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ABSTRACT  
In this paper, we introduce a new trip distribution model for destinations that are not homogeneously 

distributed. The model is a gravity model in which the spatial configuration of destinations is 

incorporated in the modeling process. The performance was tested on a survey with reported grocery 

shopping trips in the Dutch city of Almelo. The results show that the new model outperforms the 

traditional gravity model. It is also superior to the intervening opportunities model, because the 

distribution can be described as a function of travel costs, without increasing the computational time. In 

this study, the distribution was described by a simple function of Euclidean distance, which provides a 

good fit to the survey data. The slope of the distribution is quite steep. This shows that most trips are 

made to nearby supermarkets. However, a significant fraction of trips, mainly made by car, still goes to 

supermarkets further away. We argue that modeling of these trips by the new method will improve traffic 

flow predictions.  
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1. INTRODUCTION 
The understanding of traffic flows in an urban environment is an important issue with reference to policy 

making. Problems with traffic nuisance and air quality are increasingly seen as being a threat to the 

livability in Dutch cities. Pollution of small particles by cars decreases the air quality in urban areas (1), 

while over forty percent of the population in Dutch cities also indicated that they experience traffic 

nuisance as an impediment to the livability of residential areas (2).  

A better insight to traffic flows will help local policy makers to implement policies regarding 

urban traffic. This requires reliable data on the different trip purposes. According to the Dutch National 

Travel Survey (3), on average more trips are made to grocery shops than to work. A good description of 

trip generation and distribution for these trips is therefore important. In this paper, we use high resolution 

survey data from the Dutch city of Almelo to model the distribution of grocery shopping trips. 

There are several methods to model trip distribution. Among others, Ibrahim (4) and Jang (5) 

used disaggregated models to describe the generation and distribution of shopping trips. These methods 

model individual choices of travelers. By including many relevant attributes, they can model several 

aspects of travel behavior and policy interventions simultaneously. However, due to many unknown 

factors, it is almost impossible to model how each individual values an alternative, and the evaluation of 

the results is also not straightforward. Most practitioners in the Netherlands therefore still use aggregated 

methods to model trip distribution, especially in the case of shopping trips, e.g. (6). In this study, 

aggregated observations are parameterized by a simple empirical model, for which the results can be 

inspected visually. Although this approach is not often used in traffic engineering, we will show that it 

provides reliable results that can be interpreted in a straightforward way.  

The traditional gravity model, e.g. (7), is probably the most popular aggregated method. Within 

gravity models a ‘deterrence function’ is used to describe the propensity to travel at increasing 

generalized costs. This function is often presented in the form of a power law, an exponential function or 

a combination of both (7). A different approach to estimate the aggregated trip distribution is to use the 

concept of intervening opportunities, which was proposed by Stouffer (8). In this method, the number of 

persons going to a particular destination is inversely proportional to the number of intervening 

opportunities between the origin and destination. 

In the past, a few comparisons were made between the traditional gravity (TG) model and the 

intervening opportunities (IO) model. In general, both models performed comparably (9). Eash (10) stated 

that the TG model and the IO model are fundamentally the same as they both can be derived from the 

entropy maximization approach (11). The difference between the models arises from the approach to 

determine the disutility. Within the TG model the disutility is described by travel costs, while in the IO 

model the disutility depends on the number of intervening opportunities (12), (13). IO models are 

especially useful for trip purposes, in which the opportunities are not homogeneously distributed, but 

form discrete attraction points in the urban environment. In an effort to make a unification of both 

aggregate approaches, the gravity-opportunity model was developed. This model can be seen as an IO 

model in which deterrence as a function of travel costs is included (12). However, for this model the 

computational complexity is substantial (9). 

In this paper, we introduce an aggregated method to model trip distribution for the shopping 

purpose. The model is based on the gravity method, but, like IO models, it takes the spatial configuration 

of supermarkets into account. However, this is done without introducing extra computational time. In 

section 2, we describe the data. In section 3, we introduce the new model and we shortly summarize how 

we applied the TG, the IO and the new model to our sample. In section 4, we compare the results of the 

three different models. Section 5 provides conclusions.  

 

2. DATA 
In the Netherlands and in many other countries, data from National Travel Surveys (NTS) are used to 

describe traffic flows. The Dutch NTS (MON) is a large survey which is carried out each year. In the 

questionnaire of the MON respondents are asked to fill in which trips they have made at a given day. The 

MON survey, however, is not very suitable for estimating the distribution of grocery shopping trips. First, 
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short non-commuting trips are underreported, because these trips are more easily forgotten by respondents 

(14), (15). Since underreporting is distance dependent, the distribution is also affected by this bias. 

