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Abstract—Genetic algorithms (GAs) are widely accepted by
researchers as a method of solving multi-objective optimization
problems (MOPs), at least for listing a high quality approximation
of the Pareto front of a MOP. In traffic management, it has been
long established that tolls can be used to optimally distribute traffic
in a network with aim of combating some traffic externalities
such as congestion, emission, noise, safety issues. Formulating the
multi-objective toll problem as a one point solution problem fails
to give the general overview of the objective space of the MOP.
Therefore, in this paper we develop a game theoretic approach
that gives the general overview of the objective space of the multi-
objective problem and compare the results with those of the well-
known genetic algorithm non-dominated sorting genetic algorithm II
(NSGA-II). Results show that the game theoretic approach presents
a promising tool for solving multi-objective problems, since it
produces similar non-dominated solutions as NSGA-II, indicating
that competing objectives (or stakeholders in the game setting) can
still produce Pareto optimal solutions. Most fascinating is that a
range of non-dominated solutions is generated during the game,
and almost all generated solutions are in the neighborhood of the
Pareto set. This indicates that good solutions are generated very
fast during the game.

Keywords: Mult-objective problems, Game theory, Genetic algorithm,
NSGA-II, Toll setting problem, Transportation network design.

I. INTRODUCTION

Road tolling/pricing is a well-accepted technique in transporta-

tion economics to combat traffic externalities such as conges-

tion, emission, noise, safety issues. The problem is how much

toll to place and on which road segment such that traffic is

efficiently distributed in a given network. Efficiency here means

a traffic pattern that optimizes the externalities of interest. Since

the mentioned traffic externalities may very well be in conflict

with each other, a toll pattern and hence a traffic pattern that

optimizes one externality may be to the detriment of the other

externalities. Consequently, there is no specific toll pattern that

is best for all objectives. For this reason, it is important to enlist

all possibly optimal or non-dominated solutions. These non-

dominated solutions can then be presented to the decision or

policy makers for possible candidate solution(s).

Genetic algorithms (GAs) are widely accepted by researchers

as a method of solving multi-objective optimization problems, at

least for listing a high quality approximation of the Pareto front

of a MOP. Many researchers have turned attention to solving

multi-objective problems using genetic algorithms (GAs) over

the recent years. This is mostly because of their robustness in

listing layers of Pareto fronts using the so called Pareto ranking.

An interested reader should see [1] for a general review of the

field of GAs in multi-objective optimization and see [2] for

extensive description of the field. The articles discuss some of

the most representative algorithms that have been developed so

far, as well as some of their applications. Methodological issues

related to the use of multi-objective evolutionary algorithms,

as well as some of the current and future research trends in

the area are discussed in [1]. Our motivation for this paper

stems from the recommendation in [1] to seek for "alternative

mechanisms into an evolutionary algorithm to generate non-

dominated solutions without relying on Pareto ranking (e.g.,

adopting concepts from game theory)". There have been efforts

to incorporate game theory to enhance the performance of GAs.

In order to force GA to enlist Nash equilibrium points, [3]

developed an algorithm that merges GAs and Nash strategy.

Application of such merge to domain decomposition method

(DDM) - nozzle optimization problems is studied in [4]. Other

applications can be found in [5], [6]. GAs have been used to

find solutions to some game theoretic problem [7]. In their

paper [7], they used a GA to find the optimal strategy of

players in a given game. On the other hand, game theorists have

incorporated the idea of evolution into game theory in what is

now known as evolutionary game theory. These efforts to merge

the two disciplines however fail to look at the results distinctly.

Therefore, in this paper we address the following: firstly, we

use a game theoretic approach to construct an approximation of

the Pareto front of a multi-objective problem, and secondly, we

compare this Pareto front with a Pareto front that is constructed

by the well-known genetic algorithm, non-dominated sorting

genetic algorithm II (NSGA-II). NSGA-II is a widely accepted

GA that has been used by researchers and is developed in [8].

