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 This experiment is not elaborated or used in the continuation of this report as it was executed simultaneously.  
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Summary 

Background 
Nowadays, traffic management is very important in daily life. Traffic management measures are 

developed based on extensive analyses mainly on travel behavior. The main interest of this report is 

route choice behavior, which is an important part of travel behavior, and route choice modeling. The 

most commonly used route choice theory is the utility maximization theory, which is based on the 

assumption that all travelers are optimizers with perfect knowledge about their choice set, 

presuming perfect information, rationality and homogeneity. However, there still exist some 

discrepancies between real-world route choice behavior and modeled route choice behavior. 

Therefore, the behavioral aspects of route choice have gained more and more attention in the 

transportation research field. Many researchers have proposed adaptations to the current modeling 

practice in order to include behavioral principles that are more reality alike and therewith reduce the 

gap between model results and in reality observed behavior. However, only a few of these studies 

are based on a real-world data. This gave reason for the Virginia Tech Transportation Institute to 

perform a large scale real-world experiment on this issue in which they asked 20 individuals to 

complete 20 driving sessions containing five different trips. Based on this experiment, Vreeswijk, 

Rakha, Van Berkum, and Van Arem (n.d.) identified four choice strategies and found that a significant 

number of choices concern route alternatives with the non-shortest travel time. The obtained data is 

used in this research to improve the understanding of route choice behavior and develop a new 

route choice model using the four choice strategies.  

 

Most researches focus on route switching, while examining the behavior of individuals not changing 

their route choice is just as valuable. This non-switching behavior is caught in the term inertia, which 

represents the tendency of individuals to continue choosing their current path. As a result, this 

research will focus on inertial behavior and the corresponding inertia thresholds in route choice 

behavior. 

Research objective and relevance 
The objective of this research is to develop and evaluate a route choice model based on the notions 

of inertia and the indifference band in order to improve predictions on daily route choices of 

individuals and to quantify the indifference band. The focus of the research will lie on pre-trip route 

choices under day-to-day dynamics for the next day that a certain trip will be made. The four choice 

strategies as identified by Vreeswijk et al. (n.d.) will be used as a starting point.  

 

This research is important for the transportation research field as it aims at improving route choice 

predictions on daily route choices of individuals and therewith reduce the gap between observed 

real-world behavior and modeled route choice behavior. This gap reduction makes it possible for 

transport operators to apply their traffic management measures more effectively. These measures 

might be able to push individuals towards a system optimum, which realizes a more optimal use of 

the transportation network but is suboptimal on the individual level. It is believed that travel 

information can play an important role in this. However, insights in the effect of travel information 

on route choice behavior are necessary. In order to obtain these insights, first, a better 

understanding of route choice behavior in general is needed. Insights in the inertia thresholds can 
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indicate to what extent individuals can be pushed into a specific direction. Besides this, research 

directions for further improvements in the field of route choice modeling can be identified.  

Research method 
In order to achieve the research objective, several steps are taken. Through a literature study the 

theoretical framework is shaped and the scope of the research is determined. Subsequently, the 

available data is analyzed. These first steps create initial feeling for the data and the principles of 

inertia and the indifference band. Together with a short analysis of the findings on explanatory 

attributes for inertial behavior and the corresponding indifference band within literature, the 

findings of this data-analysis is used to identify different variables that might be important in 

explaining inertial behavior. These variables are then used in a regression analysis in order to identify 

the most important explanatory variables. A regression model predicting certain choice behavior (i.e. 

the used choice strategy) is obtained, which is implemented within a model framework. This model is 

calibrated and validated using an enterwise regression method and a jack-knife cross-validation 

method. Subsequently, the model is extended using an agent-based approach based on Bayesian 

simulation in order to see the effect of this approach on the model performance. Then, the model is 

evaluated by executing a sensitivity analysis, followed by a comparison of the model performance to 

the model performance of five state-of-the-art models; the shortest path theory, the prospect 

theory, the regret theory, the fixed thresholds theory and the SILK-theory. Lastly, the indifference 

band is quantified by altering the model attribute related to travel time within the developed model. 

Besides this, the data-analysis and the fixed threshold theory are used to quantify the indifference 

band for comparison.  

Results 
This research resulted in a newly developed route choice model based on the principles of inertia, 

shown in figure 1. This 2-step-model consists of a Dynamic Expected Shortest Path Module and a 

Choice Strategy Module. The first module determines a preliminary choice based on a travel time 

updating process and the second module alters this preliminary choice based on the choice strategy 

predicted by the implemented regression model. An updating process for the expectation of the 

different route alternatives is based on a smoothing factor weighting the last experienced travel time 

in relation to previous experiences.  
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The most suitable regression model turned out to be a combined model, based on the identification 

of four observed choice strategies; minimizing by switching (i.e. switches to shortest route 

alternative), minimizing by non-switching (i.e. sticks to shortest route alternative), inertia (i.e. sticks 

to longer route alternative) and compromising (i.e. switches to the longer route alternative). This 

combined model contains two sub-models; one that is applied if at day  -1 the longer route 

alternative was chosen and an inertial choice strategy is possible (i.e. the inertia sub-model), and one 

that is applied if the shortest route alternative was chosen at day  -1 and a compromising choice 

strategy is possible (i.e. the compromising sub-model). According to this combined model, individual 

characteristics and situation-specific characteristics where found to be most important in explaining 

exposed choice strategies, while variables on experience were found to be less important. 
 

The newly developed 2-step-model predicts the observed route choices of the available dataset in 

75.35% of the cases correctly which places it among the highest of all state-of-the-art models. It is 

found that certain state-of-the-art models perform better on certain OD-pairs than others and vice 

versa. This indicates that in certain circumstances or choice situations a certain route choice model 

would be most suitable. Therefore, a hybrid model could significantly improve current modeling 

practice. The model performance of the prospect theory (43.17%) and the regret theory (65.88%) 

suggest that these choice models might not be that suitable in predicting route choices. On the 

contrary, the fixed threshold theory performs very well on capturing the day-to-day dynamics of 

route choices with 79.02% correctly predicted cases. 
 

Figure 1: Developed model framework ‘2-step-model’ 
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In order to extend the 2-step-model transforming it into an agent-based route choice model, the 

Bayesian modeling approach is used to simulate 1000 individuals obtaining 1000 sets of parameter 

representations β. When these are applied on the available dataset observations 74.55% of the cases 

are correctly predicted if the correlations between the model parameters are considered using the 

Cholesky Decomposition tool. Ignoring these parameter correlations leads to a model performance 

of only 51.51%. This indicates that the explanatory variables of route choice behavior are strongly 

correlated and are therefore crucial in obtaining accurate model results in micro-simulations. 
 

Lastly, the indifference band is quantified using data-analysis, the fixed threshold theory and the 2-

step-model. Inertia thresholds between 12.1% and 22.1% of the average trip travel time are found on 

an individual level. On the situational level (i.e. per OD-pair) this is 12.6% to 16.3% of the average trip 

travel time. Subconscious indifference bands based on perception errors (7.5%-8.7% of the average 

trip travel time) seem to be generally lower than conscious thresholds based on inertial behavior. 

These findings give an indication to what extent individuals can be pushed into a certain direction in 

order to realize a more optimal use of the transportation network. Data-analysis already showed that 

1/3 of the observed choices contained, in terms of travel time, a suboptimal route choice. Based on 

this it seems that individuals do not necessarily (want to) use the optimal travel time alternative, 

emphasizing the potential of management measures pushing individuals into a certain suboptimal 

choice direction in order to establish a system optimum in the road network. 

Recommendations 
It is recommended to improve the current 2-step-model by further examining the effect of the travel 

time updating process, the determination of the initial expected travel time and how to reduce the 

available route alternatives to only two possible alternatives (as the current model can only be 

applied in the case that two choice options are available). Furthermore, it might be useful to apply 

the 2-step-model as well as the state-of-the-art models on other datasets in order to gain some more 

insights on the model performance in different choice situations. Eventually, it might be possible to 

determine which model would be best applicable in which situation, leading towards the 

development of a hybrid model. In addition, it is interesting to examine how travel time information 

affects the model performance of the developed model. Finally, if the model is improved and further 

investigation is conducted, the 2-step-model can be employed in the route choice modeling practice.  
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1 Introduction 

1.1 Prologue 
In daily life, people want to participate in certain activities, such as work, school, shopping or family 

visits. These activities are usually scattered over a certain area. Therefore people need to travel from 

their current location to the location of the activity that is preferred for participation. These trips will 

be made using the road network. However, the road network can only handle a specific number of 

travelers at a time. In order to obtain insights in the use of the road network and to make 

improvements to it, transportation models are used. Based on these models, the effect of certain 

measures and policies can be predicted in order to increase the throughput of the road network. A 

commonly used traffic model that is used all over the world is the ‘traditional four step model’.  

 

The traditional four step model is developed in the 60’s of the previous century. However, despite of 

the developments in modeling- and computer technology the structure of the model did not change. 

The model is based on a few travel choices a traveler has to make in order to make a trip. At first the 

traveler asks himself, do I need or want to make a trip? If so, he has to decide about departure time, 

destination, use of mode and route choice. For these four issues sub-models are used inside the 

traffic model. One should keep in mind that there are a lot of different sub-models available for each 

issue. In fact, there exist several models that account for more than one of the four issues. 

(Bezembinder, 2009; Immers & Stada, 2011; McNally, 2007). The main interest of this report will be 

the route choice models. 

 

The most commonly used route choice theory is the rational utility maximization theory. However, 

there still exist some discrepancies between real-world route choice behavior and modeled route 

choice behavior. Therefore, behavioral aspects of route choice have gained more and more attention 

in the transportation research field. This research aims at improving understanding and predictions 

of route choice behavior by examining the possibilities to actually model some behavioral 

mechanisms based on empirical findings and therewith reduce the gap between real-world choice 

behavior and modeled choice behavior. 

 

At the Virginia Tech Transportation Institute a large scale real-world experiment on route choice is 

performed by Tawfik (2012) and extended by Ottens (2013). In Tawfik’s experiment travelers were 

asked to travel from one location to another in which they had the choice between two different 

routes. Some interesting route choice patterns are found, varying from travelers that do not switch 

routes at all to travelers that constantly change their route choice. Ottens is currently repeating this 

experiment except that he provided the participants with information on travel times for the 

available route alternatives in order to find out how their day-to-day choice behavior changes as a 

result of this information. The obtained data and findings of their experiments provide insights in 

several behavioral mechanisms on driver’s route choice. In this research the data and findings of 

Tawfik are used. Based on the observations of his experiment, Vreeswijk et al. (n.d.) identified four 

choice strategies within the route choice behavior of individuals which are based on the individual’s 

expected travel time of the different route alternatives. They found that a significant part of the 

choices concerned route alternatives with the non-shortest travel time. The aforementioned gave 

reason for the initiation of this research.  
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1.2 Problem definition 
Modeling route choice behavior is very complex and yet essential in forecasting travelers’ behavior 

under certain scenarios and assess their perception of certain route characteristics. These insights 

are used to predict future traffic conditions on transportation networks based on which policy 

decisions are being made. The complexity in route choice modeling emanates from the difficulties in 

the representation of human behavior. (Prato, 2009) 

 

The most commonly used route choice theory in the field of transport modeling is the utility 

maximization theory. This theory is based on the assumption that all travelers are optimizers with 

perfect knowledge about their choice set. So, perfect information, rationality and homogeneity are 

presumed. In utility maximization the traveler determines the utilities of all routes in his choice set 

based on the influence of several route choice factors and chooses the route that provides him with 

the highest utility. The popularity of this theory exists mainly because of its mathematical clarity. 

(Kim, Oh, & Jayakrishnan, 2009). However, empirical studies on route choice show that travelers 

sometimes choose certain options that may not seem to be a logical choice. Therefore the utility 

maximization theory is highly criticized as being unrealistic and not representing reality alike choice 

behavior (Simon, 1972). Interesting theories on several behavioral mechanisms, such as bounded 

rationality, satisficing behavior and perception errors, are developed in order to explain these 

seemingly illogical choices. Understanding these behavioral mechanisms provides the possibility to 

model them and therewith improve the predictions on route choice.  

 

Another necessary step towards enhancing the realism of traffic models is the understanding and 

forecasting of day-to-day route choices which is currently one of the most interesting and challenging 

areas of research within the field of transport modeling (Meneguzzer & Olivieri, 2013). After all, the 

travel pattern of most individuals is dominated by frequently visited locations and therewith most 

trips made by an individual are made on a regular basis (Schönfelder, 2006). However, individuals 

might use different route alternatives from day to day. As a result, one day they make a choice that 

seems logical, while the other day their choice might seem illogical. The commonly used route choice 

theories do not account for these day-to-day variations. 

 

So, in order to further improve both traffic management and prediction reliability, it is necessary to 

obtain insights and understanding of the day-to-day choice behavior of individuals and develop a 

model that simulates this behavior more closely and realistic and therewith also accounts for the 

seemingly illogical choices. A lot of researchers have proposed adaptations to the current modeling 

practice in order to include (some of) these behavioral mechanisms, although most of them are 

based on (parameter) assumptions influencing the outcomes of these models. Only a few of these 

studies are based on a real-world experiment. In addition, most researches focus on route switching; 

the behavior of travelers changing their route choice. However, examining the behavior of travelers 

not changing their route choice, especially if this choice seems to be illogical, is just as valuable. This 

is caught in the term inertia, which represents the tendency of individuals to continue choosing their 

current path (Srinivasan & Mahmassani, 2000). Therefore, this research will focus on inertial 

behavior and the corresponding inertia thresholds in route choice behavior. 
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Using the available real-world data of Tawfik and the observed choice strategies by Vreeswijk et al. 

(n.d.), empirical findings on inertia can be translated into an empirical model, which is likely to obtain 

more accurate model outcomes than the current available theoretical models.  

1.3 Research objective 
The objective of this research is to develop and evaluate a route choice model based on the notions 

of inertia and the indifference band in order to improve predictions on daily route choices of 

individuals and to quantify the indifference band. The focus of the research will lie on predicting pre-

trip route choices under day-to-day dynamics for the next day that a certain trip will be made. The 

four choice strategies as identified by Vreeswijk et al. (n.d.) will be used as a starting point.  

1.4 Research questions 
The objective as formulated in section 1.3 results in the following main research question: 

How and to what extent can day-to-day route choice modeling be improved by incorporating the 

principles of inertial behavior in order to predict route choice behavior accurately and quantify the 

inertia related indifference band? 

 

This research question can be broken down into three parts; (1) How to improve day-to-day route 

choice modeling by incorporating the principles of inertial behavior, (2) to what extent will the day-

to-day route choice modeling be improved and (3) what is the value for the inertia related 

indifference band according to these incorporated principles of inertial behavior.  

 

In order to achieve the research goal and answer the main research question, the following sub-

questions are formulated: 

Background 

- What is the state-of-the-art of (daily) route choice behavior? 

- Which route choice models do currently exist and how are behavioral mechanisms currently 

accounted for according to the literature? 

‘How’ 

- Which factors (i.e. attributes) play a role in a route choice model? 

- Which modeling approach offers the best starting point to build upon and how can the 

behavioral mechanism of inertia be included in this approach? 

- What is the effect of a disaggregated agent-based approach (i.e. accounting for 

heterogeneity among individuals) on the model performance?  

 ‘To what extent’ 

- What is the sensitivity of the model to changes and errors in attribute values?  

- How does the developed route choice model perform with respect to a selection of state-of-

the-art route choice models? 

 ‘Inertia related indifference band’ 

- How can the indifference band related to inertial behavior be quantified using to the 

developed model? 

1.5 Research relevance 
Previous sections have introduced this research. Now it is important to realize what the relevance of 

this research is to the transportation research field. Obviously, the objective of this research aims at 

improving predictions on daily route choices of individuals in order to reduce the gap between 
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observed route choice behavior and modeled route choice behavior. The obtained model will offer 

an initial starting point for this gap reduction based on actual real-world observations. In addition, in 

order to develop the new route choice model, individual’s route choice behavior will be investigated. 

Together with an extensive elaboration on (the quantification of) the indifference band this research 

will contribute to the current understanding of the daily route choice behavior of individuals, and 

more particular, provide insights in and understanding of factors and mechanisms that contribute to 

inertial behavior. This point of view is very valuable as most of the existing knowledge of route choice 

behavior is obtained from route switching behavior. Therewith, the non-switching point of view 

associated with inertial behavior complements the current knowledge of route choice behavior. In 

addition, research directions for further improvements in route choice modeling might be found 

during the development and evaluation of the new route choice model. These might point out the 

important issues and subjects that can lead to significant route choice modeling improvements in the 

near future and therewith initiate changes for the better in the current modeling practice. 

 

Besides these theoretical relevancies, the research importance can also be seen from a more 

practical point of view. In most road networks there exists a stable user equilibrium, in which each 

driver non-cooperatively tries to minimize his travel cost and no traveler can improve his travel time 

by unilaterally changing routes. These user equilibria are generally much less efficient (in terms of 

average travel time) than system optima in which each driver cooperatively chooses his route to 

ensure an optimal use of the whole system and the sum of all travel times is minimized. As rational 

modeling methods do not always suffice due to the suboptimal choices individuals sometimes tend 

to make, this might indicate that individuals can be pushed towards the, on the individual level 

suboptimal, system optimum. 

 

It is believed that providing travel information can help networks to move from the user equilibrium 

to the system optimum. Therefore, Advanced Traveler Information Systems (i.e. any system that 

acquires, analyzes, and presents information in order to assist travelers) that are based on 

personalized distribution and sophisticated real-time learning algorithms are increasingly used as 

management measure. For a proper and effective application of these measures, it is important to 

have insights and understanding in the influence of travel information on the daily choice behavior of 

individuals. In identifying this influence, one needs to know first how individuals make their daily 

route choices without travel information. Together with the data that is currently being obtained 

from the extended real-world experiment containing travel time information as referred to in the 

prologue (section 1.1), a comparison between choice behavior with and without travel time 

information can be made.  

 

The predictions of dynamic daily route choices on the individual level can be used to simulate day-to-

day dynamics in traffic flows based on which, for instance, the traffic lights at several intersections 

can be set to operate more efficiently. It is even possible for the more advanced traffic light 

installations to adapt their settings based on the model predictions for the next day. This will 

increase the throughput in the road network and can be used to direct the network state towards a 

system optimum as individuals of some directions might have longer waiting times than others. 

 

An issue that arises is that individuals need to actually accept the management measures that aim at 

establishing a system optimum, which may direct them towards a particular route alternative that is 
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disadvantageous for their own interest but improves the network performance. However, to some 

extent travelers may not be aware of the fact that for instance the travel information they receive is 

suboptimal for their situation, or they may just not be interested in it. Insights in the inertia 

thresholds can indicate to what extent individuals can be pushed into a specific direction in order to 

realize a more optimal use of the transportation network.  

1.6 Research methodology 
In order to answer the research questions and achieve the research goal, several steps need to be 

taken. These steps are visualized in a research model (see figure 2). 

 

 
Figure 2: Research model 

First a theoretical framework will be shaped for this study, which provides fundamental knowledge 

and background information within the scope of this research. This framework will be based on the 

current available literature on route choice behavior and route choice modeling and answers the first 

two research questions, focusing on the known behavioral mechanisms in route choice, the current 

modeling practices of route choice in general and of these behavioral mechanisms in particular.  

  

Subsequently, the available dataset will be examined by getting familiarized with the experimental 

set-up from which the available data was originated and executing a data-analysis with respect to 

inertial behavior and the indifference band. Together with a short analysis of the findings on 

explanatory attributes for inertial behavior and the corresponding indifference band within 

literature, the findings of this data-analysis will be used to identify different variables that might be 

important in explaining inertial behavior. These variables are then used in a regression analysis in 

order to obtain the most important explanatory variables. Since the inertial strategy cannot be seen 

independently from the switching strategy different approaches will be developed based on the four 

different choice strategies and used in regression analyses in order to find the best way to assess 

inertial choice behavior. 

Now the important attributes and mechanisms are identified, the modeling approach will be 

elaborated upon. It is preferred to keep the model approach simple and generally applicable. Within 

the context and objective of this research the model should focus on predicting the individual choices 
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of travelers on a daily base. This elaboration on the model approach will lead to a model framework, 

indicating how the best choice strategy regression model that was found, can be implemented within 

the route choice model approach.  

 

The developed model will be calibrated and validated using an enterwise regression method and the 

Jack-knife cross-validation method. These are detailed methods that can be applied in a systematic 

manner. Subsequently, the developed model is extended using an agent-based modeling approach in 

order to account for heterogeneity within the population. The effect of this approach on the model 

performance is then assessed. 

 

Now the new route choice model is developed, it needs to be evaluated. First, the sensitivity of the 

model to changes in the attribute values will be elaborated in order to obtain insights in the working 

of the model and the relationship between input and output variables. This is done using the most 

common and simple sensitivity analysis method, that is, changing one factor at a time. Subsequently, 

the performance of the developed model will be assessed and compared to currently existing state-

of-the-art models. The model performance will be expressed in terms of correctly predicted route 

choices, comparing the predicted route choice for a certain data observation with the actually 

observed route choice. The state-of-the-art models that will be used for comparison are a selection 

of the choice models that are introduced in the theoretical framework. They will be selected based 

on the fact if they are commonly used in the field of route choice modeling and their relevancy to the 

subject of this research. The selected models together with the developed model will be applied on 

the available dataset in order to compare. Some of the models might require some calibration of 

their parameters, which will be done by testing different combinations of parameter values or using 

different values that are proposed in literature.  

 

This research will conclude quantifying the indifference band related to inertial behavior using the 

developed route choice model. This is done by altering a certain attribute (i.e. related to travel time) 

within the model using trial and error until the route switching point within the model’s route choice 

predictions is found. Additional approaches (i.e. the indifference band quantified based on data-

analysis or state-of-the-art models) will be used in order to see if comparable values can be obtained. 

1.7 Outline thesis 
This is the final section of chapter 1, the introduction. The research is introduced by explaining the 

reasons for initiating it and elaborating on the research problem and subject. In addition, the reader 

is now familiar with the research objective, research questions and research methodology.  

 

Chapter 2 will provide the reader with background information on the subject by conducting a 

literature study answering the first two research questions. Therewith, the ‘background’-part of the 

research is completed. 

 

In chapter 3 the reader will be familiarized with the available data by a short elaboration on the 

experimental set-up from which the available data was originated and a brief description of the data-

set. Also a short analysis is performed on this dataset in order to obtain feeling for the available data 

in relation to the issues of interest. Chapter 4 will now identify the most important attributes to 

include in the model. This is followed by chapter 5 containing the development of a model 
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framework for the actual route choice model in which these attributes found in chapter 4 can be 

implemented. Now, chapter 6 will validate the improved model to justify its use for route choice 

predictions. Chapter 7 will then try to extend the developed model into an agent-based model in 

order to see the effects of this extension on the model performance. Therewith, this is the final 

chapter on developing the route choice model, answering the research questions on the ‘How’-part 

of this research.  

 

In chapter 8, a sensitivity analysis is performed on this validated route choice model in order to get a 

better understanding of the working of the model. This is followed by a comparison of the validated 

route choice model with several state-of-the-art models based on their model performances in 

chapter 9. These chapters together cover the ‘to what extent’-part of this research. 

 

Now, chapter 10 will quantify the inertia related indifference band using not only the newly 

developed route choice model, but also the findings from the data-analysis and state-of-the-art 

models. The indifference bands obtained by the different approaches are then compared and 

discussed. This chapter addresses the ‘indifference band related to inertia’-part of this research.  

 

In the last part of this report, chapter 11, this research will be finished by drawing conclusions from 

the findings of the covered issues and therewith provide the answers to the research questions. In 

addition, the research is reflected by a discussion on the research set-up and its findings and results. 

Besides this, side-conclusions are provided, research implications are elaborated upon and 

recommendations for future research are given.  
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2 Theoretical framework and background 
In order to familiarize with the subject of this research and the corresponding research scope, this 

chapter will elaborate on the theoretical framework used throughout the research and backgrounds 

relevant to the subject. First, section 2.1 provides insights in the behavioral route choice 

mechanisms. Subsequently, section 2.2 introduces the general choice models that are used in route 

choice modeling. Section 2.3 continues with proposed choice models in the literature that focus on 

behavioral mechanisms. This chapter will end with some conclusions in section 2.4.  

2.1 Behavioral route choice mechanisms 
In general, route choice concerns the selection of routes between origins and destinations in a road 

network. In selecting routes, several behavioral route choice mechanisms are identified. These 

behavioral mechanisms are discussed in this section. Although this research focuses on the 

mechanisms of inertia and the indifference band, other mechanisms will also be discussed since they 

are closely related to each other. This way the theoretical framework will be more complete and a 

higher understanding about route choice behavior in general and the role of inertia and the 

indifference band in particular will be obtained.  

2.1.1 Bounded rationality 

The fundamental assumption in route choice modeling is that travelers have perfect knowledge 

about their choice set and are able to choose their optimal route. Simon (1972) was one of the first 

to criticize this assumption, since he thought it was unrealistic and does not simulate reality alike 

choice behavior. Opposed to this, he proposed the idea of bounded rationality in decision-making. 

Bounded rationality means that the rationality of individuals is limited by the available knowledge, 

the computational power of the brain and the finite amount of time they have to make a decision 

(Gigerenzer & Goldstein, 1996). These issues result in unconscious suboptimal choice behavior. 

2.1.2 Satisficing 

Satisficing behavior states that the individual rather seeks for a satisfactory solution that seems to be 

successful in achieving his goal instead of seeking for the optimal solution. So, the decision maker 

sticks to the first satisfactory solution he found, without continuing to search for a more optimal 

solution. This will minimize the mental effort in making a choice. (Gigerenzer & Goldstein, 1996)  

The satisficing principle is proposed by Simon (1972) as a heuristic that succesfully deals with the 

limitations of bounded rationality and therefore is a good way to account for this behavioural 

mechanism in route choice modelling (Gigerenzer & Goldstein, 1996). However, satificing choices 

could be made consciously and with intent, and therefore can be perfectly rational (i.e. conscious 

suboptimal choice behaviour.  

2.1.3  (Mis) Perceptions 

A traveler bases his route choice on the sum of the influence of different route choice factors, such 

as travel time, traffic comfort, reliability of travel time and maximum speeds (Chen, Chang, & Tzeng, 

2001). It is found that traveler’s perception of these factors may not comply with reality due to for 

instance bounded rationality and satisficing behavior. For example, the perceived travel time on 

most routes differs considerably from the actual travel times (Keypoint Consultancy B.V., 2008; 

Vreeswijk, Thomas, van Berkum, & van Arem, 2013a); most travelers think they travel longer than 

they actually do. Moreover, if one factor is more important to the traveler than other factors, he will 

pay more attention to this factor, leading to more accurate perceptions for this particular factor 
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(Tawfik, 2012). So, perception errors are influenced by personal preferences. Due to these 

perception errors, travelers may choose the route they think is optimal for them, however, in reality 

it would not be the best choice for them. 

2.1.4 Learning and habits 

Travelers make route choices based on their individual objectives, preferences, experiences and 

knowledge about their journey. Previous choices they made provide them with unique experience 

and spatial knowledge, influencing their subsequent decisions (Zhu, Levinson, & Zhang, 2007). This 

means that it is assumed that drivers constantly evaluate and remember their travel times on the 

routes they travel and use this information for their next trip to select the route that maximizes their 

utility. This phenomenon is called the learning effect. Since travel patterns are for most travelers 

highly repetitive, trips will become familiar. This causes travelers to make travel choices in a habitual 

manner. For example, at one point in time, when a driver starts to travel between a certain origin 

and destination, he chooses his route based on a balance of the route choice factors that are most 

important to them. After a period of learning, drivers will use the route that provided them the most 

positive experience, and they will continue to use this specific route even when route characteristics 

change over time and the route in question might no longer be the best route for that particular 

driver. (Chen et al., 2001)  

2.1.5 Familiarity with the road network 

Familiarity can be divided in different levels; no familiarity, static familiarity, dynamic familiarity and 

personal familiarity. If the individual is not familiar at all, he has absolutely no knowledge about the 

network. Static familiarity refers to knowledge of the network structure, which includes knowledge 

of routes in the network, type of roads and available facilities. Dynamic familiarity refers to 

knowledge about traffic conditions and network performance. The highest level of familiarity is 

obtained through personal experience, which is a combination of static and dynamic familiarity. 

Familiarity with the road network of an individual might change due to external factors, such as 

weather conditions or time-of-day. (Lotan, 1997) 

  

People might choose their route differently depending on their familiarity with the road network. For 

instance, individuals in general have better knowledge of the major roads than secondary roads or 

tertiary roads (Zhang, 2006a). An individual new to an area has little knowledge about the local road 

network, i.e. he is not familiar with the road network. However, one can imagine that unfamiliar 

travelers are more prone to choose routes using major roads, as they would be more familiar with 

those routes. The use of information might provide the traveler with a higher familiarity of the road 

network as the layout of the streets and their hierarchies is usually available through maps or the 

internet. Furthermore, learning (which is based on experience) also increases the level of familiarity 

as with personal experience the highest level of familiarity is achieved. 

 

Lotan (1997) found that familiar and unfamiliar drivers exhibit different behavioral patterns of route 

choice. Unfamiliar drivers showed a more uniform distribution of choices, while the familiar group 

showed clear preferences among the alternatives. Furthermore, unfamiliar drivers switched a lot 

from day-to-day, while the familiar drivers showed a tendency to stick to their previous choice (i.e. 

inertia). In addition, Vreeswijk, Thomas, Van Berkum, and Van Arem (2013b) found that travelers 

who are familiar with a route perceive higher travel times on that route than less familiar travelers. 
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This might suggest that ‘with more experiences of a particular route drivers become increasingly 

pessimistic or perhaps cautious’ (Vreeswijk et al., 2013b). 

2.1.6 Inertia 

The aforementioned mechanisms of bounded rationality, satisficing behavior, habit, perception 

errors and familiarity can all cause an individual to stick with a suboptimal choice. Unfortunately, 

these different mechanisms cannot be distinguished in suboptimal choices that are observed in real 

world. Therefore, the term inertia is introduced. Central in the notion of inertia is the effort-accuracy 

trade-off. That is, exploring and testing travel options consumes time, effort and attention, which are 

scarce resources. Therefore, in order to simplify their decision-strategy, individuals tend to stick with 

an alternative that one knows to perform reasonably well, instead of trying to find the best 

performing option for each new trip (Chorus & Dellaert, 2010). So in short, inertia represents the 

tendency of users to continue choosing their current path increasing the utility of that current path 

(Srinivasan & Mahmassani, 2000). Note that this makes inertia a counteracting force to switching 

behavior.  