Secondly, the spatial resolution of MON is relatively poor and precise distance estimates are lacking. 

For these reasons, we used data from a local survey, Omnibus, which was conducted in the Dutch 

city of Almelo for many subsequent years. In general, the main objective of this questionnaire was to 

acquire information on the attitudes and behavior of its inhabitants. One person per household is asked 

which two supermarkets are visited most frequently, what their corresponding frequency rates are, and 

which mode of transport is used. Both the location of the household and the supermarkets are known on a 

Dutch postal 6 zone level. An average postal 6 zone in the municipality of Almelo is 0.04 km
2
. This 

resolution is high enough for a reliable estimate of the distribution for grocery shopping trips. Figure 1 

shows the distribution of the population and the locations of the supermarkets in Almelo. The cross-

section of the figure is about 5 km. 

The Euclidean distance between the centroids of the postal 6 zones was taken as an indicator for 

the deterrence. For internal trips (when the residents and supermarket are in the same zone), the Euclidean 

distance was calculated by 0.5r with r being the radius of the postal 6 zone. Although Euclidean distance 

is strongly correlated with network distance, network distance and travel time may be better indicators for 

the deterrence. However, these variables are difficult to obtain, because estimates are often biased for 

short distances e.g. (16), (17), (18). We lacked reliable information on network distance and travel time. 

 

 
FIGURE 1  Population and location of supermarkets in the neighborhoods of Almelo 
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Despite the comprehensive information on travel behavior, the Omnibus questionnaire has its 

drawbacks. Although the sample is representative for the types and locations of the households in Almelo, 

it is not representative for the entire population of Almelo, because it contains more women and relatively 

fewer workers. We, however, assume that the trip distribution of the respondents is comparable to those 

of other household members. Also, respondents can only report on two supermarkets, while they might 

visit a third or fourth supermarket. Although it is hard to estimate the effects of this bias, we think that it 

has little effect on the distribution as function of distance. Finally, only supermarkets within Almelo are 

considered. Supermarkets in neighboring villages are not taken into account. To avoid biases in the choice 

set, households in the border zones of Almelo were excluded from the sample.  

By combining the databases from 2001 to 2007, we obtained a data set with 8700 cases. For this 

sample, it is possible to compare the performance of different distribution models. A major limitation, 

however, is that the distribution for just one city is estimated. Although it is quite likely that this 

distribution is valid for other cities in the Netherlands as well, no data were available to test this.  

 

3. METHOD 
In this paper, we distinguish three distribution models. First, the distribution of grocery shopping trips is 

estimated by the traditional gravity (TG) model. In this estimate, the spatial configuration of supermarkets 

is not included in the modeling process. This will appear to be a disadvantage. Secondly, the distribution 

is estimated by the intervening opportunities (IO) model, which takes the spatial configuration of 

supermarkets into account. However, in the traditional IO model the distribution is not described as 

function of other attributes, like distance. The advantages of both the TG and IO model are combined in a 

new gravity model, which is called the Limited Destinations (LD) model. In the LD model, the 

distribution is described as function of distance, while the spatial configuration of supermarkets is also 

included in the modeling process. In the sections 3.1 – 3.3, we describe the three models in more detail. In 

section 3.4, we explain how we estimated the quality of the models by a likelihood measure. 

For the three models, the distribution function is estimated from the survey data. The number of 

residential postal zones, I, is 1956. The number of supermarket zones, J, is 18. (20 supermarkets situated 

in 18 postal 6 zones). The Origin Destination matrix, Tij, is thus an I by J matrix of 1956 rows by 18 

columns. The observed OD matrix from the survey, Tij
obs, gives the total of reported trips from i to j.  

Thus, each OD pair contains the sum of the number of trips of each respondent. Both the first and second 

most frequently visited supermarket were taken into account, by giving them weights according to their 

reported trip frequencies. 