The remainder of the paper is organized as follows: section 2

gives the general overview of traffic externalities and road pric-

ing. Section 3 describes the problem and the solution methods

employed: NSGA-II and game theoretical approaches. In section

4, we demonstrate our models using a numerical example, and

finally, section 5 concludes the paper.
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II. TRAFFIC EXTERNALITIES AND ROAD PRICING

Over the past years, vehicle ownership has increased tremen-

dously. It has been realized that the social cost of owning and

driving a vehicle does not only include the purchase, fuel,

and maintenance fees, but also the cost of man hour loss

to congestion and road maintenance, costs of health issues

resulting from accidents, exposure to poisonous compounds

from car exhaust pipes, and high noise level from vehicles.

So, optimizing traffic flow requires a model that optimizes

more than one objective which may conflict with each other.

Optimization of more than one traffic externality is not a novel

idea, but what is novel is that we are using game theoretical

approach to enlist solutions in the solution space. The motivation

for solving the multi-objective problem using game theoretical

approach stems from the limitations and critics arising from

the traditional way of modelling road pricing. Traditional road

pricing models assume a Stackelberg game where there is only

one leader (e.g. the government or the toll operators) and road

users as followers. The leader sets the road toll and the road

users react to these tolls re-routing themselves according to

user or Wardrop’s equilibrium - a traffic condition where no

user has any incentive to switch routes. The limitation/critic is

that when a single actor or stakeholder or one decision maker

(dm), (e.g. the government or a private road owner) controls

the traffic flow of a transportation system through road pricing,

then it is likely that some other stakeholders/regions affected by

activities of transportation may not be happy with the effects of

the decisions made by this dm. This is because when the dm

models the multi- (or single) objective road pricing problem, all

traffic externalities are simultaneously considered (usually using

the method of weighted sum [9]) with or without preference for

any externality. When preference is given, say, to congestion,

then the effect of the preferred externality subdues the effect of

other externalities, and this may translate to huge costs for some

stakeholders, regions or even road users in terms of noise or

emission or other externalities that conflict with travel time. For

example, lower travel time (say high speeds) may translate to

more accidents (costs for insurance companies). Even without

preference to any externality, it is intuitive that stakeholders

still will prefer to partake in toll setting discussions to protect

their interests. The main problem of a classical approach from

multi-objective optimization is the following: supposing that

each stakeholder can influence the toll setting, why should an

independent player accept a situation which he can improve by

changing the (or at least suggesting another) toll patterns?

In such a situation the classical concept of Nash equilibrium

in game theory gives an appropriate alternative model. Such

models are accepted in economics in situations where indepen-

dent players may influence the market with their strategies in

order to optimize their specific objective.

The question we would like to address from a game the-

oretical/economic point of view is; what happens when each

stakeholder optimizes his objective by tolling the same net-

work, given that other stakeholders are doing the same? How

would the results of the dynamic game look like? And finally,

how would the results of the game look like as compared to

the results of the multi-objective optimization using genetic

algorithms? In what follows, we give brief explanation of the

solution methods we have used in this paper.

1) Genaral traffic model and Pareto optimality: Let

G = (N,A) be a network, with N the set of all nodes and A

the set of (directed) arcs or links in G. We use the following

notations:

Table I
NOTATIONS

A set of all arcs (links or road segments) in G

a index for links in G

R set of all paths
r index for paths (routes)
W set of all origin-destination (OD) pairs
w index for OD pairs
f path flow vector
fr flow on path r

θ link toll vector
θa toll on link a
v(θ ) toll dependent vector of link flows
va(θ ) toll dependent flow on link a

d̄ travel demand vector

d̄w demand for the wthOD pair
Γ OD-path incident matrix
Λ arc-path incident matrix
t(v) vector of link travel time functions
K set of all actors in the road pricing game

Ck(v) network cost function for the kthobjective
β monetary value of time per minute (VOT)

