
Multi-objective optimization of multimodal transportation 

networks  

Ties Brands* 

Centre for Transport Studies 

University of Twente, Enschede, The Netherlands 

Eric van Berkum 

Centre for Transport Studies 

University of Twente, Enschede, The Netherlands 

*e-mail: t.brands@utwente.nl 

1 Introduction 

Highly urbanized regions in the world nowadays face well known problems in the traffic system, like 

congestion, use of scarce space in cities by vehicles and infrastructure and the emission of greenhouse 

gases. In this research we focus on the integration of transportation networks of cars, public transport 

(bus, tram, metro, train) and bicycles as a cost effective solution direction to alleviate these problems.  

 

2 Problem definition 

In infrastructure planning, current practice is often to design a few alternatives, assess these 

alternatives by a transportation model and choose the best performing alternative. However, this 

alternative is still likely to have room for improvement. That is the reason for applying optimization 

techniques in this context.  

2.1 Multi-objective optimization 

A multi-objective approach is adopted, because of the complex context of competing sustainability 

interests, like accessibility, environmental impact, livability and costs. We do not choose to translate 

multiple objectives into a single objective by using weights for each objective, because the weights as 

well as the normalization of the different objectives are arbitrary. Furthermore, we are interested in 

tradeoffs between objectives, which can only be achieved by studying the Pareto optimal set [1].   

2.2 Bi-level problem.  

The transportation network design problem is often solved as a bi-level optimization problem (for 

example [2]). In our case the problem is discrete. The upper level represents a network authority that 

wants to optimize system objectives. In the lower level the travelers minimize their own generalized 

costs in the multimodal network, which results in a stochastic user equilibrium. This equilibrium is a 

constraint for the upper level problem.  



 

2.3 Network and demand definition 

The network is defined as a directed graph G , consisting of nodes N and links A . Transportation 

zones Z are a subset of N  and act as origins and destinations. Total fixed transportation demand D is 

stored in a Z Z  matrix. Furthermore, transit service lines L are defined as ordered subsets lA  of A  

and transit stations or stops S are defined as a subset of N .  

2.4 Decision variables 

Decision variables in this multimodal network design problem are related to transfer facilities or to 

public transport facilities and are defined in table 1. Candidate locations for these decision variables 

are defined in advance, taking spatial / physical constraints into account. The car and bicycle networks 

are assumed to be fixed.  

Decision variable Formulation Explanation 

Park and Ride 

facility at station 

s 

 0,1sp   This binary variable indicates whether it is possible to park the car 

at a station s. At existing stations with park and ride facility, this 

variable is fixed to 1. At candidate locations, this variable can take 

values 0 and 1. 

Existence of 

station s 

 0,1st   This binary variable indicates whether transit vehicles call at 

station s or not. At existing stations this variable is fixed to 1, at 

candidate locations this variable can take values 0 and 1.  

Express status of 

station s 

 0,1se   This binary variable indicates whether transit vehicles of express 

lines call at station s or not. At existing stations this variable is 

fixed to 1, at candidate locations this variable can take values 0 

and 1. 

Frequency of 

transitline l 

l lf F  lF contains possible values for the frequency of transit line  l . 

Existing transit lines can either be fixed ( lF  contains only 1 

element) or free ( lF  contains 2 or more elements). In the latter 

case 0 may also be included. For candidate transit lines lF  always 

contains at least 2 elements, including 0.   

Table 1: Definition and explanation of decision variables. 

 

2.5 Objective functions 

The values of the objective functions are calculated based on loads and costs in the network, which are 

stored in link characteristics and in Z Z  matrices. The objectives are operationalized by total 

travel time, number of car trips to urban zones (to represent use of urban space for parking), CO2 

emissions and exploitation costs (see table 2). Investment costs are not considered, because the chosen 



decision variables typically involve higher exploitation costs instead of high investment costs. All four 

objectives are to be minimized.  

 

Policy objective Measured by Formulation
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ijmT  Travel time from origin i to destination j with mode or mode chain m 

ijmD  Transportation demand from origin i to destination j with mode or mode chain m 

abq  Flow on link a for vehicle type b 

ad  Road type indicator, equals 1 if link a is of road type d, 0 otherwise 
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CO2 emission factor of vehicle type b on road type d, depending on average speed of link 

a for vehicle type b abv (grams/(veh*km)) 

al  Length of link a 

UZ  Set of highly urban zones 

OM  Set of modes (including mode chains) that start the trip with a car leg  

DM  Set of modes (including mode chains) that end the trip with a car leg  

PTB  Set of vehicle types that are part of the public transport system 

lA  Set of links that are traversed by line l
 

bC  Exploitation costs for vehicle type b (euro’s per vehicle*hour) 

bl  Public transport vehicle type indicator, equals 1 if line l is of vehicle type b, 0 otherwise 

lf  Frequency of line l 

abt  Travel time in link a for vehicle type b 

Table 2: Definition of objective functions and list of symbols 

 

3 Solution method 

3.1 Upper level 

The problem is hard to solve and is computationally too expensive to be solved exactly, so we rely on 

heuristics. Literature provides different techniques to approximate the multi-objective optimization 



problem in the upper level (see for example [3] for theory and [4] for a practical application in 

transportation science). Examples of these are different forms of genetic algorithms, simulated 

annealing or tabu search. In this research we use the genetic algorithm NSGA-II algorithm as it was 

successfully applied by [5]. 

3.2 Lower level 

To be able to assess a multimodal network in a suitable way, a multimodal traffic assignment model is 

applied in the lower level (see fig. 1). This includes a nested logit mode choice model [6] which has 

the car mode in one nest and mode chains with public transport as a main mode in the other nest. The 

latter nest contains the mode chains that include walking, bicycle and car as access mode as well as the 

mode chains that contain walking, bicycle and car as egress mode. The car-only trips are assigned to 

the network using a standard capacity dependent user equilibrium assignment. The public transport 

assignment method (including various access and egress modes) includes multiple routing based on 

the principles of optimal strategies, as developed by [7], without capacity restrictions.  

 

Fig. 1: Multimodal traffic assignment model used in the lower level with K iterations 

 

4 Case study 

The optimization framework is applied to a case study in the Amsterdam metropolitan area, which 

covers a large part of the Randstad (fig. 2). It contains a detailed multimodal network, including 

bicycle links, car links, transit lines (including distinction between local services and express services). 

This enables a detailed modeling of the trip chain. On the other hand, the number of zones is limited, 

to ensure fast calculation times.  



 

Fig 2: the area of the case study 

5 Results 

The resulting Pareto set gives insight in the interdependencies and tradeoffs between objectives. 

Furthermore, design variables can be identified which satisfy one or more objectives.  

The results indicate that an additional stop for express trains on multimodal nodes in the 

network is a cost effective decision variable, with a good tradeoff between travel time and CO2 

emissions. New public transport lines are not cost effective to reduce travel time. New stations are a 

cost effective way, especially if combined with a park and ride facility, to reduce the number of car 

trips in urban areas maintaining acceptable travel times.  
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