 

Although inertia contains sticking to choices on both the suboptimal and optimal route alternative, in 

this research the focus lies on individuals sticking to suboptimal choices. This is simply because these 

choices are not in line with rational choice behavior and therefore it is more interesting to examine 

and try to model these choices. So, if in the remainder of this report the term inertia is used, it refers 

to sticking to suboptimal choices only. 

2.1.7 Indifference band 

Due to for instance bounded rationality and satisficing behavior, travelers might not recognize 

changes in the road network, do not have full knowledge about the available route alternatives or 

consider the changes to be that small that changing their route would be too much effort. Therefore, 

‘drivers will only alter their choice when a change in the transportation system or their trip 

characteristics, for example travel time, is larger than some individual situation-specific threshold’ 

(Vreeswijk et al., 2013a). This individual situation-specific threshold is called the indifference band 

and might be based on travel time perception errors. For example, if there are two identical routes 

with equal travel times and one is being perceived as being x minutes faster, the traveler will choose 

this route. This driver will only switch to the other route if the travel time on the other route reduces 

with x minutes or the travel time of his current route increases by more than x minutes resulting in 

the driver being indifferent to travel time inequalities of less than these x minutes (Vreeswijk et al., 

2013a). However, note that an indifference band based on travel time perception errors only defines 

the subconscious situation-specific thresholds of an individual which cannot be observed. In addition, 

there exist inertia thresholds within which the individual is aware of certain differences in route 

characteristics of the route alternatives, and still chooses not to switch. Therefore, these inertia 

thresholds are assumed to be higher than the perception thresholds. In this research, when the 

indifference band is mentioned, it is referred to the inertia thresholds (which, in fact, also account for 

the perception errors) of individuals.  

2.1.8 Travel information 

Travel information is very valuable for travelers as it enables the possibility to save time and, more 

importantly, provides certainty about the journey (Zhang & Levinson, 2008a). This certainty helps 

people in evaluating their route alternatives as the gained knowledge will mitigate knowledge 
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limitations and misperceptions. Therefore, providing information results in travelers making choices 

closer to their optimal choice. This can be achieved by different types of information, such as spatial 

information about the network connectivity and road hierarchy, information about the current traffic 

state (e.g. congestion) in the network or information about specific route characteristics (e.g. travel 

time or travel distance). 
 

In earlier years, travel information was obtained using paper maps and listening to the radio. Due to 

technological developments nowadays travel information is available through, for example, 

navigation systems, smart phone applications and variable message signs (e.g. dynamic route 

information panels) along the roads. Such advanced traveler information systems may provide 

historical, real-time or predictive information and make it easier for the user to obtain more accurate 

information and therewith the user might even adjust his travel choices during his journey as he 

receives the information at that moment. Travel information makes the driver more aware of 

changes in the road network, especially gradual changes which are difficult to detect. As a result, 

little cognitive effort is required to identify a more optimal route alternative. Therefore, inertial 

behavior is likely to diminish and be replaced by optimizing behavior. Therewith route choice 

behavior will become more predictable. 
 

Travel information not only reduces trip uncertainty, knowledge limitations and misperceptions, but 

also improves travel quality and comfort. Furthermore, it is assumed that smarter individual choices 

generally lead to better traffic conditions for everyone. 

2.1.9 Relational framework of mechanisms 

The aforementioned issues are closely related to each other (see figure 3). In short, the notions of 

bounded rationality and satisficing are quiet similar as the satisficing principle can be used to account 

for decision making under bounded rationality. An important difference, however, is that satisficing 

behavior can occur with rational conscious, while behavior under bounded rationality is 

subconscious. Both behaviors lead to misperceptions about the traffic state and road network. 

However, by providing travel information and the learning effect these misperceptions may be 

mitigated. When a traveler uses a certain route for the first time, the learning effect is the biggest. 

However, after a few trips the learning effect will diminish and the route choice process shifts from 

satisficing choice behavior to habitual choice behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Relational framework of behavioural mechanisms 
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The effects of satisficing behavior, habitual behavior, bounded rationality, misperceptions and 

familiarity can eventually be observed by the inertial behavior of an individual making a suboptimal 

choice and sticking with this choice. This inertial behavior takes place within individual situation-

specific thresholds (i.e. the indifference band), which reflects both the incapability to perceive small 

differences in route characteristics and the inertia of individuals to switch routes. Once a threshold is 

exceeded, the individual will switch his route choice. 

2.2 Current available choice models 
This section discusses the current available choice models; utility maximization theory, prospect 

theory and the regret theory. These models are founded in economics for general choice making and 

are well applicable to route choice situations. Subsequently, the next section will focus on choice 

models and methods that are specifically designed for route choice decisions and founded on the 

behavioral mechanisms of route choice. 

2.2.1 Utility Maximization Theory 

The utility maximization theory is based on the fundamental assumption that all travelers are 

optimizers with perfect knowledge about their choice set. Each route in the choice set receives a 

certain utility. This utility is based on certain attributes contributing to route choice, such as travel 

time, distance, reliability, etc. (Chen et al., 2001). Each route in the network performs differently on 

these attributes and some attributes are more important than others. The utility   for a certain 

route   is given by the utility function, combining the influence of all these attributes together 

(Ortuzar & Willumsen, 2011): 

            

 

 

where     is the value of a certain attribute   on route   and    is the weight of this attribute, which is 

assumed to be constant for all individuals, but may vary across alternatives. The sum of the different 

attribute values and their weights provides the utility of a certain route. A traveler determines the 

utilities of all routes in the choice set and chooses the route that provides him with the highest 

utility. 

 

As one can notice, the utility function does not account for any behavioral mechanism and is purely 

mathematical. In order to incorporate more reality alike behavior several extensions are made to the 

standard utility maximization model, such as the random utility theory and expected utility theory. 

 

Random utility theory 

Different people can make different choices under the same circumstances. Even the same person 

might make different choices under the same circumstances from time to time. So, people may not 

always select what appears to be the best alternative, based on the attributes that are considered in 

the model. To capture this phenomena a random error   is added to the utility function, which now 

represents the perceived utility     of traveler   for a certain route   (Ortuzar & Willumsen, 2011): 

           

where     is the systematic utility which is a function of the measured attributes and the random 

error    reflects the peculiarities and particular preferences of each individual   together with 

attributes that are unobserved and all errors humans make during their choice making. The 
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stochastic nature of the error indicates the heterogeneity of human beings, i.e. no individual is alike 

and every person’s choice behavior is different (Sikka & Hanley, 2011). 

 

Because the introduction of a stochastic variable (i.e. the error term), it is not possible to simply 

determine the highest utility. Therefore, the probability of every utility to be the highest utility is 

used to determine the ultimate choice. To do so, the simplest and most popular practice is to assume 

the error term   to be an independent and identically distributed (IID) Gumbel distribution (also 

called Weibull). With this assumption the choice probability of choosing route   out of a set of 

possible routes   by person   can be calculated using the multinomial logit model (Ortuzar & 

Willumsen, 2011): 

    
      

       
 

 

where     is the measured systematic utility and   is a parameter that indicates the dispersion of the 

distribution (a high   indicates a small distribution, a low   indicates a uniform distribution). In this 

case a multinomial logit model is used as it is the simplest and most popular model. However, there 

exist a lot of variations, such as the nested logic, c-logit, paired combinatorial logit and mixed logit. 

 

Expected utility theory 

Although the addition of the random error term in the random utility theory corrects the basic model 

approach in order to obtain some more realistic results, actual human behavior mechanisms are not 

included. In the expected utility theory behavior is more explicitly included by considering the risk 

and rewards of different choices.  

 

Making route choices is a decision process that takes place under uncertain conditions. This means 

that a single precise value for the different attributes considered in route choice are unknown to the 

decision maker. However, it is assumed that the different outcomes follow a certain distribution that 

is known to the traveler. So, the traveler knows the occurrence (i.e. probability) of the different 

situations (‘states of the world’) that may reveal. The expected utility of route   is then calculated by 

the weighted average of the utilities associated with these different situations  , where the weights 

are represented by the associated probabilities  . (Chorus, 2010) 

              

 

 

Besides the arguably assumption that travelers correctly assign probabilities to the uncertainties in 

route choice, some phenomena are found which violate the expected utility theory. 

Allais Paradox. In the Allais Paradox (also called the certainty effect), people have the 

tendency to overweight high utility low-probability cases. Allais (1953) showed that people seem to 

perceive a smaller difference between probabilities of 10 percent and 11 percent than between 99 

percent and 100 percent. He found that people will prefer in the low-probability cases the option 

with the highest utility, while in the high-probability cases they will choose the most certain option, 

which might have a lower utility. So, people do not respond to probabilities in a linear manner as 

stated by the expected utility theory. (Avineri & Prashker, 2004; Tversky & Kahneman, 1992) 
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Ellsberg Paradox. The Ellsberg Paradox shows aversion to ambiguity. This means that if the 

decision maker does not know the exact values of the probabilities of some choice option, he would 

prefer the option in which he knows the probabilities for sure. Ellsberg (1961) showed this by letting 

people choose between two urns containing red and black balls from which they should pick one 

ball. If they picked a red ball, it means success, otherwise it means failure. However, one urn had a 

known ratio between red and black balls and the other urn had an unknown ratio. Overall, people 

preferred the option with the known ratio over the option with the unknown ratio, even if the known 

probability is low. (Tversky & Kahneman, 1992) 

Risk seeking. There are several risk seeking choices observed. For example, the inflation of 

small probabilities. If in a choice set the probabilities of winning are substantial (say, 90% against 

45%), most people would choose the option in which winning is the most probable. However, if the 

probabilities of winning are very small (say, 0.2% against 0.1%) most people would choose the option 

that offers the largest gain (Avineri & Prashker, 2004). Another example of risk seeking behavior 

occurs when people must choose between a sure loss and a substantial probability of a larger loss. 

(Tversky & Kahneman, 1992) 

Due to these violations of the expected utility theory, researchers have tried to come up with 

better choice models. This resulted in the notions of prospect theory and regret theory which are 

elaborated in the next sections. 

2.2.2 Prospect Theory 

Kahneman and Tversky (1979) found that the way in which the choice options are framed could 

generate shifts in preferences. They identified that choice makers are risk averse towards choice 

options that are framed as gains and risk seeking towards choice options that are framed as losses. 

Together with the various violations on the expected utility theory, this finding inspired them to 

come up with a theory based on gains and losses; the prospect theory. This theory is based on the 

idea that choices are made in a two-step process, in which the initial phase consists of ‘editing’ and 

the subsequent phase covers ‘evaluation’. (Avineri & Prashker, 2004; Kahneman & Tversky, 1979)  

 

In the editing phase the choice options are organized and reformulated in order to simplify the final 

choice. Furthermore, the possible choice outcomes are mapped as gains or losses relative to some 

reference point. This reference point might be based on past experiences and expectations of the 

traveler in terms of travel time. Therefore, the reference point differs from one traveler to another 

(Avineri & Prashker, 2004). Outcomes containing travel times that are expected to be shorter than 

the reference travel time are perceived as gains, longer travel times as losses. 

 

In the evaluation step the decision maker evaluates each of the edited prospects by converting the 

gains and losses into real values, based on weighting factors and subjective preferences. Finally the 

decision maker chooses the prospect with the highest value. The value for a certain route   is 

determined by the following formula (Kahneman & Tversky, 1979): 

               

 

 

where   represents the different outcomes   for route  ,   is the decision weight associated with the 

probability   of the  th outcome, reflecting the impact of   on the over-all value of the prospect, and 

      reflects the subjective value function of the deviations of outcome    from the reference point. 



27 | P a g e  
 

The value function is S-shaped (i.e. concave above the reference point and convex below the 

reference point) and steeper for losses than for gains (see figure 4). This reflects the fact that the 

impact of a change diminishes with the distance from the reference point and that people are 

considered to be loss averse (i.e. losses weigh heavier than gains) (Tversky & Kahneman, 1992). 

The (probability) weighting function is shown in figure 5. The curvature represents that people 

overweight low probabilities, underweight high probabilities and being relatively insensitive to 

middle-range probabilities. This implies that decision-makers will make risk-seeking choices when 

offered low probability high consequence options and therewith the weighting function exhibits the 

characteristic pattern of risk aversion and risk seeking. (Tversky & Kahneman, 1992) 

 
Figure 4: Value function of the prospect theory (Wikipedia, 2013). 

 
Figure 5: (Probability) Weighting function for gains (w+) and losses (w-) (Tversky & Kahneman, 1992). 

2.2.3 Regret Theory 

The Regret Theory is developed by Loomes and Sugden (1982). They wanted to offer a much simpler 

alternative theory to the Prospect Theory. The basic idea is that after making a choice, people will 

reflect on how much better or worse the consequence of their chosen option could be if they had 

chosen differently. This reflection may reduce the pleasure that derives from his current choice if the 

other choice turned out to be better. Conversely, knowing that he has taken the best decision 

provides his choice with extra pleasure, called rejoice. So, Regret Theory postulates that people will 

make a choice in such a way that none of the other options will outperform the chosen alternative. 

This means that people choose the option they are likely to regret the least. Therefore, the utility of a 

certain option is determined based on the performance difference with the competing alternatives. 

 

 



28 | P a g e  
 

The use of Regret Theory is not widely used in traffic modeling. However, Chorus (2012b) showed 

how the theory can be applied on route choice using the expected modified utility function: 

            
          

  

 
            

        
           

  

 
     

 

 

            
          

  

 
            

        
           

  

 
     

 

 

where A and B represent the different routes.   again represents the different ‘states of the world’ 

(like in the Expected Utility Theory), each state being characterized by a probability of occurrence   , 

and different combinations of travel times for the two routes (  
    

  .   is the risk aversion 

parameter and   represents regret aversion. Higher values of   correspond with higher levels of risk 

and when   increases, regret becomes more important in making the choice. Again, it is assumed 

that the probabilities of occurrence of a certain state   are known to the traveller. Furthermore, the 

population of travelers is seen as being homogeneous in terms of risk aversion and regret aversion. 

 

Note that a traveler who is risk averse and regret averse is more inclined to choose a relatively safe 

route than a traveler who is risk averse but not regret averse. This is due to the fact that both 

behavioral issues amplify each other and heavily penalize the possible occurrence of a situation 

where a forgone route is faster than the chosen one. So, increasing levels of regret aversion make 

risk averse travelers change routes towards a safer alternative. (Chorus, 2012b) 

 

There are a few drawbacks related to the Regret Theory model. In order to obtain parameter values 

an extensive analysis is necessary, since parameter values for both risk aversion and regret aversion 

are likely to be individual- and situation-specific. Furthermore, the values of the parameters influence 

the route choice outcomes greatly. Therefore, it is not desired to use parameters that are obtained 

from empirical studies in other context or just presume parameter values. In contrary, using the 

prospect theory this is common practice. (Chorus, 2012b) 

Another issue is that the EMU-function is only applicable for a binary choice set. In order to include 

multinomial route choice sets, Quiggin (1994) derived a functional form of RT based on the principle 

of irrelevance of statewise dominated alternatives (ISDA). This means that ‘a choice from a given 

choice set should not be affected by adding or removing an alternative that is dominated by the 

other alternatives. This implies that the regret associated with a given choice alternative depends 

only on the actual outcome of this choice alternative and the best possible outcome that could have 

been attained’ (Chorus, 2012b). So, in calculating      in a choice set of three available 

alternatives, the term         
   can be replaced by              

           
           

   . 

However, the outcome of the RT-model when applied to larger road networks containing route 

overlaps is yet unclear. (Chorus, 2012b) 

2.3 Proposed choice models in literature based on behavioral mechanisms 
This section elaborates on proposed choice models for the behavioral mechanisms that can be found 

in literature as identified in section 2.1. First the SILK-theory proposed by Zhang (2006b) and the 

Bounded Rational Assumption Relaxing model proposed by Kim et al. (2009) are explained. 

Subsequently each behavioral mechanism is discussed related to the different ways of implementing 

that mechanism into a model.  
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2.3.1 SILK-theory 

The SILK theory is introduced by Zhang (2006b). It concerns about how travel decisions are actually 

made and emphasizes on the role of Search, Information, Learning and Knowledge in travel decision-

making. The assumption that travelers have perfect knowledge and are able to choose the most 

optimal solution is abandoned. Instead, the theory focuses on how individuals learn about the 

transportation system and what behavioral rules they actually use to search and choose alternatives. 

So, in the SILK theory, ‘each individual traveler has limited and unique knowledge about the 

transportation system, accumulates knowledge through Bayesian learning, search alternatives using 

a set of search rules, make and adjust travel choices using a set of decision rules, and interact with 

each other’ (Zhang, 2006a). This approach provides richer and more realistic representations of 

travel behavior. A conceptualization of the travel decision-making process in SILK is shown in figure 6. 

 
Figure 6: Conceptual framework of the travel decision-making process in SILK (Zhang, 2011). 

The model based on the SILK-theory consists of two levels, the network level and the agent level. The 

network level is concerned with link cost as a result of the existing link flow. The agent level is 

concerned with the route choice of individuals. The network knowledge and subjective believes of 

the traveler is updated using a Bayesian learning process, which includes the past trip experiences of 

the traveler. Furthermore, the expectation of the traveler is updated by computing a subjective 

search gain, which is determined by the traveler’s network knowledge and beliefs. If the subjective 

search cost, which is a function of the difficulty of the search task and the travelers’ personal 

characteristic, exceeds the perceived search gain from an additional search round the traveler will 

stop searching for other alternatives. In that case the traveler does not believe that there exists a 
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better option than the currently identified alternative. During a search round the traveler uses 

heuristics to search for alternative routes. After a new alternative is identified, decision rules are 

applied to compare this alternative with the currently used and previously learned alternatives. This 

represents the role of historical dependency in decision-making. The route choice that is made 

influences the link flows on the network level and adjusts the network knowledge and subjective 

beliefs, due to the gained experience on the chosen route. Finally, if all travelers stopped searching 

for alternatives, an equilibrium state is achieved. (Zhang, 2011) 

 

The search cost that an individual perceives is assumed to be constant throughout the search process 

and need to be empirically derived. The subjective expected search gain of an individual from an 

additional search can be calculated in terms of travel time savings per trip (Zhang, 2011): 

  
       

   
                   

Where    is the free flow travel time of the route identified during the first search round,      is the 

minimum of all observed travel times of the searched routes and N is the number of searches. 

 

Heuristics for finding route alternatives and route choice are developed based on empirical data. The 

rules for finding route alternatives suggest that drivers will only identify a specific route in a round of 

search if its travel time is significantly lower than the travel time of other routes. As the travel time 

difference becomes smaller, other factors related to the simplicity of routes play a more and more 

important role. The rules for route choice represent some kind of indifference band together with 

certain attributes such as familiarity, pleasure, commute time, delay, number of stops and income. 

The heuristics as identified by Zhang (2006b) are shown in appendix A. 

2.3.2 Bounded rationality – Relaxing assumption model 

The notion of bounded rationality conflicts with the fundamental assumption of route choice 

modeling that states that travelers have perfect knowledge about their choice set and that they will 

choose the most optimal solution (i.e. are optimizers and thus rational). 

Kim et al. (2009) tried to model bounded rationality by relaxing this assumption. The assumption of 

perfect information is relaxed by modeling the drivers’ perceived travel time that is updated through 

their experience (i.e. learning). So, their information source only exists of their previous experiences. 

The assumption of rational behavior is relaxed by incorporating a preference update process in the 

(inductive) learning process, which can be seen as some kind of indifference band. This preference is 

modeled by considering the travel time difference between expected and experienced travel time. 

They have incorporated these adjustments into a general model framework (see figure 7). 
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Figure 7: General model framework by Kim et al. (2009). 

Perceived travel time update 

In this part of the model framework, drivers update their expected link travel times based on their 

previous experience. This is implemented using a recursive equation which employs a simple 

weighted average, implicitly assuming a limitation in the driver’s memory. (Kim et al., 2009) 

 

The driver’s initially expected link travel times are determined by his perception on the level of 

network congestion and a random perception error on each link (Kim et al., 2009):  

     
         

 
        

 
  

(1) 

where      
  represents the initial expected travel time of link   by driver  ,   

 
is the free-flow travel 

time of link  ,    is a parameter for driver  ’s perceived congestion level and      is a parameter for 

driver  ’s random perception error on the free-flow travel time of link  . The parameter    is 

regarded as the level of information. (Kim et al., 2009) 

 

The expected travel time for the next day is then expressed as (Kim et al., 2009): 

     
              

        
  

(2) 

where      
  represents the expected travel time on link   on day   by driver  ,     

  stands for the 

experienced travel time on link   on day   by driver  .   represents a learning rate, scaled from 0 to 

1. The expected travel times are updated only on the links that driver   used on day    . This link-

based approach allows to partial update for the unused routes that share some links with the used 

route. 
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After updating link travel times, the expected route travel time is computed by summing travel times 

on links that are part of the route (Kim et al., 2009): 

     
               

 

 

 

(3) 

where      
  is the expected travel time on route   on day   by driver   and        is an incidence 

indicator which is valued 1 if link   is part of route  , otherwise its value is zero. 

 

Route preference update 

Route preference is modeled as a process of evaluation and update. Drivers evaluate their route 

choice decision by comparing their experienced travel time with their expectation. If their 

experienced travel time on one route is shorter than expected, their preference on that route will 

increase and vice versa. This way a route preference map is build for each driver. The process of 

route preference updating is expresses as (Kim et al., 2009): 

    
         

        
       

   

(4) 

where     
  represents driver  ’s preference for route   on day  ,     

  is the experienced travel 

time on route   on day   by driver  ,      
  stands for the expected travel time on route   on day   

by driver   and      represents a route preference function based on the difference between 

expected and experienced travel times. The  -function is defined as follows (Kim et al., 2009): 

      
       

   

 
 
 
 

 
 
                      

     
      

 

    
 

               

      
     

      
 

    
    

     
      

 

    
 

   

       
     

      
 

    
    

     
      

 

    
 

   

  

 (5) 

where    is a sensitivity parameter for change in preference and   is an indifference band on 

preference. A value of the route preference function below 0 represents a gain in preference for the 

current route, while a value above 0 means that an individual loses preference on that route (Kim et 

al., 2009). 

 

Route choice decision 

The route choice decision is now made based on the following (Kim et al., 2009): 

  
              

       
    

(6) 

2.3.3 Bounded rationality and satisficing behavior 

As proposed by Simon (1972) the principle of satisficing behavior is a good way to simulate the 

mechanism of bounded rationality. Satisficing behavior is mostly modeled by certain decision rules 

and heuristics (Mahmassani & Chang, 1987; Zhang, 2011). The SILK-theory that is introduced in 

section 2.3.1 provides a good example of this.  
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Another example is the satisficing rule that is provided by Mahmassani and Chang (1987) in order to 

model departure time. Their satisficing decision model assumes that each commuter   has an 

indifference band (bounded by     
  and     

 ) of schedule delay      on day  , such that he will 

maintain the same departure time as long as the previous arrival time is within this indifference 

band: 

       
                                                    

             

                                           

                           

Furthermore, Yi and Sarin (2013) are working on a dynamic model of satisficing behavior. They 

introduce the principle in which the decision maker has some kind of satisficing level and expects 

some pay-off from an option. If the perceived pay-off of an option turns out to be above the 

satisficing level, the option is continued and the expectations of that option are updated. However, if 

the pay-off and expectations are below the satisficing level, both the satisficing level and the 

expectation of the chosen strategy are updated and another option is chosen. 

 

Besides satisficing, bounded rationality can also be modeled otherwise. For example, by relaxing the 

fundamental assumption of an all-knowing traveler with rational behavior. The relaxing assumption 

model of Kim et al. (2009) realizes this by including the learning aspect and a preference update 

process. The SILK –theory even abandons the fundamental assumption and uses the perspective of 

updated experience, learning and (spatial) knowledge in order to approach the route choice decision 

making from a more behavioral point of view and therewith incorporating the notion of bounded 

rationality. 

 

Furthermore, Guo and Liu (2011) developed a day-to-day model that accounts for bounded 

rationality. They state that ‘the travel cost of any used path can be higher than the shortest path, but 

within a certain threshold’ (Guo & Liu, 2011). Subsequently they define an acceptable path set under 

given cost with the accompanying acceptable path flow set and acceptable link flow set. Their model 

can be mathematically represented by solving the following problem: 

                

            

    
         

where the constraint     
         means that y is an acceptable flow under the current cost 

       and        is a measure of the distance between the target flow   and the current flow  . 

Guo and Liu (2011) suggest that        can be represented, for example, by the Euclidean distance 

                   or by a formulation proposed by He, Guo, and Liu (2010),        

                  
  

  
   . So, in other words, the target flow   is the acceptable flow under the 

current cost      that is closest to the current flow  . The boundedly rational day-to-day dynamic 

model consists of the following steps: 

- Step 1. Initiate day   with link flow   . Determine link cost       and path cost          . 

- Step 2. Generate the acceptable link-path incidence matrix (i.e. exclude unacceptable paths) 

- Step 3. Solve minimization problem        to obtain target flow    

- Step 4. Update link flow to get link flow     on day    . 
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Updating is done using the following formulas: 

                 

                   

where   is a step-size parameter (     ).  

2.3.4 Learning  

In order to model the effects of learning and habits a day-to-day dynamic model is necessary to 

account for the historical dependency of these behavioral mechanisms. The SILK model and 

assumption relaxing model are both examples of such a model, including a learning aspect based on 

past trip experience. 

 

Nakayama and Kitamura (2000) developed a route choice model using inductive learning based on 

memory content and if-then rules (figure 8). The memory content contains the travel time 

experience of 1 to   days ago. It is assumed that travel times are stored in the traveler’s memory in 

an approximate manner. Therefore they have divided the range of travel times into several intervals. 

For each experience, there exists an if-then rule consisting of a condition and an action. The action 

prescribes the route that will be chosen. The condition exists of a set of      (valued 0 or 1), where   

refers to the route,   to the day of travel and   to the travel time interval. If a rule matches the 

memory the rule is activated by the processor. It might be the case that more than one rule matches 

the memory. In order to decide which rule should be applied, an inferiority indicator is used. This 

indicator is a weighted average of the travel times experienced on the route that is chosen according 

to the rule. An example of an if-then rule is provided in figure 9. 

 
Figure 8: The inductive learning model of Nakayama and Kitamura (2000) 
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Figure 9: Example of an if-then rule (Nakayama & Kitamura, 2000) 

The learning mechanism is then simulated by updating the set of if-then rules of a traveler using 

genetic algorithms. Genetic algorithms exist of three parts; reproduction, crossover and mutation. In 

the reproduction part, a certain number of rules with the highest inferiority value are deleted, while 

the rules with the lowest inferiority values are propagated. Subsequently, in the crossover part, the 

remaining rules are paired and random     ’s from these pairs are combined to create new rules. 

This is followed by the mutation part in which an occasional (i.e. with a small probability) random 

alteration of the values of the     ’s of each new rule. (Nakayama & Kitamura, 2000) 

2.3.5 Habits 

Kim et al. (2009) introduced a sensitivity parameter to account for heterogeneity in drivers’ 

preference and found that drivers with a high sensitivity might develop strong habitual route choice 

behavior. Therefore it is suggested that habit can be modeled by including different levels of 

personal preferences. Furthermore, habit can modeled as being an attribute in the utility function as 

is done by Vaughn, Kitamura, and Jovanis (1996) and Bogers, Viti, and Hoogendoorn (2005). The last 

specified habit as the variable ‘number of times the person had already chosen that route in the 

past’. 

 

Furthermore, van der Mede and van Berkum (1993) came up with a choice process in which the 

traveler chooses a route based on the expected utility maximization theory or chooses according to 

habit. This is summarized by: 

                               

where      represents the probability that individual   will choose rout   at day  ,     is the habit 

strength,        is the probability that route   is chosen out of habit and        denotes the 

probability that route   is chosen out of utility maximization.  
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The total strength of habit for individual   at time   is: 

                

      

 

The amount of habit changes when a route was chosen and the experience was good. Therefore, the 

probability of a habitual choice is defined as: 

       
                        

                      

 

where     is ‘1’ if the difference between the experienced travel time and the expected travel time is 

smaller than some threshold (i.e. the route chosen yields a good experience), otherwise the value is 

‘0’. Furthermore,      is ‘1’ when route   was chosen and ‘0’ otherwise. The parameter   determines 

the speed with which the distribution of habit is built up as a result of that specific choice. 

2.3.6 Perception 

The assumption relaxing model provides a formula to determine the perception of link travel times 

based on the driver’s perception on the level of network congestion (see section 2.3.2). Besides this, 

a random perception error is included on each link. The random utility theory (section 2.2.1) also 

includes an error term in which, among others, is accounted for misperceptions. This way of 

accounting for perceptions in choice models is vastly used in literature. 

 

Furthermore, Tawfik (2012) has developed a perception model that incorporates more than just 

adding an error term in order to model the perception of travel distance, travel time and travel 

speed. He used a multinomial distribution structure: 

                            

              
                    

         

          

where     represents the perception of person   at choice situation   (i.e. response level or model 

outcome; 1: correct perception, 0: no difference, -1: opposite perception).      is the probability that 

person  ’s perception at choice situation   will be of level  , which is the response level (i.e. -1: 

opposite perception, 0: no difference, 1: correct perception).   is the cumulative Normal distribution 

function,    is the break point for response level   (                  ).    
   is the 

vector of covariates for person   at choice situation  ,   is a vector of the parameters,    is the 

random component of person  , N is the Normal distribution and   is the variance. The independent 

variables that are included are related to driver demographics, driver personality traits, driver 

experience and familiarity with the road network. 

2.3.7  Indifference band 

Carrion and Levinson (2012) developed a choice model based on travel time indifference bands as 

they found that travelers react to day-to-day travel times on a specific route according to thresholds. 

