time, in this study we set the 

maximum number of evaluated solutions at 2640. For each of 
these solutions 4 objective function values are calculated. In 
that case the computation time is just under two weeks, since 
the evaluation of one solution takes approximately 6.5 
minutes (using a computer with an Intel® Core™ i7 CPU 860 
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@ 2.8GHz and a 4 GB RAM). For NSGAII, we used a 
generation size of 80, resulting in 33 generations to come to 
2640 evaluated solutions. For ε-NSGAII, the parameters from 
[19] could not be used (the computation time would be too 
large), so we used a test problem to come to appropriate 
settings. This test problem  is comparable with our real life 
problem (equal number of objectives and equal decision 
space), but had small computation times. This resulted in the 
following settings that yielded approximately the desired 
number of function evaluations. A 1/3 injection scheme was 
used, implying that at every restart, 1/3 of the new starting 
population will consist of the ε-archive and 2/3 of new 
randomly generated solutions. Next, the parameter for 
convergence that triggers a restart was set such that after 3 
generations without a change in the ε-archive, a restart is 
activated. The number of restarts is set as 5 and the initial 
population size is set as 10. 

Finally, the ε values are set per objective. The range that is 
known for each objective bounded by the minimum and 
maximum known values is divided into 5 to 8 ε-boxes. This 
results in approximately 2000 boxes in the objective space. 
However, since the Pareto set contains a certain structure by 
definition (i.e. in the 2-dimensional case the Pareto set is a 
line and in the multidimensional case a hyperplane), a 
majority of the boxes is empty. Step 2 (see Fig. 2) further 
reduces the ε-Pareto set, resulting in a typical size of 
approximately 25 solutions in the application in this paper.  

III. RESULTS 
In this section we show the results of 4 optimization runs: 2 

using NSGAII and 2 using ε-NSGAII. Both runs of the same 
algorithm differ, because both algorithms use a random seed 
in Monte Carlo simulation that is used for the recombination 
and mutation operators in the genetic algorithm. [18] 
elaborate more on these differences due to random seeds. To 
assess the differences, well known indicators from the 
literature are used in the coming sections. 

With the chosen parameter settings for ε-NSGAII, run 1 
results in 2631 calculated solutions and run 2 in 2330 
calculated solutions. This difference occurred because the 
stop criterion is met at a different moment in time for the two 
runs with different random seeds. For NSGAII, 2640 
solutions are calculated to have a (fixed) calculation time that 
is comparable, but never shorter than the calculation time of 
ε-NSGAII. 

Since we would like to use all available information 
concerning objective function values (that were gathered in 
the lower level by expensive calculations in terms of 
calculation time), we use all calculated solutions within one 
run to determine the Pareto set for that run. An alternative 
would be to analyze the Pareto set resulting from the final 
generation of the genetic algorithm. As said, we do not 
choose to do this, because the generation size (and thus size of 
the Pareto set) in NSGAII and ε-NSGAII have a considerably 
different size. Further, the calculation of the Pareto set from a 
few thousand solutions, and calculation of the values of the 
performance indicators is possible in reasonable calculation 
time, making it feasible to use all known objective function 
values to determine the Pareto set and the indicator values.  

A. Minimum per objective 
In Fig. 4 we show the normalized values of the objective 
function that are achieved per run (the value of the objective 
function of NSGAII, run 1 is rescaled to 100). For all 
objectives except total travel time ε-NSGAII outperforms 
NSGAII, but differences are small. For total travel time 
however ε-NSGAII performs considerably worse than 
NSGAII for run 1. For run 2 differences are very small.  
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Fig. 4.  The normalized values found by the 4 runs. 

B. Hypervolume 
The next indicator that is considered is the hypervolume 

indicator [30], also known as S-metric or space coverage. In 
the 2-dimensional case it determines the area that is covered 
by the Pareto set with respect to a reference point, i.e. the 
upper bound of all objectives. This is defined such that it is 
dominated by all solutions in the Pareto set. Because the true 
maximum values of the objective functions are not known, a 

conservative point is chosen. In the multi-dimensional case 
this area becomes a so-called hypervolume. Since we 
formulated the problem as a minimization problem for all 
objectives, a larger hypervolume means a better solution. In 
Table 2 we show the normalized hypervolume values for the 
Pareto sets resulting from the 4 optimization runs. For both 
runs ε-NSGAII outperforms NSGAII. Note that ε-NSGAII 
has more solutions in the final Pareto sets, which is one 
reason for this better performance.  
 