We first state the flow feasibility conditions for a fixed demand

static network assignment (STA). The term flow is used in

transportation engineering to mean the number of vehicles. The

following describes a feasible flow for a fixed demand STA:

v = Λ f

Γ f = d̄ FeC−FD (1)

f ≥ 0

The first constraint states that the flow v on a link or road is

equal to the sum of all path flows f that passes through this

link. The second equation is the flow-OD balance constraint, it

preserves flow for each origin-destination (OD) pair. It states

that the sum of flows on all paths originating from origin node

p and ending at destination node q for an OD pair pq equals the

demand d̄ for this OD pair. The third inequality simply states

that the path flows are non-negative. The non-negativity of link

flows follows directly from this third inequality. Henceforth we

will refer to Eqn (1) as feasibility condition for fixed demand

(FeC_FD).

Pareto optimality: If for objective k ∈ K, Ck(v(θ )) denotes

the cost or objective function (to be minimized), then a solution

vector v̄(θ ) ∈ V dominates a solution vector v(θ ) ∈ V if and

only if the following holds:

Ck(v̄(θ )) ≤ Ck (v(θ )) ∀k ∈ K and

C j(v̄(θ )) < C j(v(θ )) for at least one j ∈ K
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the solution v̄(θ )∈V is Pareto optimal if there does not exist

any other solution vector v(θ ) ∈V that dominates v̄(θ ).
The line that connects the set of all Pareto points (sometimes

called efficient points) to a multi-objective optimization problem

is called the Pareto or efficient frontier [10]: these solutions

points form the Pareto-optimal set P.

III. SOLUTION METHODS

A. The Game Theoretical Approach

The road pricing game is always formulated as a Stackelberg

game where a leader (system controller) moves first followed

by sequential move of other players (road users) [11], [12],

[9]. When we have just one (or a weighted sum of distinct)

objective, then it is assumed that only one leader stays at the

upper level of the road pricing bi-level game. In practice it

always a difficult question to know when a trade-off between

conflicting objectives is beneficial for multi-objective problems.

Moreover, actors (stakeholders, leaders and actors are used

interchangeably) have preferred objectives, and would want their

preferred objectives to have more weights in the weighted sum

optimization. So, a solution that favours one stakeholder may

be to the detriment of another player. In this paper, we adopt

the game theoretic model in [9] where each actor is modelled

to control/optimize one externality. In the paper, they assume

that various stakeholders can influence (or at least propose)

the network tolls. In that case, road users are influenced not

only by just one leader as in Stackelberg game, but by more

than one decision maker. In the multi-leader-multi-follower

game/problem, the leaders, turn by turn, make decisions (search

for toll vectors that optimize their respective objectives of

interest) at the upper level which influence the followers (users)

at the lower level. A toll decision from the upper level is added

to the network in the form road tolls, thereby adding to the travel

costs for these roads. The followers then react according to user

or Wardrop’s equilibrium - a traffic condition where no user has

any incentive to switch routes. This in turn may cause the leaders

to update their individual decisions (that is, changing their toll

patterns) leading to lower level players reactions again. Note

that given a system in Wardrop’s equilibrium, the additional link

tolls now distort the system which then triggers users to re-route

themselves to be in Wardrop’s equilibrium again. So when an

actor tolls the network in a manner that optimizes his concerned

externality, the users perceive these tolls (as added travel costs)

and re-route themselves to satisfy Wardrop’s equilibrium, then

the next actor in turn seeing the new state of the system

and the level of tolls set by previous actors, updates his toll

(decision/strategy) to ensure that given the current situation, his

current toll level is the best he can do to optimize his objective.