The idea is that the traveler determines a travel time threshold and therewith creates an acceptable 

time margin. The travel times of the trips made by the traveler are assessed related to this 

acceptable time margin. Depending on the frequency that the experienced travel times on a certain 

route lie within the acceptable time margin the traveler might decide to switch to another route 

alternative. Based on this principle, Carrion and Levinson (2012) presented two models of 
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indifference bands; the fixed threshold model and the moving threshold model (see figure 10). In the 

fixed threshold model it is assumed that individuals have a strict expectation about their travel times 

and travel time variability. The moving threshold model, however, assumes that individuals 

continuously update their margins based on the experienced travel times in previous trips. Both 

models assume a moving set of travel times, referring to the travel times of past trips that the 

individuals have remembered (2 to 15 days before the specific day of travel of a trip). Trips above the 

thresholds are referred to as late trips and trips below the threshold as early trips. Trips within the 

thresholds are regular trips. The individuals are more likely to leave the current route if the number 

of late trips increases, and more likely to stick with their current route if the number of early trips 

increases. 

 
Figure 10: Fixed threshold model versus Moving threshold model (Carrion & Levinson, 2012) 

Mahmassani and Liu (1999) expressed the indifference band of user   at decision node   on day   for 

pre-trip route selection and en-route path switching as follows: 

                           

where      represents the relative indifference band as a fraction of the       , which is the trip time 

of the current path, from the decision node   to the destination of user   on day  .      represents the 

corresponding minimum trip time saving from decision node   to the destination that is necessary for 

user   to switch from the current path on day  . They composed their relative indifference band      

of an initial band together with components accounting for user characteristics, information 

reliability, schedule delay and unobserved issues. 

2.3.8 Travel information 

Most research about the influence of information on route choice make use of the (random) utility 

maximization theory in which information provision or information related phenomena are among 

the used attributes (e.g. (Shiftan, Bekhor, & Albert, 2011; Zhang & Levinson, 2008b)). These 

researches indicate significant influence of information on route choice. 

 

Srinivasan and Mahmassani (2000) found two phenomena related to route choice in the presence of 

real-time information; inertia and compliance. Inertia represents the propensity to remain on the 

current path, while compliance indicates the tendency to choose the path that is recommended by 

the en-route traffic information system. These mechanisms are incorporated in the utility functions 

of the route alternatives. Their findings strongly support the presence of both mechanisms in route 
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choice behavior. They also found that the driver’s past experience with traffic information, network 

conditions and information quality influence the mechanisms of inertia and compliance. 

 

Zhang and Levinson (2008a) found that the value of information for the traveler depends on a 

number of factors. They developed an utility function for the utility of driving with or without 

traveler information based on those factors; the accuracy of information, the attitude of the traveler 

towards traveler information (i.e. the perceived usefulness), the familiarity with the route 

alternatives, the level of congestion in the road network, the perceived information acquisition and 

processing cost and the travel patterns of the drivers (e.g. commute time, travel distance, trip 

frequency). Furthermore, they found that the importance of information provision was the highest 

for trips with a commuter or event purpose, which can be explained by the experienced time 

pressure in order to arrive at the destination on time. 

 

Ben-Akiva, de Palma, and Kaysi (1991) integrated information provision on route choice by updating 

the estimated travel time on a route based on a weighted average of historical perception and travel 

time information. The updated estimation is given by Jha, Madanat, and Peeta (1998): 

                                

where    is the historical perception and    is the travel time that is provided by ATIS.   indicates the 

relative importance of information and historical perception in the updating process. Ben-Akiva et al. 

(1991) included this updating process in their dynamic modeling framework. 

2.3.9 Familiarity of road network 

As with information, in most research familiarity is included as an attribute of a utility function (e.g. 

Lotan (1997)). Furthermore, familiarity has a lot in common with the knowledge and experience of 

drivers and therewith is closely related to learning. Therefore, the SILK theory and assumption-

relaxing-theory and the inductive learning model of Nakayama and Kitamura (2000) implicitly 

account for familiarity. Models specifically focusing on network familiarity are not found. 

2.3.10 Inertia 

Several studies model the diversion decision from a given current path instead of actual choices. In 

these models the principles of inertia are captured through an alternative-specific constant that is 

confounded with the baseline levels of other categorical variables in the models. However, this way 

of modeling is not very behaviorally robust (Srinivasan & Mahmassani, 2000). Therefore, Srinivasan 

and Mahmassani (2000) included inertia as a separate attribute in a utility function. Bonsall (1992) 

did something similar by introducing the following route switching rules: 

                                                                                         

                                                                                                

                                 

where    and    are perceived costs to reach the destination via the potential new route and the 

strategic current route, respectively.    and    are the perceived changes (both positive and 

negative) to these perceived costs and     represents inertia in favor of staying on the strategic 

current route for driver   in respect of new information from source  . 
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Lastly, Peeta and Yu (2005) developed a hybrid model for driver route choice in which they come up 

with fuzzy if-then rules for among others inertia. The attributes they used for inertial behavior are 

weather conditions, time-of-day and trip purpose. It needs to be mentioned that these attributes are 

just chosen on common sense. No research was used to come up with these attributes. Furthermore, 

they developed a multinomial logit model to benchmark their hybrid model performance. In this 

model, inertia is included as a dummy variable being one if route   is the current route and zero 

otherwise. 

 

Although inertia is theoretically included in several model approaches, models predicting inertial 

behavior itself are not found. 

2.4 Conclusion 
This chapter provides a theoretical framework for this research by answering the first two research 

questions. Knowledge about behavioral mechanisms in route choice (i.e. state-of-the-art of route 

choice behavior) is gained. In short, it is found that there are several behavioral mechanisms causing 

individuals to make irrational route choices. Although these cannot be observed, they lead to certain 

observable behavior, that is, sticking to a suboptimal route alternative. This is defined as inertial 

behavior. In addition, knowledge about the current choice modeling practice in general together with 

a more specific modeling practice based on behavioral mechanisms is gained. Three general choice 

models are identified, all having their own limitations and criticisms. Several models specifically 

focusing on capturing (some of the) behavioral mechanisms in route choice are found within 

literature, supplemented by approaches to represent a single behavioral mechanism instead of 

coming up with a full working model. The gained knowledge about these backgrounds can be used in 

order to design a route choice model and find important issues that should be accounted for. 

 

Note that this theoretical framework provides insights and understanding about the topic of interest, 

research scope and definitions for both the researcher and reader. It is important to remember that 

in the remainder of this report inertia refers to the behavior of individuals sticking to a suboptimal 

choice and that the indifference band indicates the corresponding inertia thresholds. 
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3 Data description and analysis 
Now the research subject is introduced and the theoretical background is elaborated, the next step is 

to explore and analyze the available data. This chapter will first introduce the experimental set-up 

that is used to obtain the data (section 3.1). Subsequently, section 3.2 discusses the dataset, 

followed by a short analysis of the data with respect to inertial behavior and the indifference band in 

section 3.3. 

3.1 Experimental set-up 
The data that is used in this research is collected by Tawfik. He collected data through a real-world 

route choice experiment which took place in Blacksburg, Virginia, USA. A total of 20 participants were 

involved in this study. They were asked to complete 20 experimental runs over 20 days during peak 

hours on regular school week days in 2011 using specially equipped research vehicles. There were 

three peak hours; morning (7-8 am), noon (12-1 pm) and evening (5-6 pm) and all runs for a driver   

were done at the same time each day. Participants were provided with five Google Maps print outs 

(see figure 11), each presenting one trip with one point of origin  , one point of destination   and 

two alternative routes. For each experimental run, participants had to make these five trips assuming 

that the provided route alternatives were the only available routes between that particular origin   

and destination  . The OD-pairs and the route alternatives were selected in such a way that the five 

choice situations   would differ from each other. All driver choices as well as the experienced travel 

conditions were recorded through a GPS device located in the research vehicles and a research 

escort in the back seat. The participants were instructed to behave as if they would in real life. To 

ensure that participants will not consider the experiment as leisure, their compensation was not a 

function of the time spent in the experiment; they just received a flat monetary amount per run. 

Furthermore, the experiment was not entertaining as the participants were not allowed to listen to 

entertainment, use their cell phone or chat with the research escort. Besides, the provided route 

alternatives were not scenic. 

 
Figure 11: Print out with available routes between the five OD-pairs. 
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In addition to the driving sessions, the participants were asked to complete a pre- and post-task 

questionnaire. The pre-task questionnaire collected information about the participants’ 

demographics and driving experience, the post-task questionnaire collected information about the 

participants’ perceptions of the traffic conditions on the alternative routes and preference levels of 

these routes. Besides this, they had to fill in a Personality Inventory; the NEO-FFI-3. This is a 60-item 

version of the NEO Personality Inventory-Revised (Costa & McCrae, 2006) that provides a quick, 

reliable and accurate measure of the five domains of personality by providing the participants with 

60 statements on which they have to indicate if they strongly disagree, disagree, are neutral, agree 

or strongly agree. The five domains of personality are: neuroticism, extraversion, openness to 

experience, agreeableness and conscientiousness. Each of these traits measures six subordinate 

dimensions. 

Neuroticism measures the tendency of individuals to experience negative emotions such as anger, 

anxiety, quilt, frustration and depression. Individuals who score high on neuroticism are emotionally 

reactive and vulnerable to stress. They tend to interpret ordinary situations as threatening and are 

associated with low self-esteem and irrational thinking. The six subordinate dimensions of 

neuroticism are: anxiety, hostility, depression, self-consciousness, impulsiveness and vulnerability to 

stress. (Costa & McCrae, 2006; Tawfik & Rakha, 2012b; Wikipedia, n.d.) 

Extraversion measures the engagement with the external world. Individuals with a high score on 

extraversion enjoy interacting with people and are full of energy. They tend to be enthusiastic and 

action-oriented individuals who like to talk and assert themselves. The six subordinate dimensions of 

extraversion are: warmth, gregariousness, assertiveness, activity, excitement seeking and positive 

emotion. (Costa & McCrae, 2006; Tawfik & Rakha, 2012b; Wikipedia, n.d.) 

Openness to experience measures the imaginative tendency of individuals, their attentiveness to 

inner emotions and their sensitiveness towards art and beauty. Individuals who score high on 

openness to experience are intellectually curious, open to emotion and willing to try new things. 

Furthermore, they think and act in individualistic and nonconforming ways. The six subordinate 

dimensions of openness to experience are: fantasy, aesthetics, feelings, actions, ideas and values. 

(Costa & McCrae, 2006; Tawfik & Rakha, 2012b; Wikipedia, n.d.) 

Agreeableness measures the more humane aspects of the personality, that is, general concern for 

social harmony. Agreeable individuals value getting along with others, are considerate, friendly, 

generous, helpful and willing to compromise. Furthermore, they have an optimistic view of human 

nature. The six subordinate dimensions of agreeableness are: trust, straightforwardness, altruism, 

compliance, modesty and tender mindedness. (Costa & McCrae, 2006; Tawfik & Rakha, 2012b; 

Wikipedia, n.d.) 

Conscientiousness measures the tendency to show self-discipline, act dutifully and aim for 

achievement. High scores on conscientiousness indicate a preference for planned rather than 

spontaneous behavior and being organized and dependable. The six subordinate dimensions of 

conscientiousness are: competence, order, dutifulness, achievement striving, self-discipline and 

deliberation. (Costa & McCrae, 2006; Tawfik & Rakha, 2012b; Wikipedia, n.d.) 

3.1.1 Route characteristics 

Table 1 shows the characteristics of the ten route alternatives. The average travel time and travel 

speed are determined based on the obtained data of the experiment. The other characteristics are 

determined based on a satellite map of the area (Google Maps). 
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Table 1: Route characteristics of the route alternatives 

OD-
pair 

Route Avg travel 
time [min] 

Avg travel 
speed [km/h] 

Distance 
[km] 

Number of intersections Left 
turns 

Merges and 
diverges 

Horizontal 
curves 

Signalized Unsignalized 

1 1 8.5 36.4 5.1 10 3 3 1 2 

2 8.4 43.3 6.0 5 4 4 5 3 

2 3 15.2 42.6 11.1 5 2 3 1 30 

4 16.7 63.2 17.4 2 2 2 2 11 

3 5 7.7 44.5 5.8 5 3 3 2 2 

6 9.3 37.8 5.5 8 3 2 1 2 

4 7 10.2 29.5 5.0 5 3 4 1 0 

8 9.6 48.2 7.7 6 2 2 4 1 

5 9 10.5 33.3 5.8 8 4 4 1 1 

10 8.0 34.0 4.7 3 1 3 2 6 

 

OD-pair 1. Both routes have almost equal travel times, although route 2 has a slightly higher 

average speed. Furthermore, route 1 has notably more signalized intersections, while route 2 has 

more merges and diverges. The direction of both routes is towards the destination. 

OD-pair 2. Route 3 is the shortest in terms of travel time. However, route 4 clearly 

outperforms route 3 based on travel speed. It should be noted that route 4 makes a significant 

detour and at the origin the direction of the route differs highly from the direction of the destination. 

Despite of this, route 3 has a lot more horizontal curves while route 4 outperforms route 3 

concerning the number of signalized intersections. 

OD-pair 3. Route 5 is shorter in terms of travel time and has a slightly higher average speed. 

In addition, it has less signalized intersections. However, route 5 is a route with high traffic volumes. 

Concerning the direction of the routes they are both kind of similar. 

OD-pair 4. Route 8 is a little shorter in terms of travel time and has a significantly higher 

average speed. Besides, route 7 passes through the University Campus with the risk of getting stuck 

in campus traffic. However, route 8 contains more merges and diverges during the trip and makes a 

detour approaching the destination from a less direct direction. 

OD-pair 5. Route 10 is clearly the shortest time route, while the average speed on both 

routes is quite similar. In addition, according to Tawfik and Rakha (2012a) this route uses an 

unpopular back road while route 9 passes through town. Note that route 10 has notably more 

horizontal curves than route 9. Furthermore, route 9 contains a left turn that leads to the opposite 

direction of the destination. 

3.1.2 Limitations 

- The data was collected under normal driving conditions on public roads. Therefore, the 

researchers had no control on traffic conditions and actual travel times. Run by run 

contextual data was not available, although it is likely that these conditions differ for each 

run. So each participant might have experienced different traffic conditions influencing his 

route choice behavior in the next run. Therefore, the choice situations as revealed in the data 

are not uniform. 

- The perceived travel time of the participants for each route alternative is only obtained 

through a pre-task and post-task questionnaire and is not quantitative. Therefore, this data is 

highly aggregated as it is used for all 20 runs. 

- During every run the five trips are completed consecutively (i.e. in a trip chain). Therefore, 

these five trips are made with the same feeling and state of mind by the decision maker. This 

might have influenced his decisions. Especially, when parts of the subsequent routes overlap. 
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For example, one might not want to take route 8 if he just took route 5 using the same road 

in order to vary the scenes. 

- Although the participants were instructed to behave as naturalistic as possible and no 

incentives were related to the duration of the trips, the real need to arrive on time at a 

location is not present. In other words, there is no arrival time pressure and therefore the 

participants might have made their decisions in a different way than in the case this pressure 

would be present. 

3.2 Dataset 
The dataset consists of 2065 choice situations in which for each individual   and each run   the 

selected route as well as the experienced travel time is described. In addition, the results of the 

questionnaires are available providing for each individual   their age, gender, ethnicity (white versus 

colored), education, driving years, living years in Blacksburg, driven miles per year and the frequency 

of which a cell phone is used during trips. Furthermore, the scores of individual   on the five 

personality traits of the personal inventory are listed. In addition, the dataset provides information 

on the preferred route per OD-pair    and the familiarity of each participant   with the route 

alternatives as stated by the participants. The stated familiarity is obtained before and after the 

participant has done the experimental runs, the route preference is obtained only after the 

participant has completed the experiment. Furthermore, the participants indicated for each OD-pair 

   which route was faster in speed, contained less traffic, was shorter in travel time and was shorter 

in distance. The participant could also state that there was no difference between the two route 

alternatives on those criteria. 

 

It should be noted that participant 5 did not complete all the experimental runs. In fact, he quitted 

the experiment after 13 runs. However, when investigating the choice situations separately, the data 

obtained through this participant can still be used. Another participant has been found to replace 

participant 5. Therefore, there is still complete data available for 20 participants. 

3.3 Data-analysis 
This section will provide the results of a short data-analysis. First, route choice patterns are identified 

and categorized. Subsequently, the observed inertial behavior is examined. This is followed by an 

analysis on the indifference band using individual’s perceptions and their initial choices. 

3.3.1 Route choice patterns 

The daily route choices individuals make, reveal certain individual route choice patterns over time. 

This shows the day-to-day dynamics in route choice. While some travelers switch back and forth 

between routes in order to avoid congestion and minimize their travel time, others consistently take 

one route until some change forces them to choose another route (Tawfik, 2012). So, the route 

switching pattern of an individual differs from person to person. In general, a traveler does not 

switch routes as long as the corresponding trip time savings remain within his indifference band. 

 

Tawfik identified four different driver types   based on the individual route choice patterns using the 

available dataset. These are shown in table 2, which includes a short description and illustration of 

the observed choice pattern. On the illustrations, a ‘0’ represents a driver choosing one route 

alternative, and a ‘1’ represents a choice for the other available route alternative. The frequency 

percentages are obtained using the real-world experiment dataset based on 2065 observations. They 
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indicate that route choice patterns belonging to driver type 1, 2 and 3 represent a large part of the 

dataset (26.7%, 29.5% and 34.3% respectively), while choice patterns of type 4 (9,5%) seem to be 

more rarely. This indicates that to some extent individuals have clearly a preference for a certain 

route alternative. In fact, in 56.2% of the examined choice patterns (i.e. driver type 1 and 2) 

individuals do not switch at all, after they have chosen a certain route alternative (based on single 

experiences on both routes (i.e. driver type 2) or just by randomly picking a route alternative which 

satisfies their expectations (i.e. driver type 1)). 

 

A closer look reveals that for the switch-aversive driver types (i.e. type 1 and 2), driver type 1 is found 

the most on OD-pair 4 and OD-pair 5, while driver type 2 is found the most on OD-pair 2 and OD-pair 

3. For the switch-sensitive driver types (i.e. type 3 and 4), driver type 3 is found the most on OD-pair 

1 and OD-pair 2, while driver type 4 is found the most on OD-pair 1 and OD-pair 4. Interesting is that 

OD-pair 4 has not only the highest share in individuals choosing the same route alternative over and 

over again (i.e. type 1), but also in individuals choosing both route alternatives with approximately 

the same frequency (i.e. type 4). These driver types can be considered to be opposite. However, this 

finding might be explained by the fact that one of the route alternatives goes through the city 

center/university campus. One can imagine that some individuals like to just avoid this area, while 

others depending on the choice moment, that is, if they need to choose between these route 

alternatives close to the starting time of lectures at the university or not. This affects the throughput 

on this route alternative. This choice moment can easily alter about 10 minutes on subsequent days, 

resulting in the observed switching route choice pattern. Furthermore, on OD-pair 2, the highest 

shares of both type 2 and type 3 are found. As these driver types are more close to each other than 

type 1 and type 4, this is not considered to be a remarkable finding. 

 

Table 2: Four identified driver types   based on individual route choice patterns 
Driver 
type   

Description & Frequency percentage Illustration 

1. A driver arbitrarily picks a route and is 
apparently satisfied with the experience. 
He continues to make the same choice 
over and over again. 
 

Frequency Type 1 

OD1 23.8% 

OD2 9.5% 

OD3 14.3% 

OD4 47.6% 

OD5 38.1% 

Total: 26.7% 
 

 
2. A driver arbitrarily picks a route and is 

apparently not satisfied with the 
experience. Therefore he tries the other 
route and decides that the first route was 
better. He continues in choosing the first 
route. 
 

Frequency Type 2 

OD1 19.0% 

OD2 38.1% 

OD3 47.6% 

OD4 14.3% 

OD5 28.6% 

Total: 29.5% 
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Driver 
type   

Description & Frequency percentage Illustration 

3. A driver switches between two alternative 
routes. However, one route is used more 
than the other, which reflects his 
preference for this route. 
 

Frequency Type 3 

OD1 42.9% 

OD2 47.6% 

OD3 33.3% 

OD4 19.0% 

OD5 28.6% 

Total: 34.3% 
 

 
4. A driver switches between two alternative 

routes. He uses both routes with 
approximately the same frequency, 
reflecting the lack of preference towards 
any alternative. 
 

Frequency Type 4 

OD1 14.3% 

OD2 4.8% 

OD3 4.8% 

OD4 19.0% 

OD5 4.8% 

Total: 9.5% 
 

 

3.3.2 Inertia 

In order to determine if an inertial choice is made, the choices in which an individual   did not switch 

routes while this would have led to an expected decrease in travel time are identified. Therefore, the 

expected travel times by a certain individual   on both routes need to be estimated. It is assumed 

that for both route alternatives the average experienced travel time by an individual   up to run   

represents this individual   s expected travel time for run  +1. Note that the expected travel time for 

the non-chosen route alternative does not change and therefore can be constant over several 

subsequent runs   (i.e. if the other route alternative is chosen repeatedly). In the case that there is 

not yet experience gained by individual   on one of the route alternatives (i.e. the individual   tried 

only one of the route alternatives up to moment  ), the average travel time on that route 

experienced by all individuals during the specific peak hour is considered to be the expected travel 

time for run  +1. 

 

Based on this definition, it is found that in 33% of the 2065 cases an individual should change their 

route choice for the next run   in order to decrease their travel time. In 70% of these cases the 

participants however did not change their route choice. This means that in 23% of all cases an inertial 

choice is made. 

 

Figure 12 illustrates how an inertial choice can easily be identified from the data. It shows the 

expected (i.e. normal average) and experienced travel times for a certain individual   at all runs   at 

choice situation  . Note that the expected travel times of route B are always lower than those of 

route A. It appears that individual   made six inertial choices, at which the individual   stuck to the 

suboptimal route alternative. In addition, individual   chose five times to switch his route choice. 

Remark that most of the inertial choices are made within the first 10 runs. 
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Figure 12: Example route choice data of 1 individual on a certain OD-pair showing inertia and switching. 

Figure 13 shows the number of suboptimal inertial choices and route switches that are made per run 

summed over all participants. It becomes clear that most of the route switches take place during the 

second and third run after which a descending trend is noticeable. This indicates that at first most 

individuals try the different route alternatives to obtain experience on both routes and after a few 

trips they develop a preference for one of the route alternatives and stop switching. The fact that for 

the last runs less switches are made means that more individuals tend to stick to their choice in the 

end. However, regarding the suboptimal inertial choices, there is no clear trend visible. This suggests 

that individuals have identified the shortest route alternative after a few runs and then repeatedly 

choose this route. These findings are consistent with the notion of learning as elaborated in the 

theoretical framework (section 2.1.4). As a result, it can be hypothized that for the first few runs 

  inertial behavior occurs because of experimental choice behavior, while in the end these are 

conscious choices. 

 
Figure 13: Inertial choices and switches per run (total choices per run: 100) 

5 

5,5 

6 

6,5 

7 

7,5 

8 

8,5 

9 

9,5 

10 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Tr
av

e
l T

im
e

 [
m

in
] 

Run # 

Normal average Route A 

Normal average Route B 

Experienced TT Route A 

Experienced TT Route B 

Inert choice 

Switching choice 

Inertial choice 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

# 
In

e
rt

ia
l/

sw
it

ch
in

g 
ch

o
ic

e
s 

Run t 

Inertial choice per run 

Switching choice per run 



47 | P a g e  
 

The time lost due to these inertial choices differs highly per participant, as becomes clear from table 

3. Savings range from only about 1 minute to about 1.5 hour per participant summed over all 100 

trips made. On average each individual   could save more than 20 minutes by making non-inertial 

choices. Furthermore, it shows that the number of inertial choices also highly differs per participant, 

ranging from only 5 to 68 inertial choices out of the total of 100 choice situations a participant has 

faced during the experiment. The number of inertial choices of participant 19 seems to be extreme. 

This participant has chosen the same routes over and over again on each run  , while the other route 

alternatives were expected to be shorter. 

 
Table 3: Inertia and lost travel time per participant (total of 100 observations each) 

Inertia and lost travel time per participant  

Participant 1 2 3 4 5* 6 7 8 9 10 11 

Lost travel time [min] 0.9 24.0 31.4 8.1 8.9 21.8 11.9 7.9 7.8 5.2 23.6 

Inertial choices [#] 5 34 34 14 5 25 11 18 7 15 19 

Participant 12 13 14 15 16 17 18 19 20 21 Avg 

Lost travel time [min] 4.2 18.4 14.8 33.2 24.6 2.8 24.7 89.8 43.7 40.6 21.3 

Inertial choices [#] 17 20 32 38 18 15 21 68 36 31 23.0 

 

As can be seen from table 4 the inertial choices per route range from 0.5% to 61%. Note that route 7 

and 9 are rarely chosen. Furthermore, although route 10 is often chosen, only 0.5% of the choices are 

inertial choices. The same holds for route 5. This finding might be the result of these routes being the 

expected shortest route alternative in most cases. Therefore, inertial behavior (stick to the longer 

route) is often just not possible on these routes. When this fact is accounted for (last column of table 

4), the percentage of inertial choices per route still seem to highly differentiate ranging from 6.5% to 

96.2%. This suggests that inertial behavior might be influenced by route characteristics. So taking into 

account the findings of inertial choices per participant, this might suggest that inertial behavior is 

both dependent on individual characteristics and route characteristics of choice situation  . 

 
Table 4: Inertia and lost travel time per route alternative 

Inertia and lost travel time per route alternative 

OD-
pair 

Route Total lost travel time 
[min] 

Lost travel time 
per inertial choice 
[min]  

Inertial choices [% 
of all choices on 
route] 

Times route is 
chosen [#] 

Times a 
inertial 
choice is 
possible on 
this route [#] 

Inertial 
choices [% of 
possible 
inertial 
choices] 

1 1 26.1 0.65 28.4 141 64 62.5 

2 59.4 0.55 39.7 272 133 81.2 

2 3 29.6 0.62 18.4 261 88 54.5 

4 114.6 1.43 52.6 152 87 92.0 

3 5 1.3 0.09 4.9 288 55 25.5 

6 108.5 1.43 60.8 125 79 96.2 

4 7 31.6 0.96 44.0 75 41 80.5 

8 62.7 0.86 21.6 338 98 74.5 

5 9 13.3 1.47 22.0 41 10 90.0 

10 1.1 0.57 0.5 372 31 6.5 

Average: 40.3 0.86 29.3 206.5 69 66 

3.3.3 Indifference band based on perception errors 

After the participants completed the experiment of Tawfik, they were asked about their perceptions 

of travel time; which route is faster or is there no difference? Errors in these perceptions provide 

insights in the subconscious thresholds. If both route alternatives are being perceived as equally long 

by an individual  , while this individual   experienced a difference in average travel time on these 

route alternatives, his perception error is equal to the difference in experienced travel time. 
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However, if the longer route alternative as experienced by individual   is perceived as being the 

shorter route alternative, no exact perception error can be determined. This results from the fact 

that the dataset does not contain quantifiable values for the individual’s perception of different 

routes. Therefore, in this case, the experienced difference in travel time can only provide an 

indication of the perception error. After all, at least this experienced difference was perceived 

erroneously. 

 

So, for each individual   stating a perception of his experienced travel time on a certain OD-pair    

that is incorrect, the perception error is determined based on the average travel time difference this 

individual   has experienced on that specific OD-pair    during the 20 runs; after all, his statement 

was based on all 20 runs of the experiment. The findings are shown in table 5 and table 6. 

 
Table 5: Indifference bands based on perception errors per OD-pair    

OD-
pair    

Average travel time 
difference on route 
alternatives using all 
2065 observations 
[min] 

# participants that are 
indifferent for travel time 
difference between route 
alternatives* 

# participants that 
have an opposite 
perception to their 
experiences* 

Average subconscious 
threshold (Based on 
average experienced 
travel time difference 
on individual level) 
[min]  

Average choice 
frequency by 
indifferent 
individuals 

Odd 
route 

Even 
route 

1 0.03 6 8 0.48 9.5 10.5 

2 1.52 3 4 1.04 8.7 11.3 

3 1.54 7 1 1.13 11.9 8.1 

4 0.55 4 3 0.37 6.8 13.3 

5 2.45 2 0 1.39 2.5 17.5 

    Avg: 0.88**   

*As stated in the post-run questionnaire (i.e. after all experiment runs) 
**Weighted average 
 

Table 5 shows the findings on the subconscious thresholds for the individuals that perceived the 

travel time differences incorrectly detailed per OD-pair   . It can be seen that on OD-pair 5, where 

the average time difference is the biggest, only 2 participants are indifferent for this average time 

difference. On the contrary, on OD-pair 1, where on average the travel times of both route 

alternatives are quite similar, there are 6 participants who consider these travel times to be 

indifferent and 8 participants who have an incorrect perception. These findings are as expected, as it 

is likely that a large travel time difference is more noticeable than a small travel time difference. 

Another remarkable fact is the high number of participants that are indifferent for travel time on OD-

pair 3. These participants experienced a difference of 1.13 minutes, which is the second-highest 

difference, and are still indifferent. In addition, on OD-pair 4, which has relatively low travel time 

differences compared to the other OD-pairs, the number of individuals   with incorrect perceptions is 

comparable to that of OD-pair 2 and OD-pair 3. These findings suggest that there might be some 

situation dependent factors that influence the perceptions of individuals. 

 

On average the participants that were indifferent for travel time chose both routes with about the 

same frequency. This is what would be expected; if people have no difference between two options 

they will on average choose both options with the same frequency. However, for OD-pair 5 (and OD-

pair 4 to a lesser extend) the even route is chosen more frequently than the odd route. This indicates 

that on these routes there are some factors that outweigh the importance of travel time on route 

choice. Furthermore, it should be mentioned that on an individual level, great differences can be 

identified, which in the case of OD-pair 1, 2 and 3 balance each other out. 
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Table 6: Indifference bands based on perception errors per individual   

Individual   Average subconscious threshold 
(based on perception errors) 
[min]* 

111 1.37 

112 0.98 

113 0.30 

114 0.97 

115 - 

116 0.61 

121 0.90 

122 0.52 

123 - 

124 - 

125 0.56 

211 - 

212 0.83 

213 - 

214 0.52 

215 0.39 

221 0.32 

222 0.78 

223 1.02 

224 1.16 

225 0.97 

Average** 0.76 

*In calculating the average thresholds, the OD-pair/individual combinations in which no incorrect perception is stated, are not included. 