1) Convergence 
In Fig. 5 we show the hypervolume as a function of the 
number of evaluated solutions until that moment in time. The 
hypervolume is calculated based on the Pareto set that is 
known with respect to all solutions calculated until that 
moment in time. In Fig. 6 we plotted the size of the 
corresponding Pareto sets. Note that the hypervolume value 
never decreases, since each new solution either improves the 
Pareto set or the Pareto set remains the same. We observe that 
ε-NSGAII converges very fast in terms of hypervolume. 

TABLE 2 
THE NORMALIZED HYPERVOLUME VALUES FOR FOUR OPTIMIZATION 

RUNS  

 Number of Pareto 
solutions jN  

Normalized 
hypervolume 

NSGAII, run 1 173 0.990 
NSGAII, run 2 192 0.985 
ε-NSGAII, run 1 203 0.999 
ε-NSGAII, run 2 229 1.000 
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Results show that we can stop the iterative procedure after 
2000 solutions.  
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Fig. 5.  The hypervolume covered with respect to the number of evaluated 
solutions.  
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Fig. 6.  The size of the found Pareto set with respect to the number of 
evaluated solutions  

C. Set coverage 
Finally the Pareto sets are compared using the set coverage 

indicator or C-metric [31]. The set coverage is a pairwise 
indicator that shows the fraction of solutions in the other set 
that is dominated by solutions in a set. This definition implies 
that a higher value for a Pareto set indicates a better score 
over the set that it is compared with.  

In Table 3 we show the values for set coverage for all pairs 
to be formed out of the 4 optimization runs. It can be seen that 
comparing ε-NSGAII with NSGAII Pareto sets results in 
considerable higher values than the other way around. Note 
that the set coverage of run 1 and run 2 with the same 
algorithm shows the influence of the random seeds: the set 
coverage reveals that both runs are not completely 
symmetrical: although the difference between the values is 
not very high. 

D. Algorithm comparison 
Putting these results together, ε-NSGAII shows better 

results for the experiments in this paper than NSGAII with 
respect to set coverage and hypervolume. Furthermore, for 
the best solutions for each individual objective ε-NSGAII 
scored better for 3 out of 4 objectives, but the objective travel 
time showed considerably worse values. The high 
performance of ε-NSGAII may be explained by the focus on 
large gains by the ε-dominance relation: if no large progress is 
made any more, no computation time is wasted to achieve 
little improvement. Instead, a restart is triggered, stimulating 
exploration of new areas of the front, but using the properties 
of the high quality solutions found earlier (the ε-archive). 
Another explanation may be the dynamic population size: by 
starting with a small population, the algorithm focusses on 
dominance rather than on producing a diverse Pareto set. In 
limited calculation time large progress is made in an early 
stage of the algorithm. Later, the population size grows, 
allowing for more diverse solutions, but is directly dependent 
on the size of the ε-archive, so that no calculation time is 
wasted on too much detail. 

The results imply that for finding the extreme solutions, 
ε-NSGAII seems less suitable. However, the main reason for 
applying multi-objective optimization is to find good tradeoff 
solutions and not to find the minimum values of individual 
objectives (otherwise single objective optimization would be 
sufficient). 

IV. CONCLUSION 
In this paper, we formulated the multimodal passenger 

transportation network design problem as a multi-objective 
optimization problem, to minimize total travel time, use of 
urban space by parking, operating deficit and climate impact. 
Considering the high computation times in our real life case 
study, we need a solution method that uses a limited number 
of evaluated solutions. Therefore, this paper compares the 
performance of the multi-objective algorithms NSGAII and 
ε-NSGAII when applied to our multimodal network design 
problem.  

The case study in this paper confirms earlier findings that 
ε-NSGAII outperforms NSGAII on most indicators [19]. 
Especially in the early stages of the algorithm execution, 
large progress is observed. On the other hand, ε-NSGAII did 
not find better values for all individual objective functions. 
From this, we can conclude that ε-NSGAII is an efficient 
algorithm to find high quality tradeoff solutions in our 
multi-objective optimization problem, especially because 
objective function calculation is highly computationally 
expensive. It performs comparable with NSGAII to find the 

TABLE 3 
COVERAGE OF THE RUN IN THE ROW OVER THE RUN IN THE COLUMN  

 NSGAII ε-NSGAII 
 run 1  run 2 run 1 run 2 

NSGAII, run 1  0.36 0.24 0.21 
NSGAII, run 2 0.31  0.21 0.26 
ε-NSGAII, run 1 0.49 0.43  0.28 
ε-NSGAII, run 2 0.50 0.48 0.30  
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extreme ends of the Pareto set. 
For future research it would be interesting to investigate the 

influence of different settings of ε on the results. ε-settings 
can be used to put emphasis on specific objectives, but also 
strongly influence calculation times, since convergence of the 
algorithm depends on them. Furthermore, since results of 
evolutionary algorithms are always case specific, it would be 
good to do more similar tests on different real life design 
problems.  
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