These updates in the upper and lower level continue until a

stable situation or maximum number of assigned iteration is

reached. A stable (Nash equilibrium) state is reached if no

stakeholder can improve his objective by unilaterally changing

his proposed toll. Note however, that given the stable state

decision tolls of leaders, the lower level stable situation is given

by the Wardrop’s equilibrium. Therefore, the tolling game is

now seen as a bi-level problem, with the stakeholders in the

upper level and the travellers in the lower level. The lower level

is a constraint to the upper level. In the above dynamic non-

cooperative scenario, each actor continuously solves a program

with equilibrium conditions which is influenced by other actors’

programs with equilibrium conditions, and these translate to

an equilibrium problem subject to equilibrium conditions. Note

that the push by actors to optimize their objectives in every

turn gives a potential to enlisting non-dominated solutions or

points in every play. Our aim in this paper is to keep track

of the attained solution during this dynamic game, construct a

Pareto front from these attained solutions and compare it with

the solution of the same problem solved using genetic algorithm

NSGA-II. For the analysis of Nash equilibrium solution of the

road pricing game, see [13].

Figure 1. Diagrammatic representation of the dynamic game model

1) Mathematical Formulation of The Game Theoretical Ap-

proach: Adopting the game model in [9], and using the

Beckmann’s convex formulation of Wardrop’s user equilibrium

(UE) [14], each actor k ∈ K now solves the following bi-level

problem:

min
θ k

Ck(v(θ k))

s.t

FeC−FD

min
vk

a

∑
a∈A

vk
á

0

(

β ta(u)+θ k + ∑
j∈K\k

θ̄ j

)

du

(2)

Where Ck(v(θ k)) is player k’s objective of interest which

depends on the network flow pattern v(θ k), θ k is the link toll

vector of player k ∈ K, and ∑ j∈K\k θ̄ j denote cumulative toll

vectors in K\k. Note that player k cannot change this sum,

instead, given this sum, he optimizes his objective using θ k.

The first constraint ensures that the resulting flow is feasible,

while the second (also called the lower level problem) ensures

that the feasible flow is in user (or Wardrop’s) equilibrium [14].

To avoid ambiguity in the use of terms, we will mostly write v

to mean v(θ ).
Since the outcome of the lower level problem of Eqn (2)

determines the input vector vk for the objective Ck(vk) and

knowing that this determinant (lower level problem) is given

by the Beckmann’s formulation in Eqn (2), player k ∈ K thus
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chooses his toll θ k in a way that optimizes his objective Ck(vk).
In fact, Eqn (2) yields a feasible link flow vector v for every

vector sum ∑k ε K θ̄ k .

During this game, we expect that every move by a player

leads to a solution that is (or close to) Pareto efficient (at least

for the playing actor) given the current toll level of other actors.

For every play and for every turn, the corresponding objective

values for all considered objectives are saved during the game.

B. Genetic Algorithmic Approach

The NSGA-II algorithm, developed in [8], is a multi-objective

optimization algorithm that optimizes several objectives simul-

taneously, searching for a set of non-dominated solutions, or

the Pareto optimal set. It is a genetic algorithm, so based on

the principles of natural selection within evolution, it combines

solutions to new solutions (crossover), where the solutions with

a higher fitness value have a higher chance to survive over

worse solutions. In the next generation, these enhanced solutions

are recombined again, until no progress is made any more or

until the maximum number of iterations H is reached. Within

NSGA-II, the mating selection is done by binary tournament

selection with replacement. All selected parents mate using

uniform crossover as crossover operator. In addition to this

mating process, a random mutation operator is applied to a

limited number of solutions from each generation, to promote

the exploration of different regions in the solution space. In

our case, mutation rate was set to 0.03, so for every design

variable there is a 0.03 chance that it is mutated. If a design

variable is mutated, it is randomly set to a new feasible value.

Evolutionary algorithms are often used to solve multi-objective

problems, because they do not end up in a local minimum, and

do not require the calculation of a gradient, and still are able

to produce a diverse Pareto set. More information on genetic

algorithms in a multi-objective context can be found in [2].