**Weighted average based on the number of observations within the dataset per individual  . 

 

Table 6 shows the findings on the subconscious thresholds for the individuals with incorrect travel 

time perceptions detailed per individual  . It can be seen that the thresholds range from as small as 

0.30 minutes to as high as 1.37 minutes with an average value of 0.76 minutes. Note that the 

obtained values of table 5 and table 6 are highly aggregated, as the perception statements are only 

obtained at the end of the 20 experimental runs, while the indifference band is calculated using 

experienced travel times over all 20 runs. A more detailed overview of the thresholds per individual 

and OD-pair combination can be found in appendix B.1. 

3.3.4 Indifference band based on inertia 

The choice situations   in which an inertial choice is made, are used to indicate the inertia threshold. 

For each individual   and each OD-pair    the maximum travel time difference of the inertial choices 

are determined. It is assumed that these maximum values provide some insight in the magnitude of 

the indifference band. Table 7 and table 8 show the averages of these maximum travel time 

differences per OD-pair    and per individual  . A more detailed overview per individual and OD-pair 

combination can be found in appendix B.2. 

 

It is found that for all five OD-pairs the inertia threshold seems to be higher than the perception 

threshold, as expected. Note that the inertia thresholds are all higher than 1 minute, while the 

perception thresholds are for some OD-pairs significantly lower than 1 minute. Furthermore, it is 

remarkable that the inertia threshold highly varies per individual   (ranging from 0.26 minutes to 2.11 

minutes), while the values per OD-pair    are more similar (ranging from 1.14 minutes to 1.61 

minutes). 
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In general, the inertia threshold per individual   seems also to be higher than the perception 

threshold per individual  . The inertia threshold per individual   is on average 1.22 minutes, 

compared to a perception threshold per individual   of 0.76 minutes. This big difference might be 

caused by the fact that only a few individuals had incorrect perceptions in general, while inertial 

choices were observed for all individuals. 

Table 7: Indifference bands based on inertia per OD-pair    

OD-pair    Average inertia threshold* [min] 

1 1.18 

2 1.14 

3 1.51 

4 1.11 

5 1.61 

Average**: 1.31 

*In calculating the average thresholds, the OD-pair/individual combinations in which no inertial choice is made, are not included. 

**Weighted average based on the number of observations within the dataset per OD-pair   . 
 

Table 8: Indifference bands based on inertia per individual   

Individual   Average inertia threshold* [min] 

111 0.26 

112 1.38 

113 2.04 

114 0.63 

115 2.11 

116 1.04 

121 1.29 

122 1.14 

123 1.39 

124 0.51 

125 1.09 

211 0.72 

212 1.81 

213 0.69 

214 1.30 

215 1.04 

221 0.61 

222 1.78 

223 2.08 

224 1.46 

225 1.53 

Average**: 1.22 

*In calculating the average thresholds, the OD-pair/individual combinations in which no inertial choice is made, are not included. 

**Weighted average based on the number of observations within the dataset per individual  . 

3.3.5 Discussion and conclusions 

The analysis on route choice patterns shows that driver types 1, 2, and 3 are most common within 

the available dataset, while type 4 seems to be relatively rare. Opposed to these findings, Tawfik, 

Szarka, House, and Rakha (2011) found percentages of 14%, 16%, 36% and 32% respectively for 

driver types 1 till 4 using data from a driving simulator experiment. Note the remarkable difference 

for driver type 4 (32% versus 9.5%). Therefore, it seems that individuals are more switch-aversive and 

expose a preference for a certain route alternative in real-life than in a simulated environment. 

However, this difference might just be a result of the fact that individuals’ choice behavior can be 

affected by the experiment set-up, as the dynamics of the driver simulator lacks some realism. For 

example, in this particular driver simulator, there was no possibility to build different scenario’s 

based on if the participant turned right or left at the different intersections and as a result, no 

landmarks were added to the network (Tawfik et al., 2011). This makes it harder for the participants 

of the experiment to obtain a reality alike experience of a certain route alternative and to compare 
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both route alternatives. It is likely that this results in a lack of preference for one of the route 

alternatives, leading to a higher percentage of switching behavior found by the simulator experiment 

of Tawfik. 

 

In addition, the data-analysis shows that inertial behavior and the magnitude of both the inertia 

threshold and the perception threshold of individuals might be dependent on both personal 

attributes and route characteristics of the choice situation. These findings are in line with 

expectations as literature defines the indifference band as being an individual situation-specific 

threshold. Remember from the theoretical framework (section 2.1.7) that drivers will only alter their 

choice when a route characteristic, in this case travel time, is larger than this threshold. As inertia 

(not altering their choice) takes place within this threshold the finding that inertial behavior is also 

individual and situation-specific is quite logical. 

 

Furthermore, perception thresholds of on average 0.89 minutes per OD-pair    and 0.84 minutes per 

individual   are found. In addition, inertia thresholds of on average 1.31 minutes per OD-pair    and 

1.22 minutes per individual   are identified. These findings suggest that the inertia threshold might 

be indeed higher than the perception threshold as suggested in section 2.1.7 of the theoretical 

framework. Obviously, this difference is most visible when looking at the results per individual   as 

the effect of unconsciousness and consciousness is most influenced by the individual characteristics. 

For an elaboration on the quantification of the indifference bands, see chapter 10. 

 

Now the dataset has become more familiar and insights in the issues of inertial behavior and the 

accompanying indifference bands are obtained, the next chapter will focus on identifying the 

explanatory attributes which might be of importance in modeling this inertial behavior and the 

indifference bands.  
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4 Attribute identification 
This chapter will identify which attributes are explanatory for inertia and the indifference band. In 

order to do so, first empirical findings in literature are examined in section 4.1. These findings are 

used to come up with different variables that might be of importance. These variables are then, 

among others, used as independent variables in several regression analyses using different 

approaches (section 4.2). This way several models are obtained predicting satisficing behavior and 

other choice behaviors. Based on these models and their model performances (section 4.3), the main 

attributes that should be included in the final route choice model can be identified in the conclusion 

of this chapter (section 4.4). The most suitable regression approach will also be determined in this 

section. 

4.1 Empirical findings in literature 
This section lists the empirical findings that are found in literature. The most important findings 

about inertia and the indifference band are found in five papers. One of them (i.e. Vreeswijk et al. 

(n.d.)) also uses the data of the real-world experiment of Tawfik. The other literature findings are 

based on other datasets. 

 

In their analysis of satisficing behavior Vreeswijk et al. (n.d.) analyzed satisficing behavior. They 

define satisficing behavior as an individual that should have switched his route choice in order to gain 

travel time savings, but did not switch. In other words, the individual stuck to the suboptimal route 

alternative. So, in fact, they use the same definition that is used for inertia in this research. With 

respect to their satisficing definition, they found the following: 

- Based on the performance of the current choice relative to the expected performance of 

choice alternatives: 

o Roughly 1/4th of the choices made concerned satisficing behavior; 

o Small travel time differences and dominant non-travel time route attributes had a 

positive effect on the frequency of satisficing; 

o In satisficing choices indifference bands up to 4.5 minutes or 30% of the average 

travel times were found, while thresholds up to 1.3 minutes or 13% are more 

common; 

o Satisficing thresholds are systematic. However, the magnitude of these thresholds is 

probabilistic and depends on the choice set; 

- Based on the performance of the current choice relative to expected performance of the 

current choice: 

o Roughly 1/2th of the choice made concerned satisficing behavior; 

o In satisficing choices indifference bands up to 3.3 minutes or 37% of the average 

travel times were found, while thresholds up to 1.2 minutes or 11% are more 

common; 

o Whether or not to switch hardly seemed to depend on bad travel time experiences 

on the current choice, but primarily on the availability of a route alternative which is 

expected to perform better 

- Next to travel time, the travel time differences between alternatives, average travel speed 

and travel time reliability influences choice strategies; 

- It appeared that respondents were loss-aversive rather than gain-seeking, which made them 

switch-aversive; 
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When Zhang (2006a) developed his SILK theory he identified several route search rules and route 

changing rules representing satisficing behavior and inertia. In deriving these rules, he has found the 

following (using the machine learning algorithm RIPPER), based on trips with an average distance of 

14 miles and an average free flow travel time of 16 minutes: 

- Drivers will only consider a specific route if its travel time is significantly lower (i.e. 21%) than 

the travel times on the other route alternatives; 

- As the travel time difference becomes less apparent, other factors related to the simplicity of 

routes play also an important role; 

- Drivers will change routes as long as travel time can be reduced by more than 39% (i.e. 

indifference band). If such a reduction is not possible, familiarity, commute time and 

distance, pleasure, delay and income are found to be important in route switching decisions. 
 

Carrion and Levinson (2012) investigated route choice dynamics after link restoration and found that: 

- Subjects react to day-to-day travel times on a specific route according to thresholds. 

- Also subjects’ previous experience and perception of the route alternatives influence the 

decision to abandon a chosen route. 

- Both the indifference band with fixed thresholds and moving thresholds capture the 

dynamics of the data. 

- Margins to classify early trips and late trips are asymmetric2. Late trips are more persistent in 

the subjects’ moving set of travel times (i.e. the experienced travel times the subject can 

recall from previous trips) in comparison to the subjects’ early trips. 
 

Mahmassani and Liu (1999) found support for ‘the notion that commuters’ route switching decisions 

are predicted on the expectation of an improvement in trip time that exceeds a certain threshold, 

which varies systematically with the remaining trip time to the destination, subject to a minimum 

absolute improvement of about 1 minute’. Vreeswijk et al. (2013a) found evidence to assume an 

indifference band of on average 3-4 minutes on a total trip. In their research they used the 

perception error as indicator, which means that their findings apply to the subconscious thresholds. 

In addition, (Vreeswijk et al., n.d.) found conscious satisficing thresholds with a maximum of on 

average 3-5 minutes on a total trip. However, they found more commonly satisficing thresholds of on 

average 1.18 and 1.34 minutes, which are lower than their found subconscious thresholds. Reason 

for this is likely to be the different dataset that is used to obtain these values. As the datasets use 

different OD-pairs with different average trip lengths, these values might not be directly comparable. 
 

The aforementioned findings indicate that a route choice model should include a mechanism that is 

based on the expected performance of the route alternatives. In order to include inertia in a route 

choice model, travel time differences between route alternatives, average travel speeds and distance 

as well as factors related to the simplicity of routes are found to be important. In addition, familiarity 

and previous experiences with the route alternatives are found to influence the decision to switch 

routes or not. Pleasure, delay and income are also found to be important in route switching 

decisions. However, in this research there is no data available on these issues. These findings and 

insights will be used to come up with relevant independent variables for the regression analysis. 

                                                           
2
 Remember from the theoretical framework (section 2.3.7) that trips above the thresholds are referred to as 

late trips and trips below the threshold as early trips. Trips within the thresholds are regular trips. Individuals 
are more likely to leave the current route if the number of late trips increases, and more likely to stick with 
their current route if the number of early trips increases. 
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4.2 Regression analysis 
In order to identify explanatory factors for inertia several stepwise regression analyses are 

performed on the available data. Useless observations were removed from the dataset based on a 

lack of information or lack of experience on a specific route alternative. This means that for some 

participants all 20 observations of a certain OD-pair    are removed (i.e. driver type 1 as identified 

by Tawfik et al. (2011)). In addition, for all participants the choice situations in which a route is 

chosen for the first time (run 1) are removed. There were also three participants that did not fill in 

the post-task questionnaire and personality inventory. Therefore, the observations of these 

participants were also removed. Finally, 1193 data observations are used for the regression analyses 

obtained from 18 participants with an average of 66 observations per participant. 
 

Vreeswijk et al. (n.d.) distinguished four choice strategies in observed route choice behavior (see 

table 9); minimizing by switching (CS1), minimizing by non-switching (CS2), satisficing (CS3) and 

compromising (CS4). They based this distinction on the expected travel times for both route 

alternatives by individual   at run  , which is determined as the average of all experienced travel 

times on the specific routes up to that run  . One should know that their satisficing strategy 

corresponds to the definition of inertia in this research. Based on those four observable strategies, 

different approaches are used for regression analysis in order to identify explanatory factors for 

choice behavior. 
 

Table 9: Four choice strategies and their shares within the data-set* 

Choice strategy CS1 CS2 CS3 CS4 

Logical choice Logical choice Illogical choice Illogical choice 

Should switch for TT 
gain 

Should not switch for TT 
gain 

Should switch for TT 
gain 

Should not switch for TT 
gain 

Switches Does not switch Does not switch Switches 

Minimizing Minimizing Satisficing Compromising 

Share of all choices [%] 9.0 52.5 23.4 9.5 

Share of logical/illogical 
choices [%] 

15.9 85.0 70.4 27.8 

*Based on all 2065 observations, note that 5% of these choices consist of a choice made at run 1. For these runs no choice strategy can be 
determined 
 

Since inertia is the main interest of this research, at first a model is obtained explaining this 

behavioral mechanism (i.e. the individual   did not switch and therefore lost travel time). However, 

as the model for inertia can only be applied in some of the choice cases (i.e. the cases in which the 

chosen route at run  -1 was in fact the longer route alternative and is expected to be the longer 

route alternative at run   as well), other approaches explaining for the other choice cases need to be 

obtained. After all, a strategy model capturing all four strategies, instead of only the inertial strategy, 

is expected to be more complete in predicting the final route choices of individuals. 

 

Since the inertia model already accounts for the minimizing by switching strategy (i.e. non-inertia) 

and the inertia strategy, another model is developed in order to account for the other two choice 

strategies; the compromising strategy and the minimizing by non switching (i.e. non-compromising) 

strategy. This model is called the compromising model. Both the compromising model and inertia 

model are put together into a combined approach applying one of the two models depending on the 

individual’s available choice strategies at run  . This combined method captures all four strategies 

and can be applied in a route choice model. 
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However, with another four strategies approach it is tried to come up with an explanatory model 

that captures all four strategies together at once instead of using two different models. Note that 

again, depending on the choice situation   an individual   has only two out of the four choice 

strategies available to use. Based on the experienced travel time of the choice at  -1 and the 

expected travel time for his current choice at  , individual   can make a logical choice and choose the 

route alternative with the lowest travel time by either switching or non-switching (CS1 or CS2), or 

individual   can make an illogical choice and choose the route alternative with the highest travel time 

by either switching or non-switching (CS3 or CS4). In other words, he can only behave according to 

one of the logical strategies or one of the illogical strategies in choice situation   at time  . This 

makes it interesting to also search for a model predicting if an individual makes a logical or illogical 

choice, capturing these choice strategies all together. Note that a used choice strategy is defined to 

be logical or illogical based on the travel times of the different route alternatives in which the shorter 

route alternative is identified as being a logical choice. Based on other criteria choosing the shorter 

route alternative might be actually illogical instead of logical. However, within this research a logical 

or illogical choice is always defined based on the travel time criteria. 
 

The performance of the choice strategy model might be improved by making some modifications in 

the way the model is applied which allows this model to only predict one of the two available choice 

strategies (out of the four choice strategies the model can predict) in a certain choice situation. This 

is accounted for in an adapted choice strategies approach. 
 

Each approach asks for a different dependent variable, which are shown in table 10. Since these are 

categorical variables a linear regression method does not provide sensible results. Instead a logistic 

regression method must be used; the binary logistic regression method is applied in case the 

independent variable consists of two categories, the multinomial logistic regression is applied in case 

the independent variable consists of more than two categories. In this research the different 

categories correspond to the different choice strategies. 
 

Table 10: Dependent variables corresponding to the different approaches of stepwise regression analyses 

Values dependent 
variable 

Inertia model Compromising 
model 

Combined 
model 

Four choice 
strategies model 

Four choice 
strategies adapted 

Illogical 
model 

0 Non-satisficing 
choice 

Non-compromising 
choice 

n/a CS1 n/a Logical 
choice 

1 Satisficing 
choice 

Compromising 
choice 

n/a CS2 n/a Illogical 
choice 

2 n/a n/a n/a CS3 n/a n/a 

3 n/a n/a n/a CS4 n/a n/a 

*n/a stands for ‘not applicable’ 
 

The independent variables that are used in all approaches are shown in table 11 and exists of 

variables on driver demographics, driver personality traits, driver experience, choice situation and 

driver-choice combination. These variables are chosen based on the available data, the variables 

used in Tawfik’s papers and the findings of the data-analysis and literature as identified in section 4.1 

and chapters 2 and 3. 
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Table 11: Independent variables of stepwise regression analyses 

Variable Variable description Variable values 

Variables of driver demographics 

Agei** Age of participant i 18 to 65 

Genderi Gender of participant i, 0=male, 1=female 0 or 1 

Ethnicityi Ethnicity of participant i, 0=white, 1=non-white 0 or 1 

Educationi Education of participant i, 0=high school graduate or GED, 1=Some college or technical 
school graduate, 2=college graduate, 3=earned a graduate degree 

0, 1,2 or 3 

Driving yearsi** Number of years participant i has been a licensed driver 2 to 57 

Driving milesi Annual number of miles participant i drives (thousands) 2 to 35 

Residencyi Number of years participant i has been residing in the area  1 to 56 

Variables of driver personality traits 

Ni Neuroticism of participant i 7 to 30 

Ei Extraversion of participant i 19 to 43 

Oi Openness to experience of participant i 20 to 31 

Ai Agreeableness of participant i 22 to 42 

Ci Conscientiousness of participant i 26 to 47 

Variables of driver experience* 

TTprcic Percentage difference in mean experienced travel times by driver i between the two 
alternatives of choice situation c 

0.005 to 0.292 

TSprcic Percentage difference in mean experienced speed between the two alternative routes 
of choice situation c 

0.020 to 0.481 

∆TTexp_absict Absolute difference in the average of experienced travel times up to run   by driver i 
between the two alternatives of choice situation c 

0.053 to 2.625 

Performanceic,t-1 Performance of the chosen route alternative of choice situation   at run  -1 
experienced by driver  , expected travel time compared to experienced travel time, 
0=performance is better than expected, 1=performance is worse than expected 

0 or 1 

Switchesict Number of switches driver i made during the experimental runs at choice situation c 
up to run t 

1 to 13*** 

Variables of choice situation 

Movement categoryc Category of the movement based on road type in choice situation c, 0=rural/highway 
movement, 1=city road movement 

0 or 1 

Straight distancec Straight distance in kilometers between OD-pair of choice situation c 3.2 to 6.8 

∆TTabsc Absolute difference in average travel time between route alternatives of choice 
situation c 

0.1 to 2.5 

∆TT_previc,t-1 Difference in average travel time between the two alternatives of choice situation   at 
run  -1 for driver  , reference is shortest route alternative (value=0) 

0 to 2.5 

∆TD_previc,t-1 Difference in travel distance between the two alternatives of choice situation   at run 
 -1 for driver  , reference is route alternative with shortest distance (value=0) 

0 to 6.3 

∆TS_previc,t-1 Difference in travel speed between the two alternatives of choice situation   at run  -1 
for driver  , reference is route alternative with lowest speed (value=0) 

0 to 18.7 

∆Intersection_previc,t-1 Difference in number of intersections between the two alternatives of choice 
situation   at run  -1 for driver  , reference is route alternative with least intersections 
(value=0) 

0 to 8 

∆Left turn_previc,t-1 Difference in number of left turns between the two alternatives of choice situation   
at run  -1 for driver  , reference is route alternative with least left turns (value=0) 

0 to 2 

∆Merges and 
diverges_previc,t-1 

Difference in number of merges and diverges between the two alternatives of choice 
situation   at run  -1 for driver  , reference is route alternative with least merges and 
diverges (value=0) 

0 to 4 

∆Horizontal curves_previc,t-1 Difference in number of horizontal curves between the two alternatives of choice 
situation   at run  -1 for driver  , reference is route alternative with least horizontal 
curves (value=0) 

0 to 19 

Time of dayc Time of day choice situation c occurs, 0=morning peak hour, 1=afternoon peak hour, 
2=evening peak hour 

0, 1 or 2 

Variables of driver-choice combination 

Average familiarityic**** Stated average familiarity of driver i with the two routes of choice c prior to the 
experiment, 0=very unfamiliar, 4=very familiar 

0 to 4 

Maximum familiarityic **** Stated maximum familiarity of driver i with the two routes of choice c prior to the 
experiment, 0=very unfamiliar, 4=very familiar 

0 to 4 

Preferenceic,t-1 Prior to the experiment stated preference for a route alternative of participant i in 
choice situation c related to the route choice at time t-1, 0=preference for route that 
was not chosen at  -1, 1= preference for route that was chosen at  -1  

0 or 1 

*percentage difference is calculated as the difference between experiences on the two routes divided by the average of the two routes 

**Because of high correlation between age and driving years, these variables were not allowed to be in the same model at the same time 

*** Driver that have not experienced both routes were dropped from the analysis because of missing experience data 
**** Because of opposite coefficients of average familiarity and maximum familiarity, these variables were not allowed to be in the same model at the same 
time. 
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The obtained regression models can be applied on the available observations (i.e. choice situations) 

in order to obtain probabilities that a certain choice strategy will be exposed at that choice situation 

 . First, the regression model will provide an outcome for each run   at all choice situations  . This 

outcome is a number that must be seen relatively to the reference category of the dependent 

variable, which in this research is always chosen to be the category indicated with 0 in table 10. 

These obtained outcomes can be translated into the probability    that the corresponding category 

(   ) will expose in choice situation   at run   (i.e. category 1 in binary cases and 1,2, or 3 in the 

multinomial case) using the following formulas: 

Binomial regression:     
           

             
 

Multinomial regression:     
           

              
      

 

And                                   

where      is the value of a certain attribute   at run   in choice situation   and    is the weight of 

this attribute. Based on these probabilities a prediction of the used choice strategy can be made 

(elaborated upon in section 4.3). Note that both regression methods develop models by including 

attributes that optimize the explanatory power (i.e. model fit) by minimizing the error in the 

predictions of the model and therewith minimizing the error in the probabilities. 

 

The probabilities   of all categories together should account for a total of 100%. Therefore, the 

probability of the occurrence of the reference category can be calculated using the probability of 

occurrence of the other categories. 

4.2.1 Inertia approach 

In order to predict if an inertial choice is made, an inertia model is developed. The inertia model is 

obtained by performing a stepwise binary logistic regression analysis based on the observations in 

which inertia is a possible choice strategy (427 observations). The used criteria for attribute entry or 

removal at each step are a probability of F of 0.05 and 0.10 respectively, using the Likelihood Ratio 

statistic. The obtained model (see table 12) has an R2 of 0.403. The model includes eight variables; six 

of them are individual dependent, the other two are related to route characteristics and choice 

situation. The model will only be applied on the observations in which inertial behavior is a possible 

choice strategy. 
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Table 12: Obtained inertia model from a binary logistic regression analysis 

Model Inertia model 

R2 0.403 

 Beta Significance 

Constant 11.084 0.000 

Time of dayc=0 Reference  

Time of dayc=1 -1.173 0.012 

Time of dayc=2 3.649 0.000 

Ethnicityi=0 Reference  

Ethnicityi=1 -3.694 0.008 

Educationi=0 Reference  

Educationi=1 1.788 0.196 

Educationi=2 0.108 0.848 

Educationi=3 -1.780 0.006 

Driving yearsi 0.148 0.000 

Ci -0.143 0.000 

Maximum familiarityic -0.486 0.001 

∆TT_prevc -0.952 0.000 

Residencyi -0.201 0.000 

* Time of dayc, Ethnicityi and Educationi are categorical variables. Each 
category in the model functions as a dummy variable. The category 
indicated with ‘Reference’ is the reference category (i.e. Beta=0).  

 

The obtained model indicates that during noon peak hour individuals are more likely to make a non-

inertial choice compared to the morning peak, while during evening peak hour they are more likely 

to make an inertial choice. This might be explained by the fact that people might want to spend their 

noon break time in an efficient way and therefore do not want to lose any time during their trip or 

are just better at assessing the choice options at this time of day. In the evening an individual might 

be tired from working all day and just want to go home. In addition, his judgment skills might be 

decreased at this time of day. 

Furthermore, white individuals are more likely to make a non-inertial choice than non-white 

individuals. The model also suggests that individuals with the highest education level have a higher 

probability of making a non-inertial choice, while individuals of the other education levels are more 

likely to perform inertial behavior. This seems logical, as higher educated individuals might be better 

in assessing the differences between the route alternatives, leading to more optimal choices. 

Furthermore, the model indicates that the higher the individual scores on conscientiousness, the 

higher the probability that an individual will make a non-inertial choice. Since conscientious people 

are efficient and aim for achievement, it is assumable that they are more experienced in making 

thoughtful decisions and try to pick the shortest route alternative. 

An individual having more driving years leads to a higher probability of inertial behavior, while 

individuals that are more familiar with the route alternatives or reside for a longer time period in the 

area of the OD-pairs they are more likely to make a non-inertial choice. Individuals with a higher 

familiarity with the route alternatives and the surrounding network (by residing in the area) have 

gained more knowledge about the traffic state on and performance of the different routes 

alternatives and are therefore able to make a better judgment to base their decision on. 

Lastly, if a higher travel time difference compared to the shortest route alternative is experienced 

during the previous choice situation, it is more likely that an individual is going to make a non-inertial 

choice, which is switching to the shortest route alternative. This is in line with the expectation that 

travelers want to use the shortest route alternative. 

Overall, the inertia model seems to contain attributes that explain inertial behavior in an intuitive 

and explainable manner. 
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4.2.2 Compromising approach 

In order to predict if a compromising choice strategy is used, an explanatory compromising model is 

developed by performing a stepwise binary logistic regression analysis based on the observations in 

which compromising is a possible choice strategy (765 observations). The used criteria for attribute 

entry or removal at each step are a probability of F of 0.05 and 0.10 respectively, using the Likelihood 

Ratio statistic. The obtained model (table 13) has an R2 of 0.232, which is significantly lower than the 

R2 of the inertia model. The model includes six variables; five of them are individual dependent, one 

is related to the travel time route characteristic. The model will only be applied on the observations 

in which a compromising choice strategy is possible. 

 
Table 13: Obtained compromising model from a binary logistic regression analysis 

Model Compromising model  

R2 0.232 

 Beta Significance 

Constant -9.527 0.000 

Genderi=0 Reference  

Genderi=1 1.042 0.001 

Educationi=0 Reference  

Educationi=1 1.981 0.000 

Educationi=2 1.509 0.000 

Educationi=3 -0.725 0.113 

Ei 0.113 0.000 

Ci 0.129 0.000 

∆TTabsc -0.655 0.000 

Maximum familiarityic -0.255 0.018 

*Genderi  and Educationi are categorical variables. Each category in 
the model functions as a dummy variable. The category indicated with 
‘Reference’ is the reference category (i.e. Beta=0). 

 

The obtained model shows that females are more likely to make a compromising choice than males. 

Furthermore, individuals with the highest education level have a higher probability of making a non-

compromising choice which is in line with the expectation that higher educated people are more 

likely to make logical choices. 

Higher individual scores on extraversion and conscientiousness both lead to a higher probability of 

using a compromising choice strategy. Extravert individuals enjoy being involved in a lot of different 

activities and situations to get energized. Therefore they are expected to choose a lot of different 

route alternatives in each choice situation. This means that they will not always stick to the best 

choice option, but switch regularly resulting in a higher probability of making compromising choices. 

According to the inertia model conscientious individuals tend to switch to the shortest route 

alternative, while according to the compromising model conscientious individuals are more likely to 

make compromising choices, which is switching to the longer route alternative. This implies that a 

higher level of conscientiousness makes it more likely that an individual is going to switch routes. A 

possible explanation for this is that conscientious individuals might be more sensitive for small 

differences in several different variables and therefore switch more often. 

Individuals who are more familiar with the route alternatives tend to stick with the shortest route 

alternative which is in line with the inertia model that indicates that these individuals switch to the 

shortest route alternative. 

Lastly, the bigger the difference in absolute travel time between the two route alternatives, the more 

likely it is that individuals will choose the shortest route alternative. This seems logical as with a 

bigger difference it becomes easier for the decision maker to identify which route is the shortest 

route alternative. 
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4.2.3 Combined approach; inertia and compromising 

In the combined approach, both the compromising model and inertia model as elaborated in the 

previous sections are applied in order to predict which choice strategy is used. These models are 

developed based on two different datasets dividing the available data based on the fact if at  -1 a 

suboptimal or optimal choice is made by a certain individual  . Depending on this choice, one of the 

two models is applied. However, in the special case that the route alternative that was expected to 

be the shortest route alternative, becomes the expected longest route alternative this criteria is not 

sufficient. In addition, the chosen route at run  -1 needs to be the shortest or longest route 

alternative at run t as well. If not, the sub-model choice needs to switch. So, in fact, the combined 

approach uses the inertia model and compromising model in order to complement each other in 

predicting the used choice strategy by an individual   at run   in choice situation  . 

4.2.4 Four choice strategies approach 

In order to predict which of the four choice strategies is used by applying only one model instead of 

two models (as in the combined approach), a four choice strategies model is developed using a 

stepwise multinomial logistic regression analysis. This model is based on all 1193 observations from 

the dataset. The used criteria for attribute entry or removal at each step are a probability of F of 0.05 

and 0.10 respectively, using the Likelihood Ratio statistic. The obtained model (see table 14) has an 

R2 of 0.427, which is comparable to the satisficing model. The model includes 15 variables, all 

individual and/or choice situation related. 