In the OD matrix, the total of row i is equal to the number of trips made from origin i, and the 

total of column j is equal to the number of trips made to destination j. The observed row totals are equal to 

the sample production rates per zone, Oi
obs. For commuting, the observed column totals are equal to the 

sample attraction rates per zone, because in a saturated labor market, the number of trips to a working 

zone is equal to the number of opportunities, i.e. jobs, in that zone. However, this is not the case for 

shopping trips. The number of trips to a supermarket is proportional to the intrinsic attraction (e.g. 

characteristics of the supermarket), but also depends on the location of the supermarket. If a supermarket 

is located in the proximity of many residents, and at the same time near few other supermarkets, it will 

attract many shoppers. This so called attraction is in fact the result of the way shoppers and supermarkets 

are distributed throughout the city. 

It is not trivial to disentangle the intrinsic attraction from this distribution effect. Many authors 

(6), (19), (20) use the amount of floor space of a supermarket as a measure for the intrinsic attraction. The 

data of shopping behavior in Almelo show the same pattern. A supermarket with twice the size of an 

average supermarket will attract roughly twice the number of customers. The attraction is therefore 

assumed to be directly proportional to the floor space of a supermarket. The observed intrinsic trip 

attraction of zone j, Dj
obs

, can thus be defined as the total floor space of supermarkets in zone j times a 

normalization factor, which is the ratio between the total number of trips in the survey and the total floor 

space of all supermarkets in the survey. Note however that large supermarkets are often located in large 

residential areas, which means that the size of a supermarket may be the result rather than the cause of 
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attractiveness. Also, other intrinsic characteristics like operating hours, economic activity in the 

environment, access to major roads, and transit stops, may influence the attractiveness of a supermarket.  

It is difficult to estimate which attraction characteristics should be used. Moreover, it will 

sometimes be difficult to quantify certain characteristics. To get a feeling for the sensitivity of attraction 

measures, we also estimated the distribution in which all supermarkets have an equal intrinsic attraction. 

In that case, the observed intrinsic trip attraction of zone j, Dj
obs

, is defined as the number of supermarkets 

in zone j times a normalization factor, which is the ratio between the total number of trips and total 

number of supermarkets in the survey. We find that the results are not significantly different for both 

attraction measures. In this paper, we only show the results for the former attraction measure, because this 

is in accordance with the literature.  

 

3.1 Traditional Gravity model 
In the TG model the number of trips between i and j is estimated by multiplying the production Oi (total 

number of trips generated in origin i) and attraction Dj (total number of trips attracted by destination j) 

with the distribution values fij. We describe the TG model as follows. 

 

ijijij HfT ∗=            (1) 

∑

∗
=

i

i

ji

ij
O

DO
H           (2) 

  

Tij is the estimated OD matrix and Hij is the production attraction matrix. The latter one provides 

the number of trips between i and j according to the production in i and attraction in j. The distribution 

values can be represented by a distribution function f. The function can be interpreted as a measure for the 

attractive force between origin and destination per unit of production (in the origin) and unit of attraction 

(in the destination). When the distribution function is independent of any attribute, i.e. f ≡ 1, the OD 

matrix is equal to the production attraction matrix. 

The distribution can be modeled in different ways. The traditional approach is to adopt a function 

form and to calibrate the parameters subsequently. Thomas and Tutert (18) adopted a different approach. 

They searched for the most simple function form that follows directly from the survey data. We followed 

the same approach. For the observed OD matrix, Tij
obs

,  and the observed production attraction matrix, 

Hij
obs

, trips with similar Euclidian distances were aggregated in nine Euclidian distance bins: 0 – 250, 250 

– 500, 500 – 750, 750 – 1000, 1000 – 1500, 1500 – 2000, 2000 – 2500, 2500 – 3500 and 3500 – 5000 

meters. These bins were chosen to ensure similar trip frequencies in each bin. Distances over 5 kilometers 

were not taken into account because of the lack of supermarkets in the sample at those distances. For the 

bins, the observed distribution values f
obs

 were calculated by:  

 

)(/)()( dHdTdf obsobsobs =            (3) 

 

With Tobs being the observed trip length distribution, Hobs the observed production attraction 

distribution and d the average (weighted by Tobs) Euclidean distance in each bin. In section 4.1, the 

distribution values and function fit are shown and the results are discussed.  

 

3.2 Intervening Opportunities model 
In the previous subsection, the TG model is used to estimate the distribution. Given the distribution 

function, the TG model can also predict the probability, πij, that someone from zone i makes a trip to a 

supermarket in zone j. The number of trips from i to j is equal to this probability times the production in i:  

 

ijiij OT π*=           (4) 
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With the restriction that ∑ =
j

ij 1π , which makes the OD matrix single-constrained.  