Within the algorithm, the fitness value is calculated in two

steps. In the first step (non-dominated sorting), the solutions are

ranked based on Pareto dominance. All solutions in the Pareto

front receive rank 1. These solutions are then extracted from the

set and all Pareto solutions in the remaining set receive rank

2, etcetera. In the second step, the solutions are sorted within

these ranks based on their crowding distance. Crowding distance

calculation requires sorting of the population according to each

objective value. The extreme values for each objective are

assigned an infinite value, assuring that these values survive. All

intermediate solutions are assigned a value equal to the absolute

difference in the function values of two adjacent solutions.

The crowding distance value (and thus the fitness value) is

higher if a solution is more isolated, promoting a more diverse

Pareto optimal set. NSGA-II contains elitism, to preserve good

solutions in an archive ϕ . The archive only contains the best

solutions based on the defined fitness value. This implies that

in case the number of non-dominated solutions grows bigger

than the archive size, solutions are selected based on crowding

distance instead of dominance. For details on the algorithm, the

reader is referred to [8].

The objectives optimized in system (2) are all system ob-

jectives, for which the Pareto set is constructed. NSGA-II is

designed to construct a diverse set, so containing solutions with

low (assuming that objectives corresponds to costs) values for

the first objective, but also solutions with low values for the

other objectives. It aims to show the complete spectrum of

possible solutions, giving attention to all objectives (or players

in the game approach). However, the travellers in the traffic

system optimize their own benefits (costs in the form of tolls

and travel time) in a similar way as in the game approach: they

achieve user equilibrium. Therefore, the toll design problem

is now seen as a bi-level problem, with the road authority in

the upper level and the travellers in the lower level. The lower

level is a constraint to the upper level. For every solution the

genetic algorithm comes up with, a lower level user equilibrium

problem is solved, resulting in network flows and costs, from

which the objective functions can be calculated. This process

is then repeated over and over again until no progress is made

any more or until the maximum number of iterations is reached.

Using NSGA-II as a yard stick, results of our game model are

then compared to those of the NSGA-II.

1) Mathematical Formulation of Genetic Algorithm Ap-

proach: Mathematically, the toll optimization problem for the

NSGA-II is different from the game theoretic approach given

in Eqn (2) in sense that the tolls are not differentiated among

the objectives. NSGA-II selects one generic toll θ per link

to optimize the objectives simultaneously. For NSGA-II ,the

modified version of Eqn (2) is formulated as follows:

min
θ

(

C1(v(θ )),C2(v(θ )), · · · ,C|K|(v(θ ))
)

s.t

FeC−FD

min
va

∑
a∈A

vá

0

(β ta(u)+θ )du

(3)

FeC_FD is as given in Eqn (1), and |K| denotes the total number

of objectives (corresponding to players in the game approach).

Again, the second constraint (the lower level problem) is the

Beckmann’s convex formulation of Wardrop’s user equilibrium

(UE). It ensures that any feasible solution flow v resulting

from system (3) is in user equilibrium: a condition where no

individual road user can reduce his/her travel cost by unilaterally

switching routes.

Note that NSGA-II has been applied successfully by re-

searchers to solve a multi-objective optimization problem in

traffic engineering, e.g. [15], [16]

IV. NUMERICAL RESULTS

A. Five-Node Network

1) Link Attributes and Input: We will use a five-node net-

work used in [9] to compare the two models described in the

preceding sections. We demonstrate first-best pricing scheme -

where tolls are allowed on all links. For the second-best scheme

- where some links are not allowed to be tolled, one only need
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to add the additional toll constraints on links.

The origin-destination demand for the example network is 1000

users.