 
Table 14: Obtained choice strategy model from a multinomial logistic regression 

Model Four choice strategies 

R2 0.427 

 CS2 (Minimizing) CS3 (Satisficing/Inertia) CS4 (Compromising) 

 Beta Significance Beta Significance Beta Significance 

Constant 56.820 0.000 -14.065 0.378 11.222 0.522 

∆TTabsc 0.495 0.001 -0.739 0.000 -0.124 0.479 

Ei -0.485 0.000 0.133 0.311 -0.022 0.883 

Driving milesi 0.250E-3 0.000 0.117E-4 0.840 0.281E-5 0.967 

Driving yearsi -0.006 0.905 0.272 0.000 0.037 0.616 

Preferenceic,t-1=0 -0.971 0.000 -0.600 0.011 -0.633 0.014 

Preferenceic,t-1=1 Reference   Reference   Reference   

Ethnicityi=0 -18.398 0.000 0.096 0.982 -4.107 0.399 

Ethnicityi=1 Reference   Reference   Reference   

Time of dayc=0 1.218 0.033 -0.773 0.203 -0.656 0.368 

Time of dayc=1 -0.840 0.375 5.627 0.000 1.017 0.435 

Time of dayc=2 Reference   Reference   Reference   

Genderi=0 -1.022 0.076 0.389 0.594 -0.345 0.658 

Genderi=1 Reference   Reference   Reference   

Educationi=0 3.696 0.105 5.758 0.024 1.939 0.498 

Educationi=1 -7.513 0.000 3.784 0.101 -1.003 0.697 

Educationi=2 -2.290 0.004 -0.787 0.362 -0.877 0.412 

Educationi=3 Reference   Reference   Reference   

Residencyi -0.118 0.114 -0.340 0.000 -0.085 0.387 

Ni -0.812 0.000 0.249 0.231 -0.073 0.762 

Oi 0.430 0.000 0.154 0.206 -0.084 0.599 

Ci -0.560 0.000 0.019 0.898 -0.060 0.727 

∆TSabsc -0.026 0.216 0.081 0.001 0.369E-3 0.989 

Average familiarityic 0.144 0.263 -0.454 0.001 -0.032 0.847 

*Preferenceic,t-1, Ethnicityi, Time of dayc, Genderi and Educationi are categorical variables. Each category in the model functions as a dummy 
variable. The last category of each variable is the reference category (i.e. Beta=0). 
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The model shows that the bigger the absolute travel time difference between the two route 

alternatives, the more likely that a person is going to minimize. In contrary, in a choice situation with 

a big travel speed difference individuals are more likely to make an illogical choice. This indicates that 

people might prefer routes with higher travel speeds even if this means their trip will take longer. 

The number of annual driving miles3 contributes the most to a minimizing strategy, which might be 

explained by the fact that individuals that drive a lot have more experience in making route choices. 

Besides this, they are able to save more travel time in total. The number of driving years contributes 

mostly to inertial behavior. One might think this is remarkable since those individuals might have a 

lot of experience in making route choices. However, a higher number of driving years complies in 

general to a higher age. Older individuals might not feel the urgency to save travel time anymore and 

other factors have become more important in their route choice (e.g. familiarity or variables related 

to simplicity of the route). Ethnicity turned out to have a high impact on the fact if an individual is 

likely to minimize or not. Apparently white individuals are less likely to minimize than non-white 

individuals while they are slightly more likely to make an inertial choice. Furthermore, the model 

suggest that male individuals are less likely to minimize by non-switching than females, instead they 

tend to make inertial choices more. 

If individual   has a preference for a route that was not chosen at run  -1, this individual is more likely 

to minimize by switching (CS1) than by non-switching, and inertia or compromising, which might be 

logical if one assumes the route with the shortest travel time is preferred in most cases. 

Furthermore, the model indicates that in the morning peak people are more likely to minimize, while 

during the noon peak people are more likely to make an inertial choice or compromise. So in the 

morning people might like to use the shortest travel time alternative in order to start their journey as 

late as possible to still arrive at their destination on time, while during their lunch break this is of less 

importance. Note that this relation is opposite to the relation found in the inertia model. 

The higher an individual   scores on extraversion, neuroticism and conscientiousness, the less likely a 

strategy of minimizing by non-switching or compromising is used, while openness to experience has 

the opposite effect on the minimizing strategy. 

Lastly, the more familiar an individual   is with the available route alternatives prior to the trips, the 

more likely he is to use a minimizing strategy. This is quite logical as he knows the characteristics of 

both routes already and is therefore able to make better decisions. 

 

One should note that, since the three sub-models all compare to reference category CS1 (minimizing 

by switching), it would be expected that the model of CS2 has less extreme beta values as this 

strategy is very similar to CS1. Remarkably, this is not the case. Therefore, the obtained model feels 

somewhat counter intuitive at some points, although most of the effects of the variables on the 

different choice strategies can be explained to some extent. This might occur due to the fact that at a 

choice moment the decision maker has only two of the four strategies available, as mentioned 

earlier. The model attributes on individual characteristics and route characteristics do not account 

for this fact. So apparently, this approach is not very suitable for the intended application. Therefore, 

in order to increase the accuracy and suitability of the model, an adapted approach is developed in 

the next section. 

                                                           
3
 Note that the coefficient of the driving miles variable is very small. This occurs because the driving miles is in 

most cases a very large number. Therefore the effect on the outcome of the model is significant 
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4.2.5 Adapted approach 

In the adapted approach the four choices strategy model is used as starting point. It is then decided 

per run   which two strategies from this model are available based on the fact if the choice at time  -

1 was an optimal or suboptimal choice. The probabilities of occurrence of these two available 

strategies (obtained by the basic choice strategy model) are than extrapolated to ensure that 

together the available choice strategies make up for 100% of the possible choice strategies. After this 

adaptation the choice strategy that will be used at run   is predicted. 
 

It is assumed that a model approach taking the availability of the choice strategies into account will 

increase the performance of the four choice strategies model as the predictions are limited to only 

the available choice strategies at a certain run   and predictions will therefore be more realistic. 
 

Note that it is not possible to recalibrate the coefficients of the model based on splitting the data 

according to the available choice strategies due to the use of a multinomial model (the three sub 

models cannot be seen separately). If one wants to recalibrate the coefficients another approach 

would be needed, splitting the model into separate sub models using binary logistic regression, 

which actually is done in the combined approach as elaborated in section 4.2.3. 

4.2.6 Illogical choice approach 

In order to predict if an illogical choice will be made at a certain run   of choice situation  , an illogical 

choice model is developed by performing a stepwise binary logistic regression analysis. This model is 

based on all 1193 observations from the dataset. The used criteria for attribute entry or removal at 

each step are a probability of F of 0.05 and 0.10 respectively, using the Likelihood Ratio statistic. The 

obtained model (see table 15) has an R2 of 0.341, which is a little lower than the R2 of the inertia 

model and four strategies model. The obtained model includes 14 variables; besides individual 

dependent variables and variables related to route characteristics, also the number of made switches 

made by individual   at run  , which is a factor of driver experience, turned out to be of importance. 
 

Table 15: Obtained logical/illogical choice model from a binary logistic regression 

Model Logical versus illogical  

R2 0.341  

 Beta Significance  

Constant -27.924 0.000  

Time of dayc=0 Reference 0.000  

Time of dayc=1 -3.568 0.000  

Time of dayc=2 2.761 0.000  

Ethnicityi=0 Reference   

Ethnicityi=1 11.775 0.000  

Educationi=0 Reference   

Educationi=1 -1.457 0.000  

Educationi=2 5.607 0.000  

Educationi=3 0.814 0.027  

Driving milesi -0.171E-3 0.000  

Ni 0.528 0.000  

Ei 0.413 0.000  

Oi -0.237 0.000  

Ai -0.192 0.001  

Ci 0.236 0.000  

Switchesict -0.090 0.009  

∆TTabsc -0.824 0.000  

∆TSabsc 0.045 0.003  

Maximum familiarityic -0.619 0.000  

Agei 0.079 0.000  

* Time of dayc, Ethnicityi and Educationi are categorical variables. Each category in the model functions 
as a dummy variable. The category indicated with ‘Reference’ is the reference category (i.e. Beta=0). 
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According to this model an individual is more likely to make a logical choice during the noon peak 

and an illogical choice during the evening peak compared to the morning peak. This is opposite to the 

findings in the four choice strategies model, but consistent with the inertia model. 

Furthermore, the model indicates that a non-white individual is more likely to make an illogical 

choice than a white individual, which is also in contrast with the four choice strategies model. 

It is remarkable that the model indicates that the two least educated categories are more likely to 

make a logical choice than the two highest educated categories. Intuitively, one might expect the 

opposite. However, one explanation might be that the lower educated individuals think more 

simplistic and just choose the shortest route, while the higher educated individuals make more 

complex choices by considering a lot of factors and end up making a suboptimal choice as it might 

score better on the other factors. 

The illogical model is the only model that includes all the five personality traits. Neuroticism, 

extraversion and conscientiousness of an individual   increase the likelihood of making an illogical 

choice, while openness to experience and agreeableness decrease this likelihood. Individuals that are 

open to experiences are curious about the alternatives and try both options. Therefore they might be 

able to make more logical choices. Agreeable persons are friendly, generous and helpful, and trusts 

information that they obtain and the collective judgment of others. Therefore, in general, it makes 

sense that they are more likely to make logical decisions. Extravert individuals enjoy being involved in 

a lot of different activities and situations to get energized. Therefore they are expected to choose a 

lot of different route alternatives in each choice situation. This means that they will not always stick 

to the best choice option, but switch a lot resulting in a higher probability of making illogical choices. 

Conscientious individuals have a preference for planned and rational behavior rather than impulsive 

behavior and aim for achievement. Therefore it is more intuitively to expect them to be more likely 

to make logical decisions. However, in aiming for achievement they might consider a lot of issues in 

making their choice, resulting in a very complex decision making process. Remember, the distinction 

of logical and illogical choices is made based on the simple difference in expected travel time 

between the route alternatives. Thus, this complexity might lead to an improved probability of 

making illogical choices. Lastly, neurotic individuals have the tendency to experience negative 

emotions relating ordinary situations. They might be therefore less satisfied with their choices and 

tend to switch often, leading to a higher probability of making illogical decisions. 

Furthermore, a higher number of experienced switches increases the probability of making a logical 

choice as would be expected, since the individual has more knowledge about the different choice 

options in order to assess them correctly. 

The model also suggest that the bigger the absolute travel time difference between the two route 

alternatives, the more likely that a person is going to make a logical choice. In contrary, in a choice 

situation with a big travel speed difference individuals are more likely to make an illogical choice. As 

mentioned before, this indicates that people might prefer routes with higher travel speeds even if 

this means their trip will take longer. 

Another issue that is shown by the model is that a higher familiarity with one or both of the route 

alternatives prior to the experiment leads to a higher probability of making logical choices. The 

individual knows the characteristics of the routes already and can make a decision based on his 

experiences. In case he is not familiar with one of the routes he might try this one and might be more 

alert on the route characteristics compared to the familiar route and therewith assess the differences 

more accurately in order to make his choice. 
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Lastly, the model suggests that a higher age leads to a higher probability of making an illogical 

decision. As mentioned with the choice strategy model, older individuals might not feel the urgency 

to save travel time anymore and other factors might be more important in their route choice. 

It can be concluded that the effect of all attributes on making a logical or illogical choice are in line of 

the expectations or can be explained to some extent. 

4.3 Performance of regression models 
All six models are tested on their performance to correctly predict the behavior that was found in the 

data of Tawfik. Based on the found probabilities     for a certain choice strategy on each 

observation, a prediction is made for that observation using a uniformly distributed random number 

between 0 and 1 which defines which category will be predicted. For example, category 0 (i.e. non-

inertia, non-compromising, CS1 or logical choice) has a probability     of 0.8345 and category 1 has a 

probability     of 0.1655; if the random number is smaller than 0.8345 category 0 will be predicted, 

otherwise category 1 will be predicted. This predicted choice behavior is compared to the observed 

choice behavior in each observation and a percentage of correctly predicted cases is determined. 

Since a random number is used, it is necessary to repeat the predictions several times and average 

the obtained percentages. If a model made an incorrect prediction at a certain run  , the value of the 

model attributes for run  +1 are updated using the actual experienced characteristics of run  , 

despite of the incorrect prediction. In other words, the model is reset after each prediction. After all, 

no information for updating is available for the incorrect prediction. Note that this is only a 

restriction because of using the available dataset; for instance, in performing a micro-simulation this 

is not necessary. As a result of this resetting, the performance indicator used in this research applies 

to predictions of individual choices for the next run   and not for the complete choice pattern over all 

runs  . However, one can imagine that if the choice for each next run   is correctly predicted, the 

final choice pattern is also likely to be correctly predicted, although one incorrectly predicted case 

could mess up the whole predicted choice pattern. 

 

Remember that the inertia model and compromising model will only be applied on the observations 

in which inertia or compromising respectively is a possible choice strategy. If this is not the case, it is 

assumed that a non-inertial or non-compromising choice is made and category ‘0’ is predicted. 

 

As there might be some differences in predictability between the different trips, the performance of 

the different models on each OD-pair    is examined. In addition, since individuals might be 

exploring the route alternatives that are available to them at first, there might be a difference in 

predictability of the choice behavior between the first and last 10 runs. Therefore the performance 

of the models is also detailed for the first and last 10 runs of each OD-pair   . Lastly, one can imagine 

that there might be some differences in predictability for the different driver types   as identified by 

Tawfik et al. (2011). Therefore, the model performances are obtained per driver type   as well. 

 

For comparison, the model performance of the vastly used utility maximization theory in which travel 

time is used as the only model attribute (i.e. shortest path theory) is also determined. Since the 

choice strategies on which the regression models are developed, are based on the expected travel 

times for the different route alternatives for the specific time of day (i.e. morning, noon or evening 

peak hour) the trip is made, the shortest path theory is also applied using the average travel times of 

the different route alternatives for each time of day. 
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Table 16: Performance of the regression models 

Correctly predicted route 
choices 

Inertia 
model 

Compromising 
model 

Combined 
model 

Four choice 
strategies 

model 

Four choice 
strategies 
adapted 

Illogical 
model 

Utility 
Maximization 

/ shortest 
path theory 

OD-1 [%] 55.83 67.44 62.30 38.84 65.84 55.78 38.11 

OD-2 [%] 64.98 66.34 65.80 49.30 75.43 60.79 65.96 

OD-3 [%] 65.88 75.67 72.73 54.69 77.44 65.87 76.09 

OD-4 [%] 72.91 63.02 67.91 46.04 72.28 52.29 32.02 

OD-5 [%] 45.33 83.00 77.12 64.31 81.17 78.88 87.50 

First 10 runs   [%] 58.58 67.88 64.04 47.29 72.27 60.65 52.51 

Last 10 runs   [%] 67.66 75.05 72.71 52.85 76.07 64.23 67.85 

Driver type 1 [%] - - - - - - - 

Driver type 2 [%] 86.35 83.14 84.02 66.69 89.23 68.05 72.21 

Driver type 3 [%] 50.92 63.27 58.15 41.20 65.88 59.42 52.42 

Driver type 4 [%] 55.26 55.56 55.42 25.07 51.97 55.20 55.20 

Total correctly predicted [%] 62.97 72.10 68.89 50.43 74.36 62.78 61.19 

 

Table 16 shows that over all the adapted four choice strategies model has the highest percentage of 

correctly predicted behavior. In contrary, the four choice strategies model without adaptations 

performs the worst of all models. So, the adaptations made to the four choice strategies model did 

improve the performance of the model significantly, as was expected. Note that both the inertia 

model and the compromising model perform reasonable in predicting inertial and compromising 

behavior respectively. When they are combined into one approach in the combined model, the 

performance lies in between the performances of the separate models. Note that the performance 

of the combined model is closer to the compromising model, as this model is based on a larger part 

of the combined dataset. These findings are in line with expectations. 

 

Regarding the different OD-pairs all models show a high variability in correctly predicted cases. The 

performances on OD-pair 3 and 5 are the highest for all models, while in general they perform the 

worst on OD-pair 1. Furthermore, for all models the behavior in the first 10 runs   of a certain choice 

situation   are less well predicted than the last 10 runs  . This is in line with the expectations. With 

respect to the different driver types   all models perform best on driver type 2. This driver type 

exists of almost no switching choices. Almost all models perform the least on driver type 4, except 

the inertia model, which performs the worst on driver type 3. These are the driver types in which a 

lot of switches are made. Note that there is no model performance available for driver type 1, 

because this driver type was excluded from the dataset due to lack of experience on both route 

alternatives. 

 

It can be seen that all developed regression models except the four choice strategies model perform 

better than the commonly used shortest path theory. Therewith these model approaches seem 

promising. 

4.4 Conclusion 
In order to identify important attributes related to inertia, six models are developed, each accounting 

for Inertia on a different level. Most of the attributes appear in more than one model (e.g. several 

personality traits, familiarity and travel time related issues and time of day, gender and education). 

The data-analysis (section 3.3) indicated that variables related to individuals and route characteristics 

might be important. The regression models are in line with this finding, as they all include several of 

these variables. From literature it was found that experiences by individuals on the route alternatives 

would be of influence. However, from the variables on experiences only the number of switches and 
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the percentage difference in experienced travel time are included in two of the models. Although, 

one could consider the travel time difference at run  -1, as included in the inertia model (and 

therewith the combined model), to be an ‘experience’ variable. Literature also suggested that travel 

time, travel speed, travel distance, familiarity and factors related to the simplicity of routes would be 

important. All regression models include a variable related to travel time, four models include a 

variable on familiarity and three models include a variable on travel speed. However, travel distance 

and variables related to route simplicity, such as difference in number of intersections, left turns, 

horizontal curves and merges and diverges, do not seem to be important in explaining any of the 

choice strategies as they are not included in any of the models. So, overall, the models that are found 

do not completely underline the findings in literature. 

 

It is found that five out of six model approaches outperform the commonly used shortest path 

theory, which gives reason for continuation of this research in the chosen direction. The overall best 

performing explanatory model turned out to be the adapted four strategies model closely followed 

by the compromising model. However, as some parts of the adapted four choice strategies model 

might feel counter intuitive and application of the model is not quite straightforward, this model is 

considered to be not suitable for route choice predictions and is therefore excluded from further 

investigation. Due to the lower performances of the non-adapted four choice strategies model and 

the illogical model, these models are also excluded from further investigation. 

 

Now, only the inertia model, compromising model and combined model are left to be considered. 

When the behavioral regression models are implemented in an actual route choice model, a model 

that covers all choice strategies, instead of only the inertial or compromising strategy, is expected to 

perform better. In fact, when for instance the inertial model is implemented in a route choice model, 

some assumptions need to be made on how to treat the cases in which inertial behavior is not 

possible. One might simply assume that the shortest route alternative is chosen. However, in that 

case the existence of a compromising strategy is totally neglected. The same applies to the 

compromising model, neglecting the existence of inertial behavior. Based on these considerations, it 

can be concluded that the combined model is the most suitable model for implementation in a route 

choice model and therefore will be used in the continuation of this research. The next chapter will 

elaborate on the modeling approach and introduce the modeling framework for the route choice 

model. 
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5 Modeling framework of route choice model 
In chapter 4 the most important attributes related to inertial behavior and the indifference band 

(indirectly) are identified. These are obtained in the form of a regression model, which can be 

implemented in a model framework in order to extend the prediction from choice strategy to actual 

route choice. This chapter will elaborate on the approach that is best to use for the route choice 

model (section 5.1), which leads to a modeling framework for the route choice model (section 5.2). 

Subsequently, a different travel time updating process is suggested and examined (section 5.3). 

Lastly, the findings and results are assessed and conclusions are drawn (sections 5.4 and 5.5). 

5.1 Model approach 
The model approach that will be used as a starting point to develop an improved route choice model 

is based on the user equilibrium theory in which each driver non-cooperatively tries to minimize his 

travel cost (i.e. travel time) and chooses the shortest path. This is a simple and general applicable 

modeling approach that is widely used in route choice modeling. However, the user equilibrium 

theory is a static modeling approach. Within the context and objective of this research the model 

should focus on predicting the individual choices of travelers on a daily base. In other words, the 

model should be dynamic. From the theoretical framework it follows that learning is a fundamental 

issue in day-to-day route choice dynamics. Therefore, most state-of-the-art models include an 

updating process, updating the perceptions and expectations for the next run  +1. By replacing the 

shortest path for the shortest expected travel time path of individual  , which is updated after every 

trip, the modeling approach becomes dynamic, while it is still simple and general applicable. This 

dynamic expected shortest path approach will be the first step in the used model approach. 

 

The obtained regression models might now be implemented in de model framework as a strategy 

module that determines if the route that is predicted by the dynamic shortest path approach (i.e. the 

shortest route based on expected travel times) is actually chosen or if the individual   finally chooses 

the other route alternative (i.e. the longer route) based on the predicted choice strategy (i.e. inertial 

choice versus non-inertial choice or compromising choice versus non-compromising choice). 

Depending on their attributes some updating process within the attributes might be necessary. This 

model framework will be illustrated in the next section. 

5.2 Model representation 
Based on the issues mentioned in the previous section the model framework shown in figure 14 is 

developed. As can be seen, it consists of a 2-step-model based on a Dynamic Expected Shortest Path 

Module and a Choice Strategy Module. First an initialization is necessary defining the input for the 

model which consists of individual characteristics and route characteristics, depending on the 

attributes that are used in the regression model, and the initial expected travel time at day  , which 

is determined based on the average travel times of the route alternatives. Subsequently, the 

Dynamic Shortest Path Module predicts the preliminary route choice that should be chosen based on 

the shortest expected travel time for day   by individual   in choice situation  . The Choice Strategy 

Module might alter this preliminary choice based on the choice strategy predicted by the regression 

model (i.e. combined model). This leads to a prediction of the final route choice of individual   on day 

  for choice situation  . Based on this predicted choice the expected travel times and number of 

switches are updated for the prediction of the route choice on day  +1 by the same individual   in the 

same choice situation  . 
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Note that this developed 2-step-model can only be used in cases with two route alternatives, since 

the variables in the regression models are based on the difference between the two route 

alternatives as used in the experiment of Tawfik. In order to make the model framework more 

general applicable a module should be added in order to downsize the number of considered route 

alternatives (i.e. choice set) before applying the model framework. However, this is outside the scope 

of this research as this research focuses on including inertial behavior and the indifference band in 

route choice modeling. 

5.3 Updating process of expected travel time 
As explained in chapter 4 the regression models identifying the important attributes are developed 

using an updating process of the expected travel time for the different route alternatives based on 

averaging the experienced travel time on all previous runs   experienced by a certain individual  . 

However, in that case it is assumed that all the experienced travel times have the same weight on the 

expectations of this individual  . It might be more realistic to assume different weights for the 

experienced travel times that are experienced at a time long ago and the experienced travel times of 

run  -1 in order to determine the expected travel time for run  . Therefore the influence of the 

experienced travel times at the previous runs are smoothed based on the following formula, which is 

vastly used, among others by Vaughn, Abdel-aty, Kitamura, Jovanis, and Yang (1993) and 

Mahmassani and Srinivasan (1995): 

                                             

Figure 14: Developed model framework ‘2-step-model’ 
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in which α is a smoothing factor whose value gives an indication of the relative importance of an 

individual  ’s previous experiences in updating his expectations on the current run  ,       is the 

experienced travel time at run  -1 and     is the smoothened travel time, which is in fact the 

expected travel time at run  -1. 

 

Note that the used choice strategy (i.e. if an inertial, minimizing (by switching or non-switching) or 

compromising choice is made) at each observation might change as a result of the new expected 

travel times at each smoothing factor. Therefore, the current combined model is fitted on the 

dataset with the (i.e. smoothened) expected travel times in order to find the smoothing factor α at 

which the performance of the current model would be the highest. A binary regression analysis 

method entering the important attributes is used. 

5.4 Results and findings 
Figure 15 shows the performance of the 2-step-model at different values for the smoothing factor α. 

It can be seen that at an α with a value of 0.01 the route choice model achieves the highest model 

performance, at which 74.49% of all cases is correctly predicted. Table 17 shows the model 

performances that the 2-step-model and the first step of the 2-step-model (i.e. the Dynamic 

Expected Shortest Path Module, which is referred to as the 1-step-model) obtained using the 

different updating processes. For both models the smoothing updating process results in the highest 

model performance (for the 2-step-model an increase of 5.5% point is obtained) and is therewith the 

best method to continue with in this research. Note that for the 1-step-model the highest model 

performance is obtained at a smoothing factor α of 0.4 and not at an α of 0.01 (see figure 16). The 

table shows that the second step of the 2-step-model is a valuable addition to the first step as the 

model performance increases with about 8.5% point. 

 
Figure 15: Performance of 2-step-model with combined approach at different values for α (step size is 0.01) 

Table 17: Model performance in terms of % correctly predicted cases using different updating processes 

Updating process 1-step-model 2-step-model 

Averaging approach 65.13% 68.89% 

Smoothing approach 66.05% (α=0.4) 74.49% (α=0.01) 
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Figure 16: Performance of the 1-step-model at different values for α (step size is 0.05) 

The optimal value found for α in the 2-step-model is very low, which indicates that the experienced 

travel time at run  -1 does not change the expectations of a certain individual   much. This means 

that the initial expected travel time by individual   is very important. Remember that in this 2-step-

model the initial expected travel time is determined based on the average experienced travel time by 

all participants at the specific time of day individual   is making his choice. 

 

Note that with a smoothing factor α of 0.01 the dataset for the analysis of the inertia model consists 

of 474 observations and the dataset for the analysis of the compromising model consists of 719 

observations (see figure 17a). Furthermore, figure 17b shows that at a smoothing factor α of around 

0.2 till 0.4 the inertia model performs the worst while the compromising model performs the best. At 

a smoothing factor α of 0.01, the performance of the inertia model is 70.36%. The performance of 

the compromising is a little higher at this α, 77.09%. Both the dataset size graph and performance 

graph show similar trends for the inertia model and the compromising model. This indicates that the 

performance is to some extend dependent on the dataset size. One can imagine that at a certain 

point a dataset can be too small to obtain an accurate model, while with a bigger dataset a higher 

accuracy can be obtained. 

 

  
Figure 17: a) Number of observations and b) performance per dataset - for both sub-models at different values for α 

(step size is 0.01) 
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As mentioned before, the used choice strategy (i.e. if an inertial, minimizing (by switching or non-

switching) or compromising choice is made) at each observation within the dataset might change as a 

result of the new expected travel times at each smoothing factor α. As a result, the model was fitted 

on each resulting dataset for the different smoothing factors. The model coefficients at which the 

best model performance (i.e. 74.49% correctly predicted cases) was obtained by the use of a 

smoothing factor α of 0.01 are shown in table 18. 

 

One can imagine that as a result of the changed choice strategies being identified at each 

observation within the dataset, other attributes might turn out to explain these choice strategies 

better. Therefore, a stepwise binary regression analysis was performed on the dataset including the 

newly identified choice strategies. Unfortunately, no regression model could be found that would 

improve the current model performance. 

 
Table 18: Regression models fitted on the new dataset with changed choice strategies at α=0.01 

Model Inertia model Compromising model 

 Beta Significance Beta Significance 

Constant 3.705 0.020 -7.648 0.000 

Time of dayc=0 Reference    

Time of dayc=1 3.148 0.000   

Time of dayc=2 1.818 0.000   

Ethnicityi=0 Reference    

Ethnicityi=1 1.854 0.199   

Educationi=0 Reference  Reference  

Educationi=1 -0.736 0.567 -0.567 0.125 

Educationi=2 -2.249 0.150 -3.103 0.000 

Educationi=3 -0.699 0.637 -2.057 0.000 

Driving yearsi 0.090 0.008   

Ci -0.062 0.171 0.178 0.000 

Maximum familiarityic -0.328 0.034 -0.175 0.108 

∆TT_prevc -0.929 0.000   

Residencyi -0.106 0.051   

Genderi=0   Reference  

Genderi=1   -1.039 0.003 

Ei   0.108 0.000 

∆TTabsc   -0.979 0.000 

* Time of dayc, Ethnicityi, Genderi and Educationi are categorical variables. Each category in the model 
functions as a dummy variable. The category indicated with ‘Reference’ is the reference category (i.e. Beta=0).  

 

Note that not all variables turn out to be significant anymore. This is the case for the variable 

‘Maximum familiarityic’ in the compromising model and for the variables ‘Ci’, ‘Educationi’ and 

‘Ethnicityi’ in the inertia model. However, these variables have shown to be significant in explaining 

inertial behavior and compromising behavior before in chapter 4. Therefore, we do not exclude these 

variables from the models. 

 

For the inertia model signs have changed for some values of the variables ‘Time of dayc’, ‘Ethnicityi’ 

and ‘Educationi’ (compared to the coefficients found in chapter 4). For the compromising model the 

same happens for some values of the variables ‘Genderi’ and ‘Educationi’. Remark that sign changes 

only occur at the categorical variables in the sub-models. Reason for this might be that each category 

of these variables is valued related to their reference category. Small shifts in both the reference 

category and one of the other categories within a certain variable can easily cause the sign to switch. 

It is likely that these sign changes do not lead to illogical model behavior, as the behavior the 

coefficients represent still seem to be explainable. 
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5.5 Discussion and conclusion 
This chapter has introduced a 2-step modeling framework consisting of a Dynamic Expected Shortest 

Path Module and a Choice Strategy Module. The first determines a preliminary choice based on a 

travel time updating process and the second alters this preliminary choice based on the predicted 

choice strategy by the combined regression model. It was found that an improvement in model 

performance of approximately 5.5% point can be achieved using a travel time updating method 

based on smoothing the experienced travel times. A very small smoothing factor α of 0.01 was found 

in order to obtain the best model results. This contradicts literature findings. 

 

For example, Dion and Rakha (2003) used a smoothing factor α of 0.1 within their Transmit algorithm 

in order to estimate the expected link travel time on a certain day based on historical experiences. 

Yang, Kitamura, Jovanis, Vaughn, and Abdel-aty (1993) even found a much higher smoothing factor α 

of 0.8 to be optimal to use in their exploration of route choice behavior with advanced traveler 

information. Although these values found in literature are very distinct they both consider current 

experiences to be of higher importance than was found in this research. In addition, many researches 

found that more recent experiences are generally more important in route choice behavior (e.g. 

Bogers (2009) and Chen (2007)). 

 

Despite indications that the used smoothing factor in this research is very low, it is quite logical when 

looking at the used dataset. From chapter 3.3 it is known that the complete dataset with 2065 

observations consists for 56% of non-switching route choice patterns (i.e. driver type 1 and driver 

type 2) and driver type 3 might also contain a lot of non-switching choices because of the clear 

preference for one of the routes that defines this driver type. However, the used dataset consists of 

only 1193 observations out of these 2065 observations. As a result, about 40% of the data consists of 

non-switching behavior type 2, while an even higher percentage contains driver type 3. So in short, 

the used dataset does contain a lot of non-switching choices. One can imagine that those choices are 

consistent with the hypothesis that their expectations of the different route alternatives do not 

change much. This would, in fact, explain the low smoothing factor found in this research and 

therewith indicate some kind of habitual behavior or route preference within this dataset. This 

habitual behavior or route preference might be based on experiences that are gained by individuals 

before the experiment and can therefore not be found within the dataset. In addition, one can 

imagine that if for each driver type a smoothing factor α is determined, it is likely that these will 

differ from each other. After all, different driver types might make different use of their past 

experiences. 