In the TG model (equations 1 and 2), the probability of visiting a supermarket in j depends on the 

distance between i and j (according to the distribution function) and on the intrinsic attraction of zone j, 

Dj. In the IO model, the probability πij does not depend on the distance between i and j, but on the amount 

of intervening opportunities. This amount is defined as the total or cumulative intrinsic attraction of 

supermarkets between i and j.  In the IO method, orientation or direction does not play a role. If the 

distance between i and zone k is smaller than between i and j, supermarkets in k are considered to be 

intervening opportunities, even if zone k lies in the opposite direction.  

The IO model consists of the following steps. For each origin i, the destination zones j are ranked 

according to their distance to i, i.e. j = 1 for the nearest zone, j = 2 for the second nearest zone, etc., and j 

= J for the zone furthest away. The probability πij that someone from zone i makes a trip to a supermarket 

in zone j is then estimated by (11): 

 

)exp(1

)exp()exp( 1

cum

J

cum

j

cum

j

ij
D

DD

α

αα
π

−−

−−−
=

−
       (5) 

 

Where Dj
cum

 is the cumulative attraction of intervening opportunities between origin i and 

destination zone j, including those in j, and α is a positive scale parameter. The cumulative attraction can 

be calculated by iteration: j

cum

j

cum

j DDD += −1 . 

For the nearest zone, j = 1, the cumulative attraction in j is equal to the attraction in j, Dj, and the 

attraction in j – 1 is equal to 0. The numerator is then equal to 1 – exp(-αDj). From this, it follows that the 

denominator should be included to satisfy∑ =
j

ij 1π .  

The parameter α is calibrated by the survey data. A small value of α corresponds with a 

distribution that slowly decays. In this case, not all travelers go to intervening opportunities, but some are 

still going to opportunities far away. A large value of α corresponds with a steep decay of the distribution 

in which almost all travelers go to the nearest opportunities.  

The parameter α is actually origin specific. For our survey, it is time consuming and difficult with 

the available software to calibrate the α of about 2000 origins and let them converge to a steady state. 

Also, a proper calibration of a location specific α is complicated by the fact that for most origin zones, 

only a small number of trips was observed. Therefore, we estimate one α value for all origins, which is 

probably the only way the IO model can be applied in practice. In section 4.2, the distribution for the IO 

model is shown and the results are discussed.  

  

3.3  Limited Destinations model 
Although the TG and IO model appear to be different, they are fundamentally the same (10). The 

disutility in the TG model also depends on the number of intervening opportunities. This is explained in 

the next example. Suppose that residents in i can shop in either a supermarket in zone j or a supermarket 

in k. The supermarkets have the same size, but the distance from i to k is smaller than from to i to j.  Thus,  

πik  > πij (and πij  + πik = 1). Suppose that the supermarket in k is closed. The intervening opportunity in k 

has disappeared and the respondents from i only have one alternative to do their shopping. Hence, πij = 1. 

This probability has changed, because it also depends on the number of intervening opportunities in k.  

The problem of the TG model is not that the distribution is a function of distance (or travel costs), 

but that the spatial configuration of supermarkets is not included in the modeling process. For commuting 

trips, this is not a problem, because the activities, i.e. jobs, are homogeneously distributed throughout the 

city. Each postal zone contains jobs. However, when activities are not homogeneously distributed, but 
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form discrete attraction points in the urban environment (see Figure 1), the configuration of opportunities 

should be taken into account. Consider an origin zone for which there are only opportunities far away. In 

the TG model, trips from this origin are aggregated in bins that also contain long distance trips from other 

origin zones. These other origins, however, could very well have nearby opportunities. The mixing of 

origins that have different configurations of opportunities leads to a bias in the distribution estimate. All 

trips from the origin without nearby opportunities have long distances. This origin therefore 

disproportionately contributes to the long distance trips. The distribution for long distances will thus be 

overestimated, and the slope of the estimated distribution will be shallower than the true slope.   