Table II
NETWORK ATTRIBUTES

Figure 2. The five-node network with eight links

To demonstrate our models, we have chosen three externali-

ties / objective, namely: (1) minimizing total system travel cost,

(2) minimizing total system emission cost, (3) maximizing the

network safety (or minimizing cost related to safety issues). We

have used the following cost functions:

System Travel Time Cost:

Ct(v) = ∑
a∈A

β vata(va) = ∑
a∈A

β vaT
f f

a

(

1+η
(

va

Ĉa

)φ
)

;

the so called Bureau for Public Roads (BPR) function, developed

by Federal Highway Administration (FHWA), a division of the

United States Department of Transportation that specializes in

highway transportation.

T
f f

a - free flow travel time on link a,

va - total flow on link a,

Ĉa - practical capacity of link a, and

η and φ - BPR scaling parameters, with η = 0.15, φ = 4.

β is the value of time (VOT) with the value 0.167EUR / minute

[17], see Table II for other parameters.

Emission Cost:

Ce(v) = ∑
a∈A

ea(va) = ∑
a∈A

vaαaκala; where

κa - emission factor for link a (depending on the emission type

and the vehicle speed on link a given in g/vehicle-kilometre).

la - length of link a. In this case study, we only consider two

emission types; NOx and PM10.

See Table II for the emission costs αa and emission factor κa.

Safety Cost:

Cs(v) = ∑
a∈A

sa(va) = ∑
a∈A

ρκaEa = ∑
a∈A

vaρκala ; where

κa - risk factor for link a, measured in number of injury-

crashes/vehicle-kilometre (see Table II).

Ea = la ∗ va - measure of level of exposure on link a.

We set the cost of one injury ρ to 300EUR / injury.

Emission factors are from the CAR-model [18], emission and

injury costs are chosen in a reasonable way. For more on

the formulation of the objective functions, interested reader is

referred to [19].

MATLAB is used to solve all programs. We solve the non-

cooperative (Nash) game among the actors using the NIRA-3

[20]. NIRA-3 is a MATLAB package that uses the Nikaido-

Isoda function and relaxation algorithm to find unique Nash

equilibria in infinite games. An interested reader may also

wish to see [21] for an evolutionary algorithm for equilibrium

problem with equilibrium constraints (EPECs). In NIRA-3, we

set alphamethod = 0.5, precision = [1e-3, 1e-3], and TolCon =

TolFun = TolX = 1e-3. For more on the NIRA-3 see [20].

For the game, we place a toll bound condition of [0,5]EUR

per link per player to limit the solution space. Since NSGA-II

has discrete design variables as input, the tolls are discretized

with steps of 0.1 EUR. In the game problem each of the 3

players could vary the toll within the interval [0,5], making the

total toll of the 3 players to vary within 0 EUR and 15 EUR per

link. In NSGA-II application, this translates to 8 design variables

(one for each link) with 151 different possible toll values from

the set {0.0,0.1, . . . ,14.9,15.0} for each link. Note that in

NSGA-II application, the tolls are not differentiated among the

objectives unlike in the game approach where each player has

control over a specific toll range, i.e [0,5] per link. To search for

non-dominant solutions, the NSGA-II application uses a whole

(discritized) toll range of [0,15] per link which corresponds to

three players total toll range per link in the game approach.

Within this application of NSGA-II, every solution in the par-

ent generation will combine to new solutions, so the crossover

parameter is set to 1 (a chance of 1 to crossover). The initial

chance for a toll value to mutate is set to 0.03. For every

generation, this chance is reduced by 5%, in order to achieve

convergence.

All three objectives are simultaneously optimized in NSGA-II,

and all the three players compete in turns in the non-cooperative

game. All calculations were conducted on MATLAB version 9

running on a 64-bit Windows 7 machine with 4 GB of RAM.
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B. Results

Defnitions

Output definitions: The set Θ is defined as all decision

vectors (or solutions) that are calculated during one optimization

process, so |Θ| = ϕH. Where ϕ is the size of the archive in

one optimization process, and H is the maximum number of

generations. N is the cardinality of the Pareto set. The set of N

solutions P∈Θ with P= {v1,v2, · · · ,vN} is defined as the Pareto

set resulting from one optimization process, which includes all

non-dominated solutions with respect to all solutions in Θ, there

is no vi ∈ P such that v j ∈ Θ dominates vi. P is the outcome of

our MOP.