 

Because of the new updating method the sub-models of the combined approach needed to be fitted 

to the new dataset, resulting in new coefficients for the sub-models. As some attributes in the sub-

models turned out to be not statistical significant anymore, the validity of the model might be 

questioned. Therefore the next section will elaborate on the validity of the model. 
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6 Model validation 
In the previous chapters a route choice model is developed. This chapter will validate this model in 

order to see if the model is an accurate representation of reality. Section 6.1 introduces the cross-

validation techniques and determines which method will be most suitable. Subsequently, section 6.2 

shows the results when the validation is executed. Based on these results, the model is recalibrated 

and re-validated in section 6.3. Lastly, section 6.4 concludes this chapter by drawing conclusions. 

6.1 Cross-validation method 
In this research a cross-validation technique is used in order to validate the 2-step-model. Cross-

validation is often used for assessing how the results of a statistical analysis generalize to an 

independent data-set and estimating how accurately a predictive model will perform in practice. 

There are several methods in order to perform a cross-validation. The simplest is the holdout 

method. This method partitions the dataset into two mutually exclusive subsets; a training set on 

which the model is calibrated and a testing set on which the model is tested. The drawback is that 

the dataset is not effectively used, as training is only performed on part of the data, and the results 

might be misleading in case of an ‘unfortunate’ split. Therefore, in the random sub-sampling method 

this holdout method is repeated several times randomly splitting the dataset. However, still not all 

data might used for training the model. Another method is K-fold cross-validation, in which the 

dataset is randomly split into k mutually exclusive subsets. K-1 subsets are used for training and the 

remaining subset is used for testing. This is repeated until every subset has been used for testing. 

Advantage is that all the observations are used for both training and testing, using the available data 

more effectively. The last method that is considered is the leave-one-out cross-validation method. 

This method is comparable to the k-fold method, however, the number of subsets k is chosen to be 

the total number of observations. In other words, one observation is left out of the training dataset 

in order to be used for testing. This is repeated until all observations have been used for testing once. 

(Gutierrez-Osuna, n.d.; Kohavi, 1995). 

In this research the leave-one-out cross validation method is used because it makes effectively use of 

the available data, using all observations for both training and testing, and it is systematic. 

6.2 Results 
Figure 18 shows the cross-validation results for the coefficients of the compromising model. The 

cross-validation results for the inertia model can be found in figure 19. No significant outliers can be 

identified for the compromising model by eye. The values for the different coefficients are found to 

be quite constant over each iteration. However, a more differing trend is visible for the value of the 

constant. In contrary to the results of the compromising model, the results for the inertia model 

show an outstanding peak when observation 147 is left out of the training set. Another notable peak, 

which is less extreme, can be observed at iteration 397 where observation 397 is left out of the 

training set. This indicates that these observations are outliers which heavily influenced the value of 

the coefficients of the model. 

 

Therefore it can be concluded that the compromising model with the current coefficients is a valid 

model for predicting compromising behavior. In contrary to the results of the compromising model, 

the results for the inertia model show an outstanding peak when observation 147 is left out of the 

training set. Another notable peak, which is less extreme, can be observed at iteration 397 where 

observation 397 is left out of the training set. This indicates that these observations are outliers 
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which heavily influenced the value of the coefficients of the model. Calibrating the model without 

these observations will result in a more valid model for predicting inertial behavior. 

 
Figure 18: Results cross-validation of model coefficients - Compromising Model 

 
Figure 19: Results cross-validation of model coefficients - Inertia Model 
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In order to determine if an observation can be marked as an outlier in a more scientific way, the 

iterations at which the coefficient values deviate more than 3 standard deviations from the 

coefficient mean for 5 or more coefficients of the sub-model are identified. Figure 20 shows that, 

according the aforementioned outlier definition, for the inertia model 3 outliers can be identified 

(0.6% of model observations) while for the compromising model 7 outliers (1.0% of model 

observations) are found. This concerns observations 23, 147 and 397 for the inertia model and 

observations 112, 132, 133, 339, 368, 371 and 636 for the compromising model. 

 

 
Figure 20: Identifying observations being outliers.  

6.3 Re-calibrating and re-validating 
Based on the results of the validation process both the inertia model and the compromising model 

are re-calibrated. In order to do this, first the outliers as identified in the previous section are 

excluded from the dataset. Subsequently, the new coefficients are defined using regression analysis 

by entering the current attributes. The new sub-models are shown in table 19. 
 

Table 19: Inertia model and compromising model fitted on dataset without outliers 

Model Inertia model Compromising model 

 Beta Significance Beta Significance 

Constant 6.342 0.000 -8.794 0.000 

Genderi=0   Reference  

Genderi=1   -1.236 0.001 

Time of dayc=0 Reference    

Time of dayc=1 4.3183 0.000   

Time of dayc=2 1.969 0.000   

Ethnicityi=0 Reference    

Ethnicityi=1 5.012 0.002   

Educationi=0 Reference  Reference  

Educationi=1 -3.333 0.019 -0.550 0.141 

Educationi=2  -5.300 0.003 -3.354 0.000 

Educationi=3  -3.226 0.042 -2.205 0.000 

Driving yearsi 0.153 0.000   

Ei   0.126 0.000 

Ci  -0.078 0.082 0.200 0.000 

Maximum familiarityic  -0.281 0.046 -0.196 0.075 

∆TT_prevc  -0.998 0.000   

∆TT_absc   -1.040 0.000 

Residencyi  -0.214 0.000   

* Time of dayc, Ethnicityi, Genderi and Educationi are categorical variables. Each category in the model 
functions as a dummy variable. The category indicated with ‘Reference’ is the reference category (i.e. Beta=0). 
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In the previous chapter it was found that one attribute of the compromising model and three of the 

attributes in the inertia model turned out to be insignificant. Note that after re-calibration, for the 

compromising model the variable ‘Maximum familiarityic’ remains insignificant, while for the inertia 

model only the variable ‘Ci’ turns out to be insignificant. One should remember that these variables 

have shown to be significant in explaining inertial behavior and compromising behavior before (see 

chapter 4. Furthermore, the sign of none of the coefficients changes compared to the model 

obtained in chapter 5. 

 

The cross-validation results of this model are found in figure 21 and figure 22. These validation 

results do not show any extreme peak values for the coefficients. This means that the model is quite 

robust. Therefore, it can be concluded that the coefficients of the re-calibrated sub-models are valid 

for predicting inertial and compromising choice behavior. Using these new coefficients the 

performance of the combined model increases slightly from 74.49% to 75.35%. 

 
Figure 21: Results cross-validation of model coefficients after re-calibration - Inertia Model 
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Figure 22: Results cross-validation of model coefficients after re-calibration - Compromising Model 

Figure 23 and figure 24 show the performance of the sub-models on the observation that was left 

out of the dataset for training that model (i.e. testing part of the cross-validation method). In other 

words, it shows the model performance for each observation using the model coefficients that are 

calibrated without this specific observation. For example, when observation 1 of the sub-dataset on 

compromising is left out from training the compromising sub-model, the model using the in that case 

obtained model coefficients will provide a correct prediction on this observation 1 with a probability 

of 15%. This is done for each observation in the dataset. There is a significant variability in model 

performance noticeable for both models. The average testing performance of the compromising 

model is 69.27% and the average testing performance of the inertia model is 68.98%. Note that for 

the inertia model this is only 1% point lower as the performance of the inertia model found in 

chapter 5 (i.e. model performance of the inertia sub-model was 70.36%), while for the compromising 

model it is 8% point (i.e. model performance of the compromising sub-model was 77.09%). The 

average testing performance of the combined model is 69.15% with a standard deviation of 35.70. 

This seems to be a high value for the standard deviation. However, figure 23 and figure 24 do show 

high fluctuations varying from 0% to 100% which explains this high value. 
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Figure 23: Testing of sub-model on each observation – Compromising Model 

 
Figure 24: Testing of sub-model on each observation - Inertia Model 
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6.4 Conclusion 
Both the inertia model and compromising model are tested on validity in predicting certain choice 

behavior using the cross-validation principle of leave-one-out in which one of the observations is left 

out of the training dataset in order to be used for testing. After identifying outliers and re-calibration 

of both sub-models on data without these outliers, it can be concluded that there are no 

considerable fluctuations within the model coefficients when calibrated on different parts of the 

dataset. Therefore, both models can be considered valid and it is justified to use them within the 

route choice model. The next chapter will now introduce heterogeneity to the 2-step-model using an 

agent-based approach. 
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7 Introducing heterogeneity using an agent-based approach 
Currently the developed 2-step-model can only predict the route choices of the individuals of which 

the attribute values are known, assuming that they are homogeneous. In reality, however, 

populations are heterogeneous. A heterogeneous population can be simulated based on the 

homogeneous population sample that was used in developing the 2-step-model, assuming that this 

population sample represents average individuals from the total population. More precise, a 

population can be simulated by assuming the model coefficients   to be stochastic instead of 

deterministic. In other words, every simulated individual   has his own set of coefficients  , which 

are drawn from some distribution that is based on the population sample. This is called the agent-

based modeling approach. 

 

In section 7.1 samples drawn from the estimated parameter distributions will be obtained using 

different sampling methods. Subsequently, section 7.2 will elaborate on how to generate the sets of 

coefficients   from these distribution samples using the Cholesky Decomposition tool in order to 

simulate each individual   from the population. Then, these sets of coefficients are applied on the 

dataset in section 7.3 showing the resulting model performance. Finally, this chapter provides a 

conclusion and discussion on the found results in section 7.4. 

7.1 Obtaining samples from parameter distributions 
In this section parameter distribution samples are obtained using two different methods; Bayesian 

sampling and the Jack-knife approach. These methods are now elaborated upon. 

7.1.1 Bayesian sampling 

The Bayesian approach uses both prior information (i.e. what is expected or believed) and posterior 

information obtained by data collection according to the following conditional probability formula 

(Bolstad, 2007): 

          
              

       
 

Where   is the unknown parameter,           is the posterior distribution,           is the 

sampling density of the data (i.e. likelihood),      is the prior distribution and         is the 

distribution of the present data (i.e. normalizing constant). 

For most problems the posterior distributions are difficult or impossible to compute in an analytical 

way. Generalized linear models, such as the binary logistic regression model used in this research, are 

one of those (MathWorks, 2014). Luckily, Bayesian estimates of the model parameters can be 

obtained from their posterior distributions using the Markov Chain Monte Carlo (MCMC) slice 

algorithm as implemented in the Matlab software, which generates random samples from 

distributions based on the initial value of the sampling sequence (i.e. the initial model coefficients as 

provided in chapter 6), a prior distribution (i.e. assumed to be         , which means no prior 

information is known) and the sampling density of the data (i.e. likelihood, assumed to be         , 

where     is the probability of certain choice behavior (i.e. inertial choice or compromising choice) to 

occur at each run   of all choice situations  ). 

 

The MCMC slice algorithm does not generate independent simulated distribution samples. Instead, 

each simulated sample depends on its immediate predecessor. That is, for each current simulated 

solution the algorithm evaluates a solution within the neighborhood space (which is set to 10 in 
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Matlab by default). Based on the probability of occurrence within the posterior distribution, this 

neighbor is adopted as the next simulation. In the end, each solution will be represented within the 

simulations according to its number of occurrence within the posterior distribution. 

 

As a result of this dependency between each subsequent simulation, it might take a while before the 

effect of the initial values of the sampling sequence disappears and the Markov Chain reaches a 

stationary state. Therefore, the first distribution samples (i.e. 350 for the inertia model and 250 for 

the compromising model; these are called burn-in rates) are not used. Then, a total of 1000 

distribution samples are obtained for the inertia model, while for the compromising model 500 

distribution samples are sufficient. In order to obtain independent samples, these simulated samples 

are selected by picking only 1 simulated sample out of every 2000 simulations for the inertia model 

and only 1 simulated sample out of every 1500 simulations for the compromising model (these are 

called the thinning-rates). This prevents obtaining distribution samples that are close to each other in 

the Markov Chain and therefore being dependent on each other. Appendix C elaborates on how 

these values are set. 

 

Based on the obtained distribution samples the posterior distributions are approximated by 

cumulative distribution functions. These approximate posterior distributions are shown in figure 25. 

The posterior distributions of some of the coefficients have wide dispersions, while others have not. 

This represents the heterogeneity of the population to these attributes as derived from the used 

dataset. A small dispersion indicates that there is high homogeneity to the extent that a specific 

attribute affects the choices of each individual   within the population, while a wide dispersion 

indicates that individuals weigh that attribute quite differently from each other. So apparently, the 

population is homogeneous in weighting personality traits, driving years, travel time and familiarity, 

while they are more heterogeneous in weighting the time of day, ethnicity, gender, education and 

their preference to expose a certain choice strategy as is caught in the model constants. 

 

 
Figure 25: Approximate posterior distributions of the coefficients of a) the inertia model and b) the compromising 
model 
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7.1.2 Jack-knife approach 

The jack-knife approach is used for model validation earlier in this report (chapter 6). The basic idea 

is that one of the observations within the dataset is left out of the data on which the model 

parameters are estimated using binomial regression analysis. This is repeated until all observations 

are left out once. In the end, some sample of the parameter distributions is obtained by all estimated 

parameters together. 

7.1.3 Jack-knife versus Bayesian sampling 

The main difference between the two sampling approaches is that the Jack-knife approach does not 

provide simulated samples and its sample size is therefore restricted to the number of observations 

within the dataset, while the Bayesian approach can provide an indefinite amount of samples. As a 

result, the jack-knife sample might not be large enough to be a correct representation of the 

underlying parameter distributions, while the Bayesian sample can simply be increased in order to 

obtain a representative sample. This implies that the Bayesian approach is more flexible to use. 

However, in this report both approaches are tested. 

7.2 Generation of parameter replications 
Now sets of model parameters β need to be generated by picking them out of the Jack-knife or 

Bayesian samples in order to simulate each individual   of the population. As some of the parameters 

might be correlated, picking these parameter replications independently might affect the model 

results significantly. Therefore, the parameter replications will be generated with and without 

accounting for these parameter correlations. Amer, Rakha, and El-Shawarby (2011) propose two 

approaches to generate sets of parameter replications accounting for correlation; Cascaded 

Regression and Cholesky Decomposition. The Cascaded Regression uses a regression analysis to 

cascade the model coefficients on each other in order to account for the correlations between the 

parameters. The Cholesky Decomposition is a matrix calculus tool that can be used to break a 

symmetric positive-definite matrix into the product of a lower triangular matrix and its conjugate 

transpose, which will be applied to a variance matrix accounting for the correlations between the 

parameters. The Cholesky Decomposition is chosen, as this approach is considered to be 

straightforward and more efficient. 
 

The Cholesky Decomposition approach can be used to generate the parameter replications β given 

the following formula (Amer et al., 2011): 

   
                      

   
            

 
   

                    

   

   

 
   

 
  

 

   

   

 
   

    

      
        
    

          

     

  

  

 
  

     

  

  

 
  

  

      

 

where   is a vector containing the means of the distribution samples that are generated for the 

different coefficients  ,   is a vector containing random independent and identically distributed 

variables that are assumed to be normally distributed (i.e.          ) and C is a lower triangle 

matrix that can be calculated using the Cholesky Decomposition tool. 
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Given that   is constant and   is standard normally distributed, the following holds (Amer et al., 

2011): 
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This shown matrix can be easily calculated given the standard deviations of the coefficient 

distributions    and the correlations between the parameters    , which are determined according 

to the following formula (Amer et al., 2011): 

 

 
        

    
 

 
        

    
 
                             

 

Now Cholesky Decomposition can be used in order to break the obtained matrix into   and    and 

the formula        can be solved in order to obtain the parameter replications  . 

 

These parameter replications are obtained for both sub-models separately, so in fact, each simulated 

individual   gets two sets of parameters  ; one for the inertia model and one for the compromising 

model. 

 

The coefficients   without taking parameter correlations into account are calculated according to the 

following formula:      , leaving the lower triangle matrix   out of the equation and assuming 

  is normally distributed. Therefore, no Cholesky Decomposition is necessary to generate these 

coefficient sets. 

7.2.1 Kolmogorov-Smirnov goodness-of-fit test 

Note that           assumes that the coefficients   are normally distributed. The distributions of 

the generated parameter replications   are therefore tested using the Kolmogorov-Smirnov 

goodness-of-fit test. 

 

The Kolmogorov-Smirnov goodness-of-fit test (k-s test) is a test that can be used to compare a 

sample with a reference probability distribution (one-sample k-s test). The Kolmogorov-Smirnov 

statistic quantifies the difference between the empirical distribution of the sample and the reference 

distribution. The maximum absolute difference is used as test statistic, based on which the 

hypothesis that the sample distribution is equal to the reference distribution. As the Cholesky 

Decomposition tool assumes the coefficients to be normally distributed, the reference distribution is 

set to a normal distribution. A significance level of 0.05 is used. 
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For the Bayesian parameter replications, no evidence was found to reject the hypothesis that the 

obtained parameter distributions are normally distributed at a significance level of 0.05. However, 

for the Jack-knife parameter replications a normally distributed distribution was rejected for all 

variables in the sub-models. This is likely to be the case because the Jack-knife estimates are directly 

dependent on the used dataset instead of being simulations. Therefore, its distribution will follow 

the observations closely and the distribution underlying these observations will not be reached. The 

use of the vector   for picking parameter sets out of the Jack-knife estimates is therefore not 

justified. There exist other methods that might be useful in this case (e.g. Cascaded Regression). 

However, these are not considered within this research and therefore no further examination is 

conducted on this Jack-knife approach. 

7.3 Model application and results 
A 1000 individuals are simulated using the Bayesian approach and Jack-knife approach, both in 

combination with the Cholesky Decomposition tool in order to create sets of parameter replications 

  accounting for correlations among the parameter values. In other words, 1000 sets of parameter 

replications   are obtained. Now the agent-based 2-step-model is applied on the available data 

observations using the 1000 different parameter sets on each of the 1193 observations within the 

available dataset. This represents the predicted choice of each individual   out of the population of 

1000 individuals in that certain situation as represented by the specific observation. 

 

The performances of the Bayesian model approach with and without considering parameter 

correlations are shown in table 20, broken down by sub-model as well as showing the combined 

result. Each is detailed per OD-pair    and per 10 runs. For comparison, the performance of the 

initial 2-step-model is also included. 

 
Table 20: Agent-based model performances using Bayesian approach (parameter correlations vs. no correlations) 

Correctly predicted 
route choices 

Bayesian inertia model Bayesian compromising 
model 

Bayesian combined model  Initial 2-
step-model 

No 
correlations 

 
Correlations 

No 
correlations 

 
Correlations 

No 
correlations 

 
Correlations 

OD-1 [%] 50.38 71.71 50.53 58.53 50.43 66.69  67.26 

OD-2 [%] 50.60 66.99 52.05 79.80 51.54 75.26 76.37 

OD-3 [%] 50.89 64.51 52.44 82.36 52.04 77.73 78.67 

OD-4 [%] 51.20 76.40 50.71 61.52 51.03 71.30 71.75 

OD-5 [%] 51.77 68.35 52.58 83.96 52.46 81.60 82.33 

First 10 runs [%] 44.26 59.83 45.05 65.30 44.72 62.97  63.40 

Last 10 runs [%] 56.45 79.74 56.89 85.67 56.72 83.43 84.52 

Driver type 1 [%] - - - - - -  - 

Driver type 2 [%] 51.32 84.06 53.10 90.75 52.58 88.78 89.98 

Driver type 3 [%] 50.62 66.94 50.97 65.92 50.80 66.42 66.92 

Driver type 4 [%] 50.21 50.54 50.22 54.50 50.21 52.79 53.13 

Total correctly 
predicted [%] 

50.79 70.50 51.98 77.22 51.51 74.55  75.35 

 

It can be seen from table 20 that the results found for the Bayesian combined model accounting for 

correlations follow quite the same trend as the results obtained with the initial 2-step-model. 

However, its overall performance is slightly lower, although on OD-pair 2 and OD-pair 3 slightly 

higher performances are achieved. This might be due to the randomness in generating the parameter 

replications. Furthermore, note that the performances found for the Bayesian models ignoring 

correlations have a value of around 50%. As earlier mentioned (section 9.4), predicting route choices 

by choosing them randomly (i.e. each route alternative has an equal probability to be chosen) results 
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in about 50% of the route choices being correctly predicted on average. This indicates that ignoring 

the parameter correlations within a route choice model is comparable to predicting route choices 

randomly. This finding feels intuitive as the generation of the parameter replications only depends on 

the value of the random variable  . One can imagine that random parameter values result in random 

choice prediction. 

7.4 Discussion and conclusion 
This chapter introduced an agent-based approach of the 2-step-model. Depending on the fact if 

parameter correlations within the model are captured or ignored, significant differences in model 

performances are obtained. This is in line with the findings of Kim and Mahmassani (2011) who 

examined the effect of correlated parameters in driving behavior models on car-following and found 

significant differences in their output measures as well. 

 

In this research it is found that an agent-based approach ignoring parameter correlations has no 

added value compared to a random prediction process. However, accounting for parameter 

correlations increases the performance of the agent-based model by approximately 25% point, 

emphasizing the importance of these parameter correlations. Based on this, it follows that in route 

choice behavior the different combinations of attribute values affect the final route choice that is 

made by an individual  . Remember from chapter 4 that most variables are individual-specific. 

Therefore, a reality alike representation of the composition of the population within a certain area 

might be crucial in predicting route choices on a road network within this area, in order to obtain 

useful and accurate predictions. 

 

Overall, the agent-based 2-step-model based on Bayesian simulations provide similar results as the 

general 2-step-model and therefore this might be a good method to apply the developed model 

within micro-simulation studies; it makes the model more flexible and easier transferable to other 

choice situations and demographics. Because of the similar results this approach has potential, 

although for the purpose of this research it has no added value. Therefore, the general 2-step-model 

is used in the continuation of this research. The next chapter will assess the sensitivity and 

robustness of the general 2-step-model.  
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8 Robustness and sensitivity analysis 
A new route choice model is developed. For new models, it is not easy to comprehend its working. In 

order to obtain insights in the working of the model, the relationships between input and output 

variables in the model are identified in a sensitivity analysis. In addition, this will provide insights on 

the robustness of the model. In section 8.1 the actual analysis will be conducted and in section 8.2 

the findings will be discussed and conclusions will be drawn. 

8.1 Method, results and findings 
One of the most common and simple approaches used in performing a sensitivity analysis is that of 

changing one factor at a time, keeping others at their original values. The influence of a certain factor 

  on the model output is represented by the coefficient   . Therefore, in order to change factor j the 

value of the coefficient    is changed using different percentages of the original value (i.e. ranging 

from -50% till +50% of the original value with a step size of 10%). The model performance using these 

different percentages reveals the effect of this specific factor on the model output. Figure 26 till 

figure 38 show the results for each attribute    and the constants used in the combined model. In 

order to make comparisons more easily, the scale of the axis of the model performance [%] is the 

same in all graphs. Note that some of the attributes only occur in one of the sub-models of the route 

choice model. As the number of observations on which a certain sub-model is applied differs, the 

sensitivity of the route choice model may be affected by this. 

 

 
Figure 26: Model sensitivity to ‘Constant Compromising’ 

 
Figure 27: Model sensitivity to ‘Constant Inertia’ 

 
Figure 28: Model sensitivity to ‘Time of day’. 

 
Figure 29: Model sensitivity to ‘Education’ 
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Figure 30: Model sensitivity to ‘Ethnicity’ 

 
Figure 31: Model sensitivity to ‘Gender’  

 
Figure 32: Model sensitivity to ‘Maximum Familiarity’ 

 
Figure 33: Model sensitivity to ‘Driving years’ 

 
Figure 34: Model sensitivity to ‘Residency’ 

 
Figure 35: Model sensitivity to ‘Extravertness’ 
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Figure 36: Model sensitivity to ‘Conscientiousness’ 

 
Figure 37: Model sensitivity to '∆ttprev' 

 
Figure 38: Model sensitivity to '∆ttabs' 

 

Figure 26 and figure 27 illustrates the sensitivity of the model to the constants of both sub-models. It 

can be seen that the model is highly sensitive to the constant of the compromising model and to a 

lesser extent sensitive to the constant of the inertia model. This is as expected, as the compromising 

sub-model is applied more often (on 719 out of 1193 observations) than the inertia sub-model within 

the combined model. The model constant indicates if in general an individual   would be more likely 

to expose one of the two possible choice strategies (i.e. minimizing or compromising/inertia) in the 

absence of any of the included attributes. In other words, it represents a general preference for the 

exposure of a certain choice strategy. As the original values for de constants are -8.79 for the 

compromising sub-model and 6.34 for the inertia sub-model, it follows from the figures that the 

model performance decreases as the value of these constants is closer to ‘0’. This can be explained 

by the basic working of the sub-models, illustrated in figure 39.  
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The figure shows the schematic probability function for both sub-models (i.e. the model outcome in 

relation to the probability of the exposure of a certain choice behavior, in this figure summarized by 

switching and non-switching). If the values for the constants become closer to ‘0’ there is a higher 

probability for switching behavior. The fact that the model performance decreases at these values 

for the constants, indicates that individuals are more likely to stick to their current choice or, in other 

words, are switch-aversive. This is a result of the fact that not much switching occurs within the used 

dataset, which might be because of, for instance, habitual behavior or that individuals believe they 

have chosen the best route alternative. 

Furthermore, the models seem to be insensitive to values above 6.34 for the inertia sub-model and 

below -8.79 for the compromising sub-model (i.e. the model performance is constant for these 

values). This can be explained by the fact that the switching probability is already very low at the 

current values. One can imagine that even lower probabilities do not have any effect on the model 

performance anymore. 

 

Remark that the principle of a lower model performance at higher switching probability as was 

illustrated using figure 39 applies to all attributes; using a 0% change in coefficient as the reference, 

an increase in a model coefficient results in a more positive model outcome, while a decrease in a 

model coefficient results in a more negative model outcome. Depending on the sub-model in which 

the attribute is included, the switching probability and thus the model performance will increase or 

decrease. 

  

Figure 28 shows the model sensitivity to the attribute ‘Time of day’. The model is only slightly 

sensitive to this attribute, as the model performance only changes within a range of about 4,5% 

point. Therefore, errors in this attribute will not influence the model results much. The same holds 

for the attribute ‘Education’ (see figure 29). On the other hand, the attributes ‘Gender’, ‘Ethnicity’ 

and ‘Maximum Familiarity’ seem to have nearly no influence on the model performance, as only a 

change in performance of about 1% point occurs (see figure 30, figure 31 and figure 32). 

 

Figure 33 shows the model sensitivity to the attribute ‘Driving years’. A decrease in performance is 

visible for lower values of driving years. A reason for this might be that individuals with less driving 

years make less consistent and systematic choices as they might not have that much experience in 

route choice making, which are therefore harder to predict correctly. Furthermore, less driving years 

is in general accompanied by lower ages. The lifestyle of younger people is often different from those 

who are older which might influence their route switching behavior. The model sensitivity to the 

attribute ‘Residency’, as shown in figure 34, shows a similar trend; a lower model performance for 

lower values of residency. At lower values of residency the familiarity with the road network is lower 

and less habitual behavior might exist influencing the route switching behavior of individuals. 

 

It seems that the route choice model is sensitive to the included personality traits ‘Extravertness’ and 

‘Conscientiousness’ (figure 35 and figure 36). A higher sensitivity is observed for the attribute 

‘Conscientiousness’ which might be partly due to the fact that this attribute is included in both sub-

models while the attribute ‘Extravertness’ only appears in the compromising sub-model. For both 

attributes, the model performance decreases at higher values. In other words, the model is not that 

accurate for more extreme personalities. Remember from chapter 4 that individuals with a high 

score on the personality traits consciousness or extravertness are assumed to make more switching 
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choices in order to attempt to pick the best route alternative or to get energized, relatively. 

Apparently, the model is not able to account for these high switching propensities. 

 

One can imagine that the model would be highest sensitive to travel time differences between the 

route alternatives, as in the field of route choice modeling it is generally assumed that travel time is 

the main reason in making route choices. Therefore, the model sensitivity found in figure 37 and 

figure 38 for the difference in absolute travel time (included in the compromising sub-model) and the 

relative difference in travel time (included in the inertia sub-model) is not as expected. Changes in 

the influence of ∆ttprev do not seem to affect the model performance, while changes in the influence 

of ∆ttabs seem to only slightly affect the model performance. 

 

Note that for some changes in the coefficients for several of the attributes the model performance 

exceeds the achieved model performance in case all original coefficient values are applied (i.e. 

75.35%). This might occur because the regression model with the best model fit does not necessary 

result in the best model performance in terms of correctly predicted choices. Therefore, using these 

coefficient values that lead to higher model performance might overfit the model as it might describe 

random errors or noise in the data instead of the underlying relationship. 

8.2 Discussion and conclusion 
A drawback of the used approach changing one factor at a time, is that it does not fully explore the 

input space as it does not take into account the simultaneous variation of the input variables. Despite 

this, useful insights in the working of the model and its sensitivity to certain attribute values are 

obtained. 

 

The route choice model seems to be insensitive to various values of the attributes ‘Ethnicity’, 

‘Maximum familiarity’, ‘Gender’ and ‘∆ttprev’. This means that an error in those attribute values does 

not change the model results. This is a good thing as it makes the model robust on these issues. The 

model seems sensitive to the other attributes. Errors in these attribute values will obtain significant 

different outcomes. Therefore, these attributes should be investigated carefully before the model is 

applied to other situations and other contexts than those used in this research. 

 

As the model is most sensitive to the model constants, this suggests that individuals generally have a 

strong preference for certain choice strategies, namely the non-switching strategies (i.e. minimizing 

in the compromising sub-model and inertia in the inertia sub-model), which is crucial in predicting 

their choice behavior correctly. In addition, it is found that the model is highly sensitive to the two 

personality traits that are included in the model, indicating that besides the model constants these 

individual-specific factors are apparently important in predicting choice behavior. Remarkably, they 

are of higher importance than the travel time attributes. 