To prevent this bias, a new model was introduced. The method is a gravity model, like the 

traditional one. Thus, the OD matrix is estimated according to formulas (1) and (2). However, the 

distribution function, f, in formula (1) is estimated in a fundamentally different way. In the new method, 

we implicitly distinguish between origins that have different supermarket configurations. The method 

estimates the distribution ratio of any two distance bins. This ratio can be determined by aggregating all 

origins that have opportunities in both distance bins. Origins that do not have opportunities in either 

distance bin are excluded from the estimate. This is the essential difference with the traditional method in 

which all origins are aggregated. According to formula (1), the number of shopping trips from i to j, Tij, is 

proportional to fijOiDj, or the distribution value, fij, is proportional to Tij / (OiDk). Thus, viewed from the 

origin i, the ratio between the distribution values for, let us say, destination zones j and m, fij / fim, is equal 

to  (Tij/Dj) / (Tim/Dm). Because the distribution value is proportional to the observed frequency divided by 

the intrinsic attraction, the distribution ratio for two arbitrary distance bins k and l could be estimated in 

the following way.     

 

( )

( )∑

∑

∈

∈
=

kl

kl

Ii

obs

il

obs

il

Ii

obs

ik

obs

ik

l

obs

k

obs

DT

DT

df

df

/

/

)(

)(
, with klIi ∈ if  0>obs

ikD  and 0>obs

ilD    (6) 

 

Where dk and dl are the (average) distances in bins k and l, Tik
obs

 and Til
obs

 are the total number of 

observed trips from origin i to all zones within distance bin k and l respectively, Dik
obs

 and Dil
obs

 are the 

total observed intrinsic attractions in those bins, viewed from origin i, and Ikl is the set of origins for 

which there are supermarkets in distance bins k and l.  Note that we first aggregated the numerator and 

denominator before dividing them by each other. In this way, the result is less sensitive to the variation 

between different origins.  

We use the same nine distance bins as for the TG model. There are in total 36 (= 9*8 / 2) pairs of 

distance bins. By setting the distribution value of the first bin,  fobs(d1), equal to 1, all distribution values 

can be calculated. Because there are more distribution ratio’s than distance bins, distribution values can 

be calculated in different ways. The distribution value in distance bin 3, for example, follows from the 

ratio f
obs

(d3)/ f
obs

(d1), but also from the product of the ratio’s f
obs

(d2)/ f
obs

(d1) and f
obs

(d3)/ f
obs

(d2). These 

estimates are not necessarily similar. For each distance bin, we therefore took the averages of all possible 

combinations. It appears that this estimate is very comparable with the estimate for which the ratios 

between successive bins are used. The average estimate, however, can be quite different from the estimate 

for which the ratio with respect to the first distance bin is taken. The latter estimate is less reliable in our 

opinion, because the distribution would then be completely based on the first distance bin. In section 4.3, 

the distribution values and function fit are shown and the results are discussed.  

 

3.4  Goodness of fit 

To test the quality of each model, the log likelihood of the OD-matrix was calculated. This value shows 

the probability to obtain the observed OD-matrix given the assumed model parameters. The likelihood 

was calculated by multiplying the model probabilities of the individual observed trips from all origins to 

all destinations. Due to the large number of trips, the overall probability is very small. For a manageable 
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comparison, the logarithm (log10) of the likelihood was taken. The higher the (log) likelihood value, the 

better the model performs. Because all individual trips from i to j, with observed trip frequency Tij
obs, have 

the same probability πij, the log likelihood can be expressed in the following aggregated form: 

 

∑∑=
i j

ij

obs

ijTL )ln(log10 π         (7) 

 

4. RESULTS 
In this section, the results for the three different models are shown. The distribution functions are shown, 

and the quality is expressed by the log likelihood. In section 4.1, the results of the traditional gravity 

model are shown. In section 4.2 and section 4.3 respectively, the results are shown for the intervening 

opportunities model and the limited destinations model. In section 4.4, the results are validated. By 

comparing model and observed trip length characteristics, we show what the implications of the model 

results are.      

 

4.1 Traditional Gravity model 
We investigated which distribution function best describes the data. We find that the distribution can be 

adequately described by the following simple function form 

 
βdbadf *)(ln +=          (8) 

 

First, the best value for the power β was estimated. In Figure 2 we plotted the natural logarithm of 

the observed distribution values f
obs

 versus the average Euclidean distance to the power 0.3, d
 0.3

. The 

figure shows that, except for the first bin, the observations are fitted rather well by a linear function (solid 

line). The result for the first bin is not unexpected, because the relation between travel time or distance 

and Euclidean distance is highly uncertain for this bin. In fact, it is likely that the travel time or distance is 

relatively high in the first bin (compared to the Euclidean distance), and that these parameters therefore 

would provide a better fit in theory. Excluding the first bin, a good fit is obtained when β  = 0.3. 