Hypervolume indicator: This is the space coverage of the

Pareto set as implemented in [22], also known as S-metric or

hypervolume. In the 2-dimensional case it determines the area

that is covered by the Pareto set with respect to a reference point

(the star in Figure 3). The reference point represents the upper

bound of all objectives: the reference point is defined such that it

is dominated by all solutions in the Pareto set. Because the true

maximum values of the objective functions are not known, we

choose a conservative point, based on the evaluated solutions.

In the 3 dimensional case area is replaced by volume, and in

the more dimensional case by hypervolume. The area or the

hypervolume covered by the Pareto set P is denoted by SSC(P)

in the figure below.

Figure 3. Hypervolume 2-D visualisation

In the non-cooperative game model, for every play and for

every turn, the corresponding objective values for all considered

objectives are saved. Similarly the multi-objective optimization

results from the NSGA-II are saved for every iteration. For easy

visualization, we have displayed the results of the 3-dimensional

optimization process for only two objectives per plot. For the

NSGA-II, we allowed 60 solutions to be generated within 1

generation for 100 generations. For comparison reasons, we

also allowed a maximum of 2000 play turns for each of the

three players in the non-cooperative game model. On the graphs

that follow, we have displayed and compared non-dominated

solutions resulting from the two distinct approaches.

Figure 4 shows the Pareto set (or non-dominated solution)

plot of the objectives; total travel time cost and total safety

cost for the NSGA-II and game approach. See that the shapes

of the two Pareto plots somewhat take the same U-shape.The

plots show that NSGA-II generated more points in Pareto

set. Furthermore, NSGA-II achieves better values for the safety

objective. Apparently the Safety player is not cable of achieving

much better values while competing with other players in the

game approach. This may be due to the fact that Travel time and

Emission objectives are more in line with the user equilibrium

(lower level problem) cost function. The objectives of System

Travel time and Emission have in them the travel cost function

as giving in the user equilibrium problem, whereas the Safety

objective has no such function incorporated in it. Therefore

during the game, it is easier for the Travel time and Emission

players to achieve better solutions for themselves as compared

to those of the Safety player. This indicates that the objective

safety can only be further minimized if all three players agree

to cooperate so as to have free access to the complete range

of feasible tolls as in NSGA-II. That notwithstanding, the game

approach does not fail in producing non-dominated solutions

as we can see from the Pareto set plots. Recall that we have

displayed the results of the 3-dimensional optimization process

for only two objectives per plot, so some points that seem

dominated in one plot are non-dominated in another plot.

Figure 4. Pareto set of Travel time cost vs Safety cost from NSGA-II and
Non-cooperative game

Similar as in Figure 4, we have displayed again a Pareto set

plot of total travel time cost and total emission cost in Figure

5. The figure shows again a more diverse plot by NSGA-II, note

however that the differences seen in one figure are the same

for all other figures, but displayed in different axis. Figure 6

displays the Pareto plots in the axis of total emission cost and

total safety cost. What is interesting from the figures is that the

game approach is almost able to discover all non-dominated plot

clusters as displayed by the NSGA-II. We mention here that the

game model is more constrained than the NSGA-II counterpart

in the sense that NSGA-II has access to a whole toll spectrum

[0,15] per link to optimize the three objectives simultaneously,

whereas the game approach restricts a toll range of [0,5] per

player per link. If we design the game as cooperative game

instead of the non-cooperative game, then the three players will

now have access to a whole toll spectrum [0,15] per link to

optimize their three objectives simultaneously just as in NSGA-

II. However, our aim in this paper is to demonstrate that non-

cooperative game model presents a promising way of solving
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multi-objective problems. In fact, the NSGA-II seems to be

solving the cooperative game version of the game approach

where all the players cooperate, use their combined toll ranges,

and simultaneously do what is beneficial for all players.