 

Overall, it can be reasoned that the developed model is not very robust as the model is sensitive to 

changes, and therewith to errors, in 9 out of 13 factors. Now, the next chapter will compare the 

developed 2-step-model with state-of-the-art models. 
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9 Model comparison  
A route choice model is developed, improved and validated. The next research question is if this 

route choice model is an improvement and valuable addition to the state-of-the-art route choice 

models. Therefore, in this chapter the performance of the developed route choice model is 

compared to the performance of the most important and relevant state-of-the-art models. Section 

9.1 determines which state-of-the-art models are interesting to include in the model comparison. 

Subsequently, section 9.2 elaborates on the principles and implementation of these state-of-the-art 

models. This is followed by the actual comparison in section 9.3. The chapter concludes with a 

discussion on the obtained model performances in section 9.4 and conclusions are drawn in section 

9.5. 

9.1 State-of-the-art models 
The theoretical framework (chapter 2) covered the three most commonly used general choice 

models that are well applicable to route choice situations, as well as several choice models 

specifically designed for modeling route choices based on the behavioral mechanisms of route choice 

behavior. The most important and complete models are identified based on a literature review and 

considered for model comparison, namely: 

- Utility Maximization Theory 

- Prospect Theory 

- Regret Theory 

- Thresholds Theory 

- SILK Theory 

- Relaxing Assumptions Model 

- Inductive Learning Model 

 

Clearly, a comparison with the general and widely used choice models is valuable. This comparison 

indicates if the current modeling practice can be improved by using the newly developed model. 

Therefore, the newly developed model is compared to the utility maximization theory as this theory 

is based on the fundamental assumption of rationality that is highly criticized (see section 2.2.1), 

although it is still the most commonly used route choice modeling practice and can therefore be seen 

as the reference model. Subsequently, the prospect theory and regret theory will be applied, as 

these abandon the fundamental rationality assumption by taking an individual’s loss and risk 

aversion and potential regret into account. In addition, Vreeswijk et al. (n.d.) and Chorus (2012b), 

among others, found evidence that drivers route choices are influenced by loss aversive and regret 

aversive behavior. This emphasizes the importance and relevance of a comparison of the newly 

developed model with these two models. 

 

Besides comparison with general choice models, it is interesting to see how the newly developed 

route choice model performs in comparison with models that are specifically developed for modeling 

route choice behavior. As this research focuses on inertia and the accompanying inertia thresholds, 

the thresholds theory is highly relevant to this research. After all, this theory assumes that an 

individual   sticks to his route choice until some threshold value is exceeded. Furthermore, the SILK-

Theory is interesting, because this theory combines most of the findings on route choice behavior 

found in literature into one model. Therewith, this might be the most complete route choice model 

in terms of capturing behavioral mechanisms. In addition, it makes use of if-then rules which are 
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based on certain threshold values for different variables. This makes this theory also relevant to this 

research. 

 

The other two modeling theories, the Relaxing Assumptions Model and the Inductive Learning 

Model, are also interesting as the Relaxing Assumptions Model emphasizes on exactly those issues 

that the commonly used route choice modeling practice is criticized for and learning is found to be 

very important in route choice behavior. These models can therefore also be considered to be 

valuable in a comparison between different models. However, due to the limited amount of time 

available for this research, they are not considered to have enough relevancy to the main interest of 

this research to be implemented in the model comparison. 

 

So, in this chapter the newly developed model will be compared to five existing modeling theories; 

Utility Maximization Theory, Prospect Theory, Regret Theory, Thresholds Theory and SILK-Theory. 

9.2 Model implementation and results 
This section elaborates on the principles and implementation of the state-of-the-art models that are 

found useful for comparison to the newly developed 2-step-model. In addition, the obtained results 

are shown for each model. 

9.2.1 Newly developed 2-step-model 

The newly developed model is implemented as described in chapter 5 using the parameter values 

that are obtained after re-calibration of the model (see chapter 6). The initial expected travel time 

for individual   was set to the average travel time on a certain route at the specific time of day for all 

observations in the dataset. These average travel times are closest to what the individuals might 

have experienced on an average day   and are therefore considered to be a good starting point. 

However, the model performance of the newly developed model is also tested using the general 

average travel time, which is based on all observations made on a certain route alternative for all 

individuals independent of the time of day. For subsequent choices a travel time smoothing method 

is used in order to determine the expected travel time for individual   at day  , which combines his 

expected travel time at day  -1 with his experienced travel time at day  -1 according to a certain 

weighting factor, i.e. smoothing factor α. A smoothing factor α of 0.01 was used, because in chapter 

5 it was found that this method in combination with this smoothing factor value resulted in the best 

model performance. 

 

For comparison it is also interesting to compare the 2-step-model with only the first step of the 

model (i.e. the dynamic expected shortest path module). After all, if this 1-step-model already 

performs very well or even performs better than the 2-step-model, there is no added value in 

applying the second step accounting for inertia when predicting route choice behavior. Different 

travel time updating approaches are tried for this 1-step-model as well. The first approach is the 

initially used averaging method, the second approach uses the smoothing method. Remember that 

the initially used averaging method determines the expected travel time of individual   at day   being 

the average of the experienced travel times by individual   until run  , while the smoothing method 

determines the expected travel time of individual   at day   combining his expected travel time at day 

 -1 with his experienced travel time at day  -1 (i.e. the smoothing method that is used in the 2-step-

model). For comparison, first a smoothing factor α of 0.01 is used, as this was found to be the 

optimal value in the 2-step-model, using both the mean travel time in general and for the specific 
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time of day. For the 1-step-model based on the mean travel time in general, a smoothing factor α of 

0.01 turned out to be optimal. However, the 1-step-model based on the mean travel time for a 

specific time of day, a smoothing factor α of 0.4 turned out to provide the highest performance. 

Therefore, only for the 1-step-model using the mean travel time for a specific time of day the model 

is also tested using a smoothing factor α of 0.4. 

 

Results 

Table 21 shows the model performances using different updating methods and initial travel times. It 

is found that a smoothing method using the general mean travel time obtains the highest 

performance for the 1-step-model, while a smoothing method based on the mean travel time for the 

specific time of day obtains the highest performance for the 2-step-model. The 2-step-model’s 

performance turns out to be almost 4% point higher than that of the 1-step-model. 

 
Table 21: Model performance of the 1- and 2-step-model using different updating methods and initial travel times  

Correctly predicted route 
choices 

1 step model - Dynamic Expected Shortest Path 2 step model - Dynamic Expected 
Shortest Path + Combined model 

 Averaging 
method 

Smoothing 
method 
(α=0.01) 

(mean TT for 
Time of day ) 

Smoothing 
method 
(α=0.01) 
(mean TT 
general ) 

Smoothing 
method (α=0.4) 

(mean TT for 
Time of day ) 

Smoothing 
method 
(α=0.01) 
(mean TT 
general ) 

Smoothing 
method 
(α=0.01) 

(mean TT for 
Time of day ) 

Total correctly predicted [%] 65.13 61.19 71.67 66.05 67.70 75.35 

 

Discussion 

The parameter values of the combined model in the 2-step-model are estimated using an initial 

expected travel time based on the average travel time for a specific time of day. The same parameter 

values are used when the model is applied using the general mean travel time as initial travel time. If 

the model parameters were re-estimated a higher performance might be obtained. In fact, to 

address this issue correctly, re-estimating the parameter values would not be sufficient. New sub-

models need to be developed, as the observed behaviors according to the definitions might change. 

After all, in some cases the shortest route during a specific time of day might not be the shortest 

route in general. This might even result in other variables to become important for explaining the 

observed choice behavior. However, because of time restrictions it is chosen to just apply the 

attributes and corresponding parameter values that are used in the 2-step-model as determined 

after re-calibration of the model during the model validation (see table 19 in chapter 6). 

9.2.2 Utility Maximization/Shortest path Theory 

The utility maximization theory is based on the fundamental assumption that all travelers are 

optimizers with perfect knowledge about their choice set. The utility   for a certain route   is given 

by the utility function, combining the influence of all different attributes together (Ortuzar & 

Willumsen, 2011): 

            

 

 

where     is the value of a certain attribute   on route   and    is the weight of this attribute. 

Remember from the theoretical framework that this is the simplest form of the utility theory. 

 

In order to implement the utility maximization theory in the most simple and straightforward way 

possible, only the variable of travel time is considered. This variable is widely used and recognized as 
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most important variable in route choice behavior. It is assumed that the travel time is negatively 

related to utility; the higher the travel time on a certain route  , the lower the utility   . In fact, this 

simplification of the utility maximization theory reflects an individual minimizing his travel time. In 

other words, the individual chooses the shortest path. 

 

This theory of individuals choosing the shortest path and therewith maximizing their utility is 

implemented as follows: the route alternative that is predicted to be chosen by a certain individual   

is the route alternative with the lowest average travel time in general. It is likely that the time of day 

affects which route is the shortest route alternative. Therefore, the model is also applied using the 

average travel time for the specific time of day a certain individual   made his trip instead of the 

average travel time in general. Both travel times (i.e. average in general and average for a specific 

time of day) are calculated the same as earlier described in this chapter. This means that it is based 

on the average of all experienced travel times for the specific route within the dataset. The 

difference of the utility maximization method with the earlier described 1-step-model (i.e. dynamic 

shortest path method), is that the expected travel times on the route alternatives are not updated 

after each run  . In other words, the expected travel times are considered to be static. Therefore, 

each individual   will always choose the same route alternative for every run   in a certain choice 

situation  , that is, the route alternative that is on average the shortest. 

 

Results 

Table 22 shows the model performance of the utility maximization theory using different average 

travel times; the average travel time in general (i.e. average travel time per route alternative based 

on the whole dataset) and the average travel time for a specific time of day (i.e. average travel time 

per route alternative based on the observations that where obtained in respectively the morning, 

noon or evening peak hour). Note that the last approach using the average travel time for the 

specific time of day was also used in chapter 4 in comparison with the developed regression models. 

 
Table 22: Model performance of Utility Maximization Theory using different average travel times 

Correctly predicted route choices Average TT general Average TT for Time of day 

Total performance [%] 75.78 61.19 

 

It turns out that the utility maximization theory based on the average travel time in general 

outperforms the theory based on the average travel time specified to the different times of day. 

Apparently, individuals tend to choose the route alternatives that are generally the shortest 

alternative even if this is not the shortest alternative at that time of day. 

9.2.3 Prospect Theory 

The prospect theory is based on gains and losses that result from the different outcomes   of the 

choice options that are available to the choice maker with respect to a certain reference point. The 

value for the prospect of a certain route   is determined by the following formula (Kahneman & 

Tversky, 1979): 

               

 

 

where   represents the different outcomes   for route  ,   is the decision weight associated with the 

probability   of the  th outcome, reflecting the impact of   on the over-all value of the prospect, and 

      reflects the subjective value function of the deviations of outcome    from the reference point. 
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In route choice modeling this means that every route is associated with certain probabilities for 

different travel times to occur. Based on a certain reference point reflecting a certain travel time 

between OD-pair   , there is a chance of experiencing a shorter travel time (i.e. gain) or higher travel 

time (i.e. loss) when using a certain route alternative of OD-pair   . By defining the probability 

distribution of the travel times per route, the weights associated with these probabilities and the 

subjective value a certain individual   assigns to this travel time deviation with respect to his 

reference point, it is possible to calculate the value of the prospect of each route and compare these. 

In the end, it is assumed that the individual   will choose the route with the highest prospect value. 

 

Avineri and Bovy (2008) suggest four approaches to set a value to the reference point when applying 

the prospect theory on route choices; based on mean or median travel time, using a direct way (i.e. 

deriving the parameter value from stated/revealed preferences) or using a mixed approach. A 

reference point based on mean or median travel time can be obtained using the observations from 

the available dataset and is a very straightforward method of defining a reference point. Due to 

perception errors the mean or median travel time might not be the actual reference point of an 

individual  . Therefore, setting a reference point using a direct way, which means that a certain 

individual   is directly asked for his reference point, might be more correctly. However, for this 

research this approach is laborious and time-consuming. Moreover, the individuals asked, might have 

other perceptions than the individuals that were involved during data collection of the used 

observations. The mixed approach incorporates elements of more than one approach and is 

dynamically updated because reference point values may differ from time to time and from one 

individual to another. Note that due to limited empirical research, it is still difficult to assess which of 

the suggested approaches would be best. Therefore, it can be concluded that within this research 

setting a value to the reference point based on the mean or median travel time obtained from the 

available observations is the most practical and straightforward. In this research, both the mean and 

median travel times are tested for the reference point. 

 

Furthermore, certain outcomes    and the therewith associated probabilities    need to be 

determined. In order to do this, first, the empirical cumulative distribution function of the travel 

times per route alternative is determined using the data observations of the real-world experiment 

of all individuals and all times of day. Based on this distribution, the probabilities    for several 

outcomes    are calculated. These outcomes    are defined by creating seven bins based on the 

standard deviation   and the mean travel time   (i.e. the mean values of each bin are:           

          ,       , with a bin threshold of 0.5  around these mean values), which is illustrated by 

figure 40. 
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Figure 40: Illustration of determination of pj and xj for route alternative 1 

Now the reference point, outcomes and probabilities are defined       and       can be calculated. 

Tversky and Kahneman (1992) provide the following functional form for defining      . 

        
  

                             

       
 
               

  

where the parameter   describes the degree of loss aversion while parameters   and   (     

   ) measure the degree of diminishing sensitivity. The weighting functions       as proposed by 

Tversky and Kahneman (1992) are: 

       
  

 

   
 

       
 
 
   

 

       
  

 

   
        

 
 
   

 

Where   and   measure the degree of curvature of the function. 

 

As one can see, these formulas include some parameters that need to be estimated. In general, the 

estimation of the parameter values of the prospect theory is not much studied. Moreover, especially 

for predicting route choices, setting the parameter values is difficult; each individual   has different 

tastes, travel preferences, travel experiences and cognitive abilities. In order to set the different 

parameter values, first estimated values found in literature are tested. According to Chorus (2012b), 

this is common practice in applying the prospect theory. 

 

It should be mentioned that in literature, no distinction per individual   is made and homogeneity 

among the population sample is assumed. In addition, the prospect theory is a static model and does 

therefore not account for changes over time. So, if a certain route alternative has the highest 

prospect value on OD-pair   , the model will predict that all individuals   choose this route 
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alternative for all runs   (i.e. the prospect value does not change for each run  ). In other words, the 

model only predicts the chosen route per OD-pair    for all individuals. It is possible to detail the 

predictions for each individual   by estimating different parameters, reference points and 

distributions. However, determining these estimates is not easily done. In addition, assuming 

homogeneity is common practice for applying the prospect theory. Therefore, in this research the 

predictions are not detailed for each individual  . 

 

Results 

The different parameter values and resulting model performances are shown in table 23. 

 
Table 23: Model performance of Prospect Theory under different parameter values found in literature 

 Tversky and 
Kahneman (1992) 

Tu (2005) Andersen, 
Harrison, and 
Rutström (2006) 

Harrison and 
Rutström (2009) 

Booij, Van Praag, and 
Van de Kuilen (2009) 

  (sensitivity) 0.88 0.68 0.81 0.71 0.859 

  (sensitivity) 0.88 0.74 0.80 0.72 0.826 

  (loss aversion) 2.25 3.2 1.07 1.38 1.58 

  (curvature) 0.61 1.0 0.76 0.91 0.618 

  (curvature) 0.69 0.77 0.76 0.91 0.592 

% total correctly 
predicted route choices * 

43.17 43.17 34.12 34.12 34.12 

*for each different set of parameter values a reference point of mean μ is used in order to apply the model 

 

Remarkably, with different sets of parameter values, the same results are obtained. This indicates 

that the model is not very sensitive to the parameters. The sensitivity analysis in figure 41 underlines 

this finding, showing that for different values of a certain parameter (keeping the value of the other 

parameters constant) only two different results can be obtained. In addition, it is expected that the 

model would be more sensitive to the reference point as a change in this value certain gains might 

become losses and vice versa. However, changing the reference point from being the mean to 

median travel time of OD-pair    did not change the performance of the model. 

 
Figure 41: Sensitivity analysis for the different parameters of the prospect theory 

Since the probabilities    for several outcomes    are calculated based on the empirical cumulative 

distribution function of the travel times per route alternative using all data observations of the real-

world experiment, these probabilities and outcomes might be biased. Therefore, the leave-one-out 

method that was used for validating the newly developed model is applied. Remember that this 

approach leaves one of the observations out of the training set, influencing the distributions   , 

outcomes    and reference point of that choice situation  . Subsequently, the obtained model is 
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applied on the observation that was left out. This is repeated for every observation and resulted in an 

average correctly predicted route choices of 44.01% with a standard deviation of 49.66. The 

difference of the average outcome of the validation (i.e. 44.01%) and the initial model (i.e. 43.17%) is 

not that big. Therefore, it can be concluded that the initial prospect model is valid to use. 

 

Discussion 

The prospect model assumes that individuals have exact knowledge about the travel time 

distribution on each route alternative. One can imagine that this might not be very reality alike. 

Furthermore, all individuals are considered to be homogeneous in terms of their reference point, loss 

aversion and their subjective values and decision weights. It should be noted that this is common 

practice in using the prospect theory, although results might be improved if heterogeneous 

estimates would be used. 

 

The observed lack of sensitivity for different parameter values is in this case expected to occur due to 

the fact that the model is not dynamic. Therefore, there are only five different choice situations 

within the used dataset on which the model is applied (i.e. the choice between the two route 

alternatives of the five OD-pairs). After all, the probabilities    and outcomes    do not change for 

both routes within the same choice situation  . The fact that the individuals are assumed to be 

homogeneous, fortifies that notion. This results in the same route choices being predicted by the 

model and these predictions will not easily alter by setting the parameter values slightly different. 

 

In literature, there are found some more sophisticated models on prospect theory, which use 

different formulas for the weighting functions and subjective value functions sometimes introducing 

additional parameters. Several of these theories are elaborated upon by Booij et al. (2009). It is 

possible that one or more of these sophisticated models obtain better results. 

9.2.4 Regret Theory 

The regret theory is based on the basic idea that after making a choice, individuals will reflect on how 

much better or worse the consequence of their chosen option could be if they had chosen 

differently. This postulates that people will make a choice in such a way that none of the other 

options will outperform the chosen alternative and therewith choose the option they are likely to 

regret the least. This theory can be applied using the expected modified utility function (Chorus, 

2012b): 

            
          

  

 
            

        
           

  

 
     

 

 

            
          

  

 
            

        
           

  

 
     

 

 

where A and B represent the different routes.   represents the different ‘states of the world’, each 

state being characterized by a probability of occurrence   , and different combinations of travel 

times for the two routes (  
    

  .   is the risk aversion parameter and   represents regret aversion. 

Higher values of   correspond with higher levels of risk and when   increases, regret becomes more 

important in making the choice. The route alternative with the highest expected modified utility (i.e. 

   ) will be chosen by the individual  . 
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The same calculations of the probabilities    and travel times    from the Prospect Theory (see figure 

40) are used in this regret approach. The travel times   
  and   

  correspond to   
  and   

 . The 

probability of occurrence of the ‘state of the world’   , in which   
  and   

  both occur, is calculated 

multiplying the probability of occurrence of   
 , which is   

 , by the probability of occurrence of   
 , 

which is   
 . This means that 49 (i.e. 7 times 7) different ‘states of the world’   are considered. 

 

It should be mentioned that, just like in applying the prospect theory, no distinction per individual   is 

made and homogeneity among the population sample is assumed. In addition, the regret theory is 

also a static model and does therefore not account for changes over time. So, if a certain route 

alternative has the highest expected modified utility     on OD-pair   , all individuals   are 

expected to choose this route alternative for all runs  . In other words, the model only predicts the 

chosen route per OD-pair    for all individuals. It is possible to detail the predictions for each 

individual   by estimating different parameters and distributions. However, determining this 

estimates is not easily done. Therefore, in this research the predictions are not detailed for each 

individual  . 

 

Results 

Different combinations of parameter values for   and   are tried with a magnitude in accordance 

with the parameter values tested by Chorus (2012b) in order to find the best model performance. 

Table 24 shows the model performances under different combinations of these parameter values. 

When no risk aversion (i.e.  =0) and regret aversion (i.e.  =0) is presumed, the model performance is 

low. However, for other values of   and   the model performance increases. Remark that, just like 

for the prospect theory, different parameter values lead to only a few different outcomes in model 

performance. 

 
Table 24: Model performance of Regret Theory under different combinations of parameter values for   and   
Parameter values – 
Performance [%] 

  (risk aversion) 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

 
 
 

  
(regret 
aversion) 

0 44.76 56.83 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.025 44.76 56.83 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.05 44.76 56.83 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.075 44.76 56.83 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.1 44.76 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.125 44.76 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.15 44.76 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.175 44.76 56.83 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.2 44.76 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.225 44.76 56.83 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

0.25 44.76 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.88 

 

Since, again, the probabilities    for several travel times   
  and   

  are calculated based on the 

empirical cumulative distribution function of the travel times per route alternative using all data 

observations of the real-world experiment, these probabilities and travel times might be biased. 

Therefore, the leave-one-out method that was used for validating the newly developed model is 

applied. Remember that this approach leaves one of the observations out of the training set, 

influencing the distributions    and outcomes    of that choice situation  . Subsequently, the 

obtained model is applied on the observation that was left out. This is repeated for every observation 

and resulted in an average correctly predicted route choices of 65.21% with a standard deviation of 

47.65. The difference of the average outcome of this validation (i.e. 65.21%) and the initial model 
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(i.e. 65.88%) is not that big. Therefore, it can be concluded that the initial prospect model is valid to 

use. 

 

Discussion 

The regret theory suffers from the same limitations as the prospect theory; not reality alike 

knowledge of travel time distributions on each route alternative, a homogeneous population and not 

being dynamic. Again, this results in the lack of sensitivity to the parameter values that is being 

observed. 

In literature, there are found some more sophisticated models on regret theory, such as the random 

regret minimization theory. This theory postulates that ‘as long as alternatives are characterized in 

terms of multiple attributes, there will be regret in the sense that there will generally be at least one 

non-chosen alternative that outperforms a chosen one in terms of one or more attributes (Chorus, 

2012a). These more sophisticated models might increase the performance of the regret theory. 

9.2.5 Thresholds Theory 

The threshold theory by Carrion and Levinson (2012) is based on the idea that a traveler determines 

a certain travel time threshold and therewith creates an acceptable time margin for trips on a 

specific route alternative. The experienced travel times by a certain traveler on that route alternative 

are assessed related to this acceptable time margin. Depending on the frequency of experienced 

travel times within and outside this acceptable time margin, individuals may decide to abandon the 

currently chosen route alternative and switch to another route. The theory was originally intended 

for predicting absolute long-term switches and not the day-to-day dynamics that is focused on in this 

research. However, one can imagine that the basic idea might as well apply to day-to-day dynamics. 

 

There are two different models suggested; the Fixed Threshold model, which assumes that 

individuals have a strict expectation about their travel times and travel time variability, and the 

Moving Threshold model, which assumes that individuals continuously update their margins based 

on the experienced travel times of the previous trips. Both models assume a moving set of travel 

times that represents the past trips that individual   remembers. Carrion and Levinson (2012) use 2 

to 15 days before the specific day of travel of a trip. However, the dataset used in this research only 

contains 20 trips for each OD-pair    made by individual  . Therefore, all the experienced travel 

times on a certain OD-pair    by a certain individual   are used in this research. In other words, it is 

assumed that individuals can recall all their experienced trips during the real-world experiment. 

This limited amount of trips per OD-pair    for each individual   enforces some limitations on how to 

implement the theory without endangering the comparison with the other models. For the moving 

thresholds model it is hard to decide on a method to determine the mean and standard deviations 

for the first few runs in a dynamic way. In addition, the primary results found by Carrion and Levinson 

(2012) indicate that the fixed thresholds model should be preferred for capturing route switching 

dynamics. Therefore, it is decided to only apply the fixed threshold model. 

 

The fixed thresholds are determined calculating the mean μ and associated standard deviations σ of 

each route alternative based on all observations of all individuals in the dataset. Remember from the 

literature review in section 2.3.7 that trips above the threshold are referred to as late trips and trips 

below the threshold as early trips. Trips within the thresholds are referred to as regular trips. 
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Individuals are more likely to leave their current route if the number of late trips increases and more 

likely to stick with their current route if the number of early trips increases. 

 

Different criteria can be proposed in order to predict if a certain individual   will switch his route 

choice or stick to his current choice. The first criterion, that follows directly from the 

abovementioned, states that if individual   experienced more late trips than early trips on a certain 

route  , he will switch his route (i.e.                           ). As one can imagine, regular 

trips might also contribute to the likeliness that a certain individual   will stick to his current route 

choice. After all, regular trips indicate that the route alternative performs as expected and this 

expectation was most likely the reason why this route alternative was chosen in the first place. 

Therefore, the second criterion states that an individual   will change his route choice if there are 

more late trips experienced by this individual   than regular trips and early trips together on route   

(i.e.                                            ). The last criterion is only based on the late trip 

ratio which might exceed a certain value as late trips in this context can be considered to be the main 

reason for route switching (i.e.                             , where    ). If this value of   is set 

to 1, it is assumed that individuals always sticks to their current choice. 

 

In addition to setting the switching criterion, the margins for classifying early and late trips need to 

be set. Carrion and Levinson (2012) found that a standard deviation σ of 0.5 below mean μ was 

significant for classifying early trips, while in classifying late trips a standard deviation σ of 1 above 

mean μ turned out to be significant (at a 5% significance level). Therefore, different combinations of 

these values are tested. 

 

Note that, opposed to the utility maximization theory, prospect theory and regret theory, with this 

threshold theory the predicted choice for a certain route   can differ per individual   and over time 

 . 

 

Results 

Table 25 shows the model performance of the threshold theory under those different combinations 

of σ under different switching criteria. Note that the last criterion (i.e.              

             >1.0) implies that one always sticks to the chosen route   at  -1, even if all trips are 

classified as being late trips. This criterion obtains the best model performance on all threshold 

values. So, there is no highest model performance achieved on only one of the threshold 

combinations. However, threshold values of μ-0.5σ and μ+1.0σ obtain the best model performance 

on all 4 criteria. Therefore, these threshold values are considered to be most suitable. 

 
Table 25: Model performance of Threshold Theory under different combinations of σ and different switching criteria 
Switch criterion: \ Threshold μ-0.5σ, μ+0.5σ μ-1.0σ, μ+1.0σ μ-0.5σ, μ+1.0σ μ-1.0σ, μ+0.5σ 

                           43.47% 38.76% 48.09% 35.64% 

                              

              

59.73% 74.04% 74.04% 59.73% 

                           > x* 77.60% (x=0.9) 78.76% (x=0.7-0.9) 78.76% (x=0.7-0.9) 77.60% (x=0.9) 

                           > 1.0 79.02% 79.02% 79.02% 79.02% 

* Only the x (x=0.1 till x=0.9, step size is 0.1) which obtains the highest model performance, is shown. 
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Discussion 

Although the model was intended for long-term switching it seems to capture day-to-day dynamics 

quite well. Because of the limited number of runs in the dataset for each OD-pair    the first few 

runs are based on less experienced travel times than a certain individual   would recall (i.e. the 

switching criteria are calculated based on less than 15 trips). For individuals that were unfamiliar with 

the available route alternatives this would be reality alike. However, most of the individuals in the 

dataset were already familiar with the options. This might indicate that the model could perform 

even better if more runs were available. 

9.2.6 SILK-Theory 

The SILK theory concerns about how travel decisions are actually made and emphasizes on the role 

of Search, Information, Learning and Knowledge in travel decision-making. The theory consists of a 

conceptual framework (figure 42) that includes the interaction between the individual level and the 

road network level. It updates the knowledge, belief and expectations of individual   based on the 

network conditions. Subsequently, based on the search gain and search cost it is determined which 

two route alternatives are considered. As in this research, only two route alternatives are available in 

each choice situation  , this route search part of the theory is left out at the implementation of the 

theory on the available dataset. As a result, updating the expectation by computing the subjective 

search gain and comparing this to the search cost is not necessary anymore. 

 

 
Figure 42: Conceptual framework of the travel decision-making process in SILK (Zhang, 2011). 
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For updating the knowledge and beliefs the expected travel time for both route alternatives is 

determined based on the smoothing method using a smoothing factor α of 0.01 (i.e. the smoothing 

factor α that is used in the newly developed model) at each run  . Based on this expected travel time 

and the free flow travel time on each route alternative the expected delay for each run   is 

calculated. In order to replicate the heuristics individuals use to (not) switch routes, Zhang (2006a) 

used the following if-then rules: 
 

Change route, if  

[ΔTime ≤ -39%]          Rule 1  

or [ΔTime ≤ -11% and ΔPleasure ≥ -1]        Rule 2  

or [ΔFamiliarity ≥ 3 and Commute time ≤ 20 min]      Rule 3  

or [ΔTime ≤ 6% and ΔPleasure ≥ 3]        Rule 4  

or [ΔTime ≤ 15% and ΔFamiliarity ≥ 2 and ΔDelay ≥ -40%]     Rule 5  

or [Familiarity = 1 and ΔTime ≤ 51% and Commute time ≤ 20 min and Income = 1]   Rule 6  

or [Delay ≥ 4 min and ΔStops ≤ 0 and Commute distance ≤ 8 miles]    Rule 7  

or [ΔPleasure ≥ 2 and ΔFamiliarity ≥ 0 and Commute time ≤ 16 min]    Rule 8  

Otherwise, continue to use the current route.        Rule 9 

 

These rules cannot be directly applied to the available dataset as several variables (i.e. ∆pleasure and 

income) are not accounted for in this dataset. Therefore, the rules containing these variables (i.e. 

rule 2,4,6 and 8) are simply excluded from implementation. Furthermore, Zhang (2006a) used a 7-

point scale in order to measure familiarity, while the available dataset in this research uses a 5-point 

scale. Therefore, these numbers are normalized. 
 