According to the least-square method, β  = 0.3 provides the best linear fit. Given this value for β, the best 

fit was obtained with a = 5.86 ± 0.11 and b = -5.48 ± 0.21.  
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FIGURE 2  Distribution function for the traditional gravity model 
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The coefficient a is a scaling factor. In equation 8, a is an average for the whole sample. 

Normally, there are scaling factors for each row and / or column, which are determined by applying the 

method of Furness (21). These scaling factors constrain the OD matrix in such way that the row and /or 

column totals are equal for observations and model. However, for the interpretation of the results, they are 

less relevant. The coefficient b is the slope. The slope is highly relevant. A shallow slope indicates that 

opportunities far away are still an alternative. A steep slope indicates that almost all trips will go to 

nearby opportunities if available. According to the bias as described in section 3.3, it is expected that the 

slope is steeper in reality.    

The log likelihood for this method is -6244. As mentioned, the log likelihood values are small due 

to the large OD-matrix (i.e. 1956 origins and 18 destination zones). 

 

4.2  Intervening Opportunities model 

For the IO model, the value of the scale parameter α  in equation 5 needs to be estimated. This was done 

by maximizing the log likelihood. We found that the likelihood is maximized for α  = 0.00085.  As 

mentioned before, calibration of the model was done assuming all origins have the same value for α. This 

assumption might have resulted in a sub-optimal fit. However, the computational complexity is reduced 

considerably.  

The (maximal) log likelihood for the IO method was -6593. This is significantly lower than that 

of the TG model. We therefore conclude that the estimated distribution function of the IO method is 

inferior to that of the estimate from the TG model.  

 

4.3 Limited Destinations model 
For the LD model the same approach was followed as for the traditional estimate (section 4.1). The best 

linear fit (equation 8) was obtained for β  = 0.3. This is similar to the estimate in the TG model. In Figure 

3, the natural logarithm of the observed distribution values f
obs

 is plotted against the average Euclidian 

distance to the power 0.3, d
 0.3

. Given this value for β, the best fit (solid line in figure 3) was obtained with 

a = 4.57 ± 0.12 and b = -6.71 ± 0.20. The fit is quite good, although again the first bin is quite far off the 

trend line. As a reference the trend of the TG model is shown as well (dashed line in figure 3). 

 

-4

-3

-2

-1

0

1

2

3

0,5 0,7 0,9 1,1 1,3 1,5 1,7

d
0.3

ln
(d

is
tr

ib
u

ti
o

n
 v

a
lu

e
s

)

distribution

values LD model

trend LD model

trend TG model

 
FIGURE 3  Distribution function for the limited destinations model compared to the TG model 
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As expected, the slope b is significantly steeper for this model: -6.71 compared to -5.48 in the TG 

model. It is assumed that there is no bias left, and that the LD model provides a better slope for the 

distribution function. 

This result is also retrieved in the log likelihood estimate, which is -6166 for the LD model. This 

is significantly higher compared to the log likelihood of -6244 in the TG model. It is also significantly 

higher than the log likelihood of the IO model, which was -6593. One can therefore conclude that the LD 

yields the best distribution function. 

 

4.4 Validation 
In the previous subsections, we compared the different distribution models. We concluded that LD is the 

best distribution model. However, the implications of this result are not clear yet. The likelihood measure 

is a rather theoretical measure after all. Trip length characteristics may provide better indicators to 

validate the model outcomes. 

In Figure 4, we show the observed trip length frequencies. The figure illustrates that shoppers 

mainly choose nearby opportunities, because the frequency peaks at a distance between 250 and 500 

meters.  However, a significant fraction of car trips still goes to supermarkets further away. This may 

have implications for flows on the urban network, because these trips are served by transit roads. Since 

the number of shopping trips is significant, the modeling of these trips should not be neglected. If trip 

length frequencies, for example, show that only the LD model is comparable with the observations, this 

would be enough reason to be concerned about traditional models. 

The average trip length is perhaps the most simple validation measure. According to the survey, 

the average trip length is 888 meters. This is very comparable with the average trip length from the LD 

model, which is 884 meters. The TG model, however, yields a larger average trip length of 1033 meters. 

This is an overestimation of about 16%, which is quite significant. The result is not unexpected. Because 

the slope of the distribution function is too shallow, longer trips are significantly overestimated in the TG 

model. 
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FIGURE 4  Observed trip length distribution in which the shares of the different modes are shown 
 

 

The IO model yields an average trip length of 911 meters, which is quite comparable with the 

observed average trip length. This seems to be contradictory with the likelihood measure, which was 

TRB 2010 Annual Meeting CD-ROM Paper revised from original submittal.