Despite the "constrained" nature of the game approach, the

non-cooperative game approach is capable of producing non-

dominated solutions comparable to the NSGA-II results. This

reveals that the game approach has a great potential in enlisting

non-dominated solutions for multi-objective problems.

Figure 5. Pareto set of Travel time cost vs Emission cost from NSGA-II and
Non-cooperative game

Figure 6. Pareto set of Emission cost vs Safety cost from NSGA-II and Non-
cooperative game

Note that in general, with more solutions and iterations

allowed, both the NSGA-II and the game approach have the

potentials of improving on the Pareto fronts.

For the two approaches, we show below (Figure 7 and Figure

8) plots of all the generated solutions and a summary table

(Table III). The plots show that a range of non-dominated

solutions is generated during the game. Furthermore, Figure

7 shows that almost all generated solutions are in the neigh-

borhood of the Pareto set, indicating that the non-dominated

solutions are generated early in the optimization process, and

further asserts the consistency of the game approach. This is

also underpinned by the notion that some of the solution points

replicated themselves many times during the game, due to the

nature of the game where after some moves a player will prefer

to choose a set of tolls he had chosen earlier in the game. This

further indicates that the game already reached convergence

in less than 6000 iterations. As a result, the game approach

generated a smaller number of Pareto solutions. In contrast,

NSGA-II covers a larger solution area or hypervolume, some

good portion of its generated solutions are very far from the

Pareto front though. However, NSGA-II in the end achieves a

more diverse and richer Pareto set as indicated by: the lower

(and thus better) values for the minimum objective function

values for all 3 objectives, the higher value for hypervolume

covered and the comparison plots.

Figure 7. All solutions from Non-cooperative game approach

Figure 8. All solutions from NSGA-II approach

The summary table further shows that the game approach

generated fewer Pareto points. Note however that some of these
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solution points (some of which are Pareto points) replicated

themselves many times during the game. This is due to the

nature of the game (as earlier mentioned) where after some

moves a player will prefer to choose a set of tolls he had chosen

earlier in the game.

Table III
SOLUTION SUMMARY

Game NSGA-II

Number of solutions in the Pareto set 101 794
Minimum value for travel time 2391 2389
Minimum value for emission 63367 60930
Minimum value for safety 88240 46894
Hypervolume covered by the set 6.22E+15 7.08E+15

V. CONCLUSION

In this paper, we compared the results of a multi-objective

optimization using two distinct approaches, namely; the well-

known genetic algorithm NSGA-II and a model from non-

cooperative game theory. We applied these techniques to the

problem of optimal toll design in a transportation network, with

total travel time, total emissions cost and total cost of safety

as objectives. In the game theoretic approach, every objective is

optimized by one of the players, while the travelers aim for user

equilibrium. The results show that the game approach has the

potential of discovering non-dominant solutions. Though NSGA-

II produces a more diverse Pareto set (seen in the plots and based

on the hypervolume indicator), the game theoretic approach

does somewhat approximate the NSGA-II solutions. The figures

showed that similar clusters of Pareto points could be discovered

by the game approach, except for the objective safety, because

safety directly competes with the interests of the users. Further,

plotting all solutions generated during the game showed that

most dominated solutions still lie in the neighborhood of the

Pareto front, asserting the consistency of the game approach.

This implies that good solutions are generated fast during the

game. Although the Nash game model does not ensure that all

non-dominated solutions are generated, the competition among

the actors (where each actor searches for the best solution

given what other actors are doing) tends to draw the solution

points near to the Pareto front. We therefore conclude that

game theoretical approach described in this paper presents

a promising method for enlisting non-dominated solution for

multi-objective problems. We further acknowledge that Nash

equilibrium solutions may not be Pareto efficient. Therefore,

the next line of research will be to enhance the game model to

ensure a diverse Pareto set.
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