Veenstra S.A., T. Thomas & S.I.A.Tutert  

 

11

worst for the IO model. However, in the IO model, the spatial rank of supermarkets, rather than the 

distances between consecutive supermarkets, is assumed to be decisive. Dependent on the spatial 

configuration of supermarkets (e.g. whether supermarkets are clustered or not), this assumption may lead 

to a wrong assignment of the number of trips to consecutive supermarkets. This is shown in Figure 5, in 

which the percentages of trips to the seven closest supermarkets are plotted. For each origin, the seven 

closest supermarkets are ranked, i.e. the supermarket with rank one is nearest to that specific origin, 

supermarket with rank two, the second nearest, etc. The number of trips to each ranked supermarket is 

then added to the total according to its rank.  
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FIGURE 5  Comparison between the predicted number of trips by the models and the observed 

number of trips to the seven closest supermarkets. The supermarket with rank one is nearest to its 

origin, the one with rank two, the second nearest, etc. 
 

 

The figure shows that the IO model underestimates the number of trips to the nearest 

supermarket, while it overestimates the number of trips to supermarkets with intermediate ranks (3, 4 and 

5). The TG model also underestimates the number of trips to the nearest supermarket, but does not 

overestimate the number of trips to supermarkets with intermediate ranks. In fact, it overestimates the trip 

rates to higher ranked supermarkets further away. To keep the figure orderly, we do not show the 

percentages of the higher ranks.   

Figure 5 shows that the LD percentages match the observed percentages quite well. Thus, from a 

comparison of likelihoods, average trip lengths and number of trips to the closest supermarket, we can 

conclude that the LD model is superior to the two other models. 

 

5. CONCLUSIONS 
We introduced a new trip distribution model, the Limited Destinations (LD) model, for destinations that 

are not homogeneously distributed. Its performance was tested on a survey with reported grocery 

shopping trips in the Dutch city of Almelo. The results show that the LD model is reliable and that it 

outperforms the Traditional Gravity (TG) and Intervening Opportunities (IO) model.  

The TG model implicitly assumes a homogeneous distribution of opportunities, and therefore 

does not pay special attention to the specific spatial configuration of destinations. As a result, the TG 

model overestimates the number of relatively long trips. The traditional IO model does not take the travel 

costs into account. As a result, it does not assign the right number of trips to consecutive destinations. 
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The LD model is a gravity model that combines the advantages of a TG and IO model. It 

describes the distribution as a simple function of Euclidean distance, which is a measure of travel costs. 

At the same time, it explicitly takes the spatial configuration of opportunities into account, without 

introducing a lot of extra computational time. As a result, the model has the highest likelihood to 

reproduce the observations. Compared to the observations, it also shows similar trip length characteristics.  

The new distribution model was tested for grocery shopping trips, but can also be used for other 

trip purposes. In general, the model is suitable for distributing trips from a large number of origins over a 

small number of destinations. The distribution of recreational trips on a local scale (e.g. parks), on a 

regional scale (e.g. nature reserves) or on a national scale (e.g. amusement parks) can probably also better 

be estimated with the LD model. This may be tested in future studies. 

A general problem is how to determine the deterrence. In this case the deterrence is assumed to be 

directly related to the Euclidean distance. Network distances or actual travel times would probably be 

better indicators for the deterrence, but these variables are more difficult to obtain. It might be possible 

that the fit will improve if the distribution is described as a function of network distance or travel time. 

We assume, however, that uncertainties in these estimates would yield less reliable results in the end. 

Besides travel time or distance, the deterrence may also depend on other spatial factors. Trip chaining 

may influence the distribution, i.e. the choice of a supermarket does not only depend on its location with 

respect to the residence, but also on the locations of other activities, e.g., (22). The Omnibus survey only 

provides information of home-bound trips. However, we think that the results from this study are still 

very useful, because about 80% of shopping trips in the Netherlands are home-bound according to MON.  

The observed trip length frequencies show that a significant fraction of grocery shoppers does not 

shop at the nearest supermarket. As grocery shopping trips form a large fraction of car trips within cities, 

we suggest that the distribution model of grocery shopping is quite relevant for the prediction of urban 

traffic flows. 
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