First, all parameter settings proposed by Zhang (2006a) are used to apply the SILK-theory on the 

available dataset. Then, different values are adapted to be more in line with the current available 

dataset, using a trial and error approach. The next paragraph will elaborate on this. 
 

Results 

When the if-then rules are now implemented, using the same threshold values as provided by Zhang 

(2006a), the model predicts 62.48% of the observed route choices correctly. However, within the 

available dataset there are no observations with an expected time difference bigger than -39%4, 

almost all commute times are lower than 20 minutes and only one out of the ten routes has a 

commute distance of over 8 miles. Therefore, adapting these threshold values to be more in line with 

the current available dataset might improve the model performance. In order to do so, a trial and 

error approach is used. It is found that an increase in the threshold value of the expected travel time 

difference of rule 1 lowers the model performance, which is not desired. Lowering the threshold 

value of the commute time in rule 3 from 20 minutes to 6.4 minutes increases the model 

performance to 64.36%. Lastly, lowering the threshold value of the commute distance in rule 7 from 

8 miles to 5 miles did increase the model performance even more, namely to 66.22%. However, it 

should be noted that there is now only one out of the ten routes shorter than 3 miles, instead of the 

initial case in which only one out of the ten routes was longer than the threshold value. When the 

other threshold values are tested, it was found that increasing the value for difference in delay in 

rule 5 from -40% to -34% would improve the model performance even more, namely to 71.38%, 

                                                           
4
 The minus indicates that the route that was not chosen should be the shorter one. In other words, there 

should be an expected decrease in travel time of 39% if an individual switched to the other route alternative. 
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while the other threshold values resulted in a worse model performance or had no influence on the 

model performance at all. These findings are summarized in table 26. 

 
Table 26: Model performance of the SILK-Theory under different threshold values found by trial and error. 

Threshold Values Values of Zhang Rule 3: Commute 
time≤6.4 min,  
+ values of Zhang 

Rule 7: Commute 
distance ≤ 5 miles,  
Rule 3: Commute 
time≤6.4 min,  
+ values of Zhang 

Rule 5: ΔDelay ≥ -34%,  
Rule 7: Commute 
distance ≤ 5 miles,  
Rule 3: Commute 
time≤6.4 min,  
+ values of Zhang 

Correctly predicted 
route choices [%] 

62.48 64.36 66.22 71.38 

 

Discussion 

Although not all if-then rules that were formulated by Zhang (2006a) could be implemented in this 

research the model already performs reasonably well after adjusting some of the threshold values to 

be more in line with the available choice situations. One can imagine that the results might be even 

better when the excluded rules could also be implemented. 

9.3 Comparison and findings 
In order to compare the models that are introduced in the previous sections and implemented on the 

dataset used in this research, the specifications of each model that results in the best model 

performance for that specific theory are identified. The model performance results are listed in table 

27. Besides the total performances, the table shows also the more detailed results for the different 

OD-pairs   , runs   and driver types  . 

 
Table 27: Overview of the model performance of 7 route choice models applied on the case of this research. 

Correctly 
predicted route 

choices 

2-step-model 
- Dynamic 
Expected 

Shortest Path 
+ Combined 

model 

1-step-model 
- Dynamic 
Expected 

Shortest Path 

Utility 
Maximization 

/ Shortest 
path theory 

Prospect 
Theory 

Regret 
Theory 

Threshold 
Theory 
(fixed) 

SILK-Theory 

Smoothing 
method 
(α=0.01) 

(mean TT for 
Time of day ) 

Smoothing 
method 
(α=0.01) 
(mean TT 
general ) 

Mean TT 
general 

Parameter 
values of 

Tversky and 
Kahneman 

(1992) 

Parameter 
values: 

θ=0.025, 
δ=0.125 

Threshold: 
Mean-0.5σ, 
Mean+1.0σ 

Criterion: 
Late trip ratio 

>1.0 

ΔDelay ≥ -
34%, 
Commute 
distance≤5 
miles, 
Commute 
time≤6.4 min, 
+ rest of 
values of 
Zhang 
(2006a) 

OD-1 [%] 67.26 54.10 74.18 74.18 25.82 73.91 74.78 

OD-2 [%] 76.37 65.96 65.96 34.04 65.96 80.83 47.37 

OD-3 [%] 78.67 76.09 76.09 23.91 76.09 83.21 84.64 

OD-4 [%] 71.75 80.34 80.34 80.34 80.34 73.81 73.81 

OD-5 [%] 82.33 87.50 87.50 12.50 87.50 81.22 79.56 

First 10 runs   [%] 63.40 60.04 63.13 36.49 57.92 65.11 59.11 

Last 10 runs   [%] 84.52 80.59 85.48 48.30 72.00 88.30 79.56 

Driver type 1 [%] - - - - - - - 

Driver type 2 [%] 89.98 79.65 88.26 31.31 79.26 97.72 83.82 

Driver type 3 [%] 66.92 67.50 69.66 52.42 56.55 68.57 64.95 

Driver type 4 [%] 53.13 57.60 52.00 50.40 52.80 49.15 49.15 

Total correctly 
predicted [%] 

75.35 71.67 75.78 43.17 65.88 79.02 71.38 
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Figure 43 shows the results of table 27 in a more visual manner. 

 
Figure 43: Visual overview of the model performance of 7 route choice models applied on the case of this research. 
 

The threshold theory performs the best of all 7 models, closely followed by the utility maximization 

theory and the newly developed 2-step-model. In addition, the 1-step-model (i.e. the first step of the 

2-step-model) and the SILK-theory perform also quite well. As one of the recently proposed new 

route choice models based on the behavioral mechanisms of the indifference band, the high 

performance of the fixed threshold model is quite a nice finding. Both theories based on risk 

aversion, loss aversion and regret perform the worst of all models in the comparison. This might be 

the case because of their static nature and their insensitiveness to their parameter values when 

applied to the cases of this research. 

 

The fact that the shortest path theory outperforms the 1-step-model indicates that an updating 

process for the expected travel time is probably not necessary as it seems to deteriorate the average 

model performance from 75.78% to 71.76%. The addition of the second step of the 2-step-model 

accounting for inertial behavior then raises the model performance back up to 75.35%. So, replacing 

the first step of the 2-step-model by the shortest path theory (i.e. leaving out the expected travel 

time updating process) might result in higher model performance. In this research this was not done, 

as the objective was to develop a dynamic model, while this approach will transform the 2-step-

model into a static model. 

 

All 7 models turn out to be better in predicting route choices in the last 10 runs   than in the first 10 

runs   of a certain choice situation  . As mentioned earlier in chapter 4, this finding is as expected. It 

seems that the threshold theory performs the best of all assessed models on the last 10 runs  , 

indicating that for daily route choice predictions over a long period the threshold theory might be the 

best model to apply. The expectation that this model would perform even better if a longer time-

span, containing more runs  , is used, as suggested when this theory was introduced (section 9.2.5), 

emphasizes this indication. 
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Six of the models achieve the best prediction results of all driver types   on driver type 2. One 

exception is the prospect theory, which obtains lower model performance on this driver type than on 

the other two (i.e. driver type 3 and driver type 4). In addition, driver type 4 is in general the worst 

predicted. One can imagine that it is harder to predict choice patterns of individuals with a high 

switching tendency than that of individuals who choose the same route alternative over and over 

again, which explains this finding. In addition, note that the higher the driver type number, and 

therewith the number of switches within the driver type, the more similar the model performances 

of the different models are. The threshold theory achieves a model performance of an impressive 

97.72% on driver type 2. The 2-step-model also achieves a high model performance on this driver 

type (89.98%), which places the model on the second place compared to all other models. In 

addition, the 2-step-model performs relatively well on driver type 4. These notions indicate that the 

2-step-model would be relatively valuable to use especially for these driver types  . In fact, several 

models can be identified that might be the most valuable to use in predicting daily route choices of 

certain driver types. Table 28 provides an overview. 

 
Table 28: Overview of the different driver types   and their best performing models 

Driver type   Characteristics Best model to use 

1 - No switching at all 
- Satisfied with route choice 

Not applicable 

2 - Almost no switching (i.e. low switching level) 
- High preference for one route alternative 

2-step-model + Threshold theory 

3 - Some switching (i.e. medium switching level) 
- Slight to medium preference for one route alternative 

Shortest path theory + Threshold theory 

4 - Much switching (i.e. high switching level) 
- No preference for one route alternative 

2-step-model + 1-step-model 

 

In predicting route choices on the different OD-pairs    there is some more variation among the 

different model performances; some models perform very well on a certain OD-pair   , while others 

perform badly on the same OD-pair   . On another OD-pair    this might be the opposite; the model 

that performed badly on the first OD-pair    performs very well on the next OD-pair   , while the 

model that performed very well on the first OD-pair   , performs badly on the next OD-pair   . For 

example, the regret theory performs badly on OD-pair 1 (25.82%), while it performs very well on OD-

pair 5 (87.50%). On the opposite, the prospect theory is performing very well on OD-pair 1 (74.18%), 

while the performance on OD-pair 5 is dramatically low (12.50%). This notion suggests that in 

different choice situations different models would be valuable to use. 

 

OD-pair 1 has the smallest difference in travel time between the two route alternatives and it 

has the biggest difference in number of merges and diverges of all 5 OD-pairs. Furthermore, almost 

half of the choices made on this OD-pair are defined as being an inertial choice (based on expected 

travel times using the smoothing approach ( =0.1) with initial expected travel times specified per 

time of day). In this choice situation the route choices are best predicted by the SILK-theory, closely 

followed by the shortest path theory and the prospect theory. 

OD-pair 2 contains the trip with the highest travel time of all OD-pairs. In addition, both route 

alternatives have a high number of horizontal curves compared to the other OD-pairs. In this choice 

situation the 2-step-model and the threshold theory outperform the other five models significantly. 

OD-pair 3 has one route with significantly higher traffic volumes. Other than this, it is an 

average trip with no extreme characteristics. On this OD-pair, the SILK-theory and the threshold 

theory perform the best and would therefore be most valuable to use. 
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OD-pair 4 contains route alternatives with the highest difference in average travel speed, 

although the average difference in travel time is low. Furthermore, there is no difference in number 

of stops between the route alternatives, while one of the route alternatives passes through a busy 

university campus area. Just like for OD-pair 1, almost half of the choices made on this OD-pair are 

defined as being an inertial choice (based on expected travel times using the smoothing approach 

( =0.1) with initial expected travel times specified per time of day). In this choice situation the 

theories on dynamic expected shortest path, shortest path, prospect and regret perform the best. 

Note that the shortest path theory and the prospect theory were also the best models to use for OD-

pair 1, which is on some of the trip characteristics comparable to OD-pair 4. 

OD-pair 5 has the largest difference in travel time and number of stops between the two 

route alternatives compared to the other OD-pairs. In addition, it has the lowest difference in travel 

speed and the lowest percentage of inertial choices (based on expected travel times using the 

smoothing approach ( =0.01) with initial expected travel times specified per time of day). In this 

choice situation the theories on dynamic expected shortest path, shortest path and regret predict 

the observed route choices the best. 

 

Table 29 summarizes these findings. Note that the overall least performing models still turn out to be 

valuable in predicting route choices in certain choice situations. Moreover, the overall best 

performing threshold theory is most valuable in only two choice situations. The newly developed 2-

step-model seems to be valuable to use in choice situation 2. Remarkably, the 2-step-model is not 

among the most valuable theories to use in choice situations in which a high percentage of the 

choices are defined as an inertial choice. 

 
Table 29: Overview of the different choice situations and their best performing models 

OD-pair    Characteristics Best models to use 

1 - lowest ∆TTaverage  
- highest ∆merges+diverges 
- highest % of choices are defined as inertia (~50%) 

SILK-theory, Shortest path theory, Prospect theory 

2 - highest travel time 
- high number of horizontal curves 

2-step-model + Threshold theory 

3 - one route with higher traffic volume SILK-theory + Threshold theory 

4 - highest ∆travel speed 
- low ∆TTaverage 
- no difference in #stops/intersections 
- one route passes through busy campus area 
- highest % of choices are defined as inertia (~50%) 

Dynamic expected shortest path theory, Shortest 
path theory, Prospect theory, Regret theory 

5 - highest ∆TTaverage  
- highest difference in #stops/intersections 
- lowest ∆travel speed 
- lowest % of choices are defined as inertia 

Dynamic expected shortest path theory, Shortest 
path theory, Regret theory 

 

Furthermore, it can be seen that the threshold theory has the highest minimum performance for the 

different OD-pairs (73.81% on OD-pair 4) of all models, although it is closely followed by the 2-step-

model and shortest path theory. This indicates that the threshold theory is most constant in 

predicting route choices in different situations. 

 

In order to continue, note that the 1-step-model, shortest path theory, prospect theory and regret 

theory achieve the same performances on some of the OD-pairs. This is not that remarkable. First of 

all, the principle of the 1-step-model and the shortest path theory are quite the same; they both 

assume an individual   chooses the route alternative with the shortest travel time. Only, the 

(expected) travel times on which the principle is applied differs from each other, as the shortest path 
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theory uses a static general average, while the 1-step-model uses a dynamic updating process 

resulting in expected travel times. Due to the very small smoothing factor α that is used in the 1-step-

model, the (expected) travel times which are used in the different models are almost the same. As a 

result, the performance of the two models differs only on OD-pair 1, which has the smallest travel 

time difference in general (a difference of 0.1 minute). 

Secondly, this indicates that in certain choice situations it does not make a difference which 

assumption is used; assuming individuals rationally choose the shortest route or assuming individuals 

route choices are influenced by risk aversion, loss aversion and regret. Apparently on these 5 OD-

pairs the route alternatives causing the least regret (or, to a lesser extent, the least losses and risks) 

are also the shortest route alternatives. One should note that this is not necessarily the case for 

every OD-pair in general as is emphasized by the results on, for example, OD-pair 1. 

 

Now, figure 44 shows the model performances detailed for each of the 1193 observations within the 

dataset. First, the model performance of the 2-step-model is shown for reference. Figure 44a till f 

compare the performances of the 2-step-model with each of the state-of-the-art models. It can be 

seen that the 1-step-model and shortest path model slightly follow the performance trend of the 2-

step-model; if the 2-step-model has a high model performance on certain observations, these are 

also correctly predicted by the 1-step-model and shortest path model, while the observations 

containing a drop in model performance by the 2-step-model seem to be also incorrectly predicted 

by the other two models. This is not the case for the prospect theory and the regret theory. Their 

model performances for some of the observations tend to be low while the model performance of 

the 2-step-model is high on these specific observations. The trend of the model performance of the 

threshold theory and SILK-theory look quite different from the other model performance trends; 

while most model performance trends contain clusters of correctly predicted observations and 

incorrectly predicted observations, the performance trends of the threshold theory and SILK-theory 

are more alternating. In general, the observations that seem to be the hardest to predict by all the 

models can be found in the clusters around observation 400, 600, 800 and 1100. 
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Figure 44: Model performance of the 6 state-of-the-art models compared to the 2-step-model for each observation 

9.4 Discussion on model performances 
The finding that in circa 76% of all observations the shortest path is chosen, is quite high compared 

to results found in literature. Zhu and Levinson (2012) found that only 34% of the trips made by 143 

commuters in Minnesota, USA, followed the shortest time path. Bekhor, Ben-Akiva, and Ramming 

(2006) found a comparable 37% for trips reported by 188 staff members from the Massachusetts 

Institute of Technology in the Boston area, USA. In addition, a revealed preference study among 

faculty and staff members of Turin Polytechnic in Turin, Italy, showed that in 43% of the trips the 

shortest route alternative was used. However, Thomas and Tutert (2010) obtained a similar result as 

found in this research; for about 75% of the trips the shortest time route was observed during a 

license plate study in Enschede, The Netherlands. The high percentage of individuals choosing the 

shortest path in the used dataset in this research might be a result of the fact that only 5 OD-pairs 

are used in the experiment containing a small number of only 20 participants. More variation in 

participants and OD-pairs might lead to less travel time minimizing choices. In addition, the definition 

of shortest path might alter the model performances significantly, as can be seen from table 22. It is 

not clear which definition the other researches used. A last explanation can be given by the fact that 
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in this research only two route alternatives were available to the individuals to choose from, while in 

the aforementioned researches almost unlimited route alternatives were available. One can imagine 

that it would be easier to identify the shortest route alternative out of two route alternatives than 

out of many route alternatives. 

 

De Moraes Ramos, Daamen, and Hoogendoorn (2011) applied the prospect theory on their case 

modeling travelers’ route choice behavior as prospect maximizers and found a model performance 

between 47.7% and 51.1%. In this research a slightly lower model performance for the prospect 

theory is obtained; only 43.17%. In addition, De Moraes Ramos et al. (2011) found a model 

performance for the regret theory between 48.8% and 52.0%, which is significantly lower than the 

65.88% that is obtained in this research. For the fixed threshold theory and SILK-theory no results 

were found in literature. 

 

To put the obtained model performances in context; predicting route choices by choosing them 

randomly (i.e. each route alternative has an equal probability to be chosen, in this case 50%) results 

in about 50% of the route choices being correctly predicted on average. Therefore, it can be stated 

that in general the prospect theory has no added value to route choice modeling with respect to 

random predictions, while the other models do have some added value. 

The findings show that the model performances are highly dependent on the cases (i.e. OD-pairs) 

they are applied to. This was also indicated by the results found in the model performance 

comparison. Some models might perform better in choice situations containing for instance relatively 

long trips or city routes, while others might be of better use at for instance certain trip purposes. 

However, with the 5 OD-pairs used in this research it is not that easy to identify which model would 

be best to use in which circumstances. 

 

In general, it seems that for these 5 OD-pairs the model results of each model are reasonable 

compared to findings in literature. As the performances of the SILK-theory and fixed threshold 

theory, for which no results could be found in literature, are comparable to the results of the other 

state-of-the-art models, these can also be considered reasonable. 

9.5 Conclusion 
The newly developed 2-step-model is compared to 6 other models; the 1-step-model (i.e. first part of 

the 2-step-model), the Utility Maximization Theory (i.e. shortest path theory), the Prospect Theory, 

the Regret Theory, the Threshold Theory and the SILK-Theory. Although for the implementation of 

some of these theories the available dataset brought some limitations, reasonable solutions are 

found for implementation and results comparable to literature findings are obtained. 

 

It is found that the model performance of the developed 2-step-model is comparable to those 

models with the highest performances. However, the simple, general applicable and in current route 

choice modeling practice vastly applied shortest path theory and the quite recently introduced 

threshold theory developed for long term route choice predictions turned out to be on average the 

best performing models in this research. In addition, the developed 2-step-model is the second-best 

in terms of consistency of the models, which means it is less sensitive for differences in 

characteristics of the choice situation. Economic choice models based on risk aversion, loss aversion 

and regret (i.e. prospect theory and regret theory) are found to be less suitable in predicting the 
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observed route choices. The recently introduced behavioral route choice model based on the notion 

of the indifference band and boundaries in route switching (i.e. the SILK-theory) is performing 

reasonably well. 

 

The performances for each model are detailed for each OD-pair   , the first and last 10 runs   and 

driver type  . The results on this detailed level indicate that certain models perform better in certain 

choice situations than others. It is tried to specify which model would be most valuable to use in a 

certain choice situation. The 2-step-model turned out to be valuable on OD-pair 2, which could 

indicate that this model is the best model to apply on cases with longer travel times and a high 

number of horizontal curves. However, because of the small number of choice situations in this 

research no general statements can be concluded. 

Furthermore, all models agree on the fact that the last 10 runs   of an individual   in a choice 

situation   are better predictable than the first 10 runs of the same choice situation   by the same 

individual  . This gives reason to believe that individuals are indeed exposing more experimental 

behavior in the beginning of making a certain trip on a frequently base and are exposing more 

systematic behavior after they have become more familiar with that trip. This concerns less switching 

behavior as was found in the data-analysis (section 3.3), which makes it easier to predict the route 

choices for those runs. 

In addition, most models are better in predicting driver types containing low levels of switching 

behavior than driver types containing high levels of switching behavior. On driver type 2 and driver 

type 4 the 2-step-model performs second-best of all models. 

 

Lastly, the fact that the shortest path theory assuming static expected travel times performs better 

than the dynamic expected shortest path method (i.e. 1-step-model), indicates that an updating 

process for expected travel times might be unnecessary. This implies that dynamic route choices can 

be well predicted using static choice models. 

 

This chapter has shown that the developed 2-step-model is certainly valuable addition to the state-

of-the-art route choice models that are currently used. Now, the next chapter will give a 

quantification of the indifference band using different approaches.  
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10 Quantification of the indifference band 
Quantifying the indifference band is vastly attempted within the research field of route choice 

behavior. It provides insights in the inertial and switching behavior of individuals in certain choice 

situations. Therefore, in this research it is also tried to quantify the indifferent band. This is done in 

three different ways; based on the data-analysis from chapter 3 (elaborated in section 10.1), using 

the threshold theory from chapter 9 (elaborated in section 10.2) and using the newly developed 2-

step-model which is elaborated in section 10.3. Subsequently, the obtained indifference bands are 

compared to each other in section 10.4. Lastly, section 10.5 discusses the findings and draws 

conclusions from them. 

10.1 Quantification using data-analysis 
Part of the data-analysis in chapter 3 examines the indifference band in which there is made a 

distinction between the conscious and subconscious indifference band. The subconscious 

indifference band comprises the thresholds of which the individual   is not aware. Therefore, 

perception errors of individuals are used as an indicator for this subconscious indifference band. 

Calculation of the subconscious indifference band is based on the observations for which a certain 

individual   stated that there is no travel time difference between the two route alternatives of a 

certain OD-pair    or that a certain route alternative of a certain OD-pair    was shorter in travel 

time while according to his experienced travel times on both route alternatives the opposite was the 

case. The average travel time difference these individuals   have experienced on that specific OD-pair 

   during the 20 runs give an indication for their perception error and therewith their subconscious 

indifference band. 

The conscious indifference band comprises the thresholds of which the individual   is aware, for 

instance because he is satisficing and sticks to a route choice that is good enough while there might 

exist better choice options. This conscious indifference band is indicated using the observations in 

which an inertial choice is made. For each individual   on each OD-pair    the maximum travel time 

difference (based on experienced travel time) of these inertial choices is determined, representing 

the indifference band. The results as found in the data-analysis are repeated in table 30 (situation 

specific) and table 31 (individual specific). A more detailed overview per individual and OD-pair 

combination can be found in appendix B.1 (subconscious thresholds) and appendix B.2 (conscious 

thresholds). Note that this data-analysis was performed on all 2065 observations of the dataset. 

 
Table 30: Subconscious and conscious indifference bands per OD-pair    obtained from data-analysis 

OD-pair    Subconscious threshold (based on 
perception errors) [min]* 

Conscious threshold (based on 
observed inertial behavior) 
[min]* 

1 0.48 1.18 

2 1.04 1.14 

3 1.13 1.51 

4 0.37 1.11 

5 1.39 1.61 

Average** 0.88 1.31 

*In calculating the thresholds, the OD-pair/individual combinations in which no inertial choice is made or perception error is stated, are not 

included. 

**Weighted average based on the number of observations within the dataset per individual  . 
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Table 31: Subconscious and conscious indifference bands per individual   obtained from data-analysis 

Individual   Subconscious threshold (based on 
perception errors) [min]* 

Conscious threshold (based on 
observed inertial behavior) 
[min]* 

111 1.37 0.26 

112 0.98 1.38 

113 0.30 2.04 

114 0.97 0.63 

115 - 2.11 

116 0.61 1.04 

121 0.90 1.29 

122 0.52 1.14 

123 - 1.39 

124 - 0.51 

125 0.56 1.09 

211 - 0.72 

212 0.83 1.81 

213 - 0.69 

214 0.52 1.30 

215 0.39 1.04 

221 0.32 0.61 

222 0.78 1.78 

223 1.02 2.08 

224 1.16 1.46 

225 0.97 1.53 

Average** 0.76 1.22 

*In calculating the thresholds, the OD-pair/individual combinations in which no inertial choice is made or perception error is stated, are not 

included. 

**Weighted average based on the number of observations within the dataset per individual  . 

10.2 Quantification using the threshold theory 
The threshold theory makes use of the inertia thresholds within the observations of the dataset. 

However, these thresholds are not used as a strict threshold as the experienced travel time must 

have exceeded this threshold in 100% of the trips remembered by an individual   in order to switch 

routes. Nonetheless, these model thresholds might provide some insights in the thresholds of 

switching behavior. 

 

The threshold theory achieved the highest model performance using lower thresholds with a value of 

μ-0.5σ and upper thresholds of μ+1.0σ for each route alternative, where μ is the mean travel time on 

that route and σ is the standard deviation of the travel time distribution. In order to find the 

switching threshold, the upper thresholds are of importance as these are found to be the useful in 

setting the switching criterion of the threshold theory. The difference between the upper thresholds 

μ+1.0σ and the mean μ for each route alternative within a certain OD-pair    is identified as the 

indifference band per route alternative. After all, it is assumed that one would switch to the other 

route as this upper threshold is exceeded and therewith has decided that the other route alternative 

became the better option. As in this research we focused on inertia thresholds, only the thresholds 

of the longest route alternative are considered. This makes the values more comparable to the 

values obtained by the data-analysis and the 2-step-model. 

Table 32 shows the obtained indifference bands per route alternative and per OD-pair   . Since this 

theory uses fixed thresholds, no individual-specific values have been obtained. Note that this 

threshold theory was performed on only 1193 observations from the available dataset. 
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Table 32: Indifference bands per OD-pair    obtained from threshold theory 

OD-pair    Route Mean μ [min] Std σ [min] (indifference 
band per route alternative) 

Upper threshold 
μ+1.0σ [min] 

Indifference band 
per OD-pair   [min] 

1 1 8.22 1.28 9.50 1.80 

2 8.72 1.80 10.52 

2 3 14.94 1.34 16.28 1.31 

4 16.91 1.31 18.22 

3 5 7.69 0.92 8.61 1.08 

6 9.15 1.08 10.23 

4 7 9.87 1.27 11.14 1.27 

8 9.82 1.03 10.85 

5 9 10.45 0.93 11.68 0.93 

10 7.94 1.06 9.00 

Average*  10.24 1.22 11.47 1.29 

*Weighted average to the amount of choices for the specific route alternatives. 

10.3 Quantification using the 2-step-model 
The 2-step-model can provide insights in the indifference band using the sub-models of the 

combined model. As the main interest is on the inertia thresholds only the inertia model is used. 

Remember from chapter 4 that this model provides a probability   that a certain individual   will 

make an inertial choice in choice situation  . In general, it can be assumed that the turning point at 

which an individual   changes his choice behavior from sticking to his current route choice to 

switching to the other route alternative will occur when this probability   is 50%. After all, at a 

probability   lower than 50%, it is more likely that an individual   will make a switching choice, while 

at a probability   higher than 50% it is more likely that this individual   will stick to his current route 

choice. The indifference band can now be found by identifying the value of the model’s attribute 

related to travel time (i.e. the attribute ‘∆ttprev’ in the inertia model) at which this turning point of 

probability   being 50% is predicted for a certain individual   at OD-pair   , keeping all other 

attributes at their original value as given by the dataset as these attribute values do not change for a 

certain individual and OD-pair combination. This value of the travel time attribute represents the 

travel time difference between both route alternatives that is needed for individual   in choice 

situation   in order to switch routes. The resulting indifference bands per OD-pair    can be found in 

table 33 and the indifference bands per individual   can be found in table 34. A more detailed 

overview per individual and OD-pair combination can be found in appendix D. Note that this 2-step-

method was performed on only 1193 observations from the available dataset. 

 
Table 33: Indifference bands per OD-pair    obtained from 2-step-model 

OD-pair    Average inertia thresholds [min]* 

1 1.55 

2 2.55 

3 1.44 

4 1.40 

5 1.11 

Average** 1.67 

*In calculating the average thresholds, the OD-pair/individual combinations in which no data was available are not included. 

** Weighted average. 
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Table 34: Indifference bands per individual   obtained from 2-step-model 

Individual   Average inertia thresholds [min]* 

111 0.10 

112 1.25 

113 3.02 

114 0.45 

115 - 

116 2.76 

121 0** 

122 10.77 

123 1.98 

124 0** 

125 1.17 

211 2.45 

212 0.84 

213 - 

214 3.17 

215 1.41 

221 1.30 

222 - 

223 4.95 

224 1.71 

225 0** 

Average*** 2.27 

*In calculating the average thresholds, the OD-pair/individual combinations in which no data was available are not included. 

**The probability   stays below 50%, even at a travel time difference of 0. Therefore, the indifference band is set at 0. 

*** Weighted average. 

10.4 Comparison of obtained indifference bands 
Figure 45 visualizes the individual-specific indifference bands found by the data-analysis (conscious 

and subconscious indifference bands) and 2-step-model (conscious indifference bands). In general, 

the 2-step-model found relatively high indifference bands compared to the indifference bands found 

by the data-analysis. An explanation for this may lie in the fact that the indifference bands found by 

the 2-step-model are based on all observations in which an inertial choice is possible, while the 

indifference bands found in the data-analysis are based on only those observations in which an 

inertial choice is actually made or an individual actually stated that he was indifferent for the travel 

time difference between the two route alternatives. Note that especially the conscious indifference 

band of individual 122 (and to a lesser extend individual 223) obtained by the 2-step-model is very 

high. One could consider these to be outliers. They occur because the coefficients of the inertia sub-

model are estimated for all individuals together. In combination with the characteristics of this 

individual 122 (or individual 223) somewhat extreme results are obtained. Remark that these high 

values are not obtained by the data-analysis for these specific individuals. That might be the case 

since within the modeled expected travel times on which the inertia thresholds in this data-analysis 

are based simply do not contain these big differences. As a result this analysis obtained only 

threshold minimums; when more runs are made, higher thresholds might be obtained. A closer look 

at these individuals within the dataset shows that they first try both route alternatives and after that 

stick to their preferred route alternative without making any switches during the remaining 

experimental runs. So, these individuals have developed a strong preference for a certain route 

alternative (i.e. they belong strongly to driver type 2). If this is the longer route alternative for some 

OD-pairs, this results in a high likelihood of this individual to perform inertial behavior leading to a 

high inertia threshold. It is likely that in a total population, individuals exposing this behavior are 

more common. Therefore, it is chosen to keep these values within this research. 

Furthermore, it seems that the subconscious indifference band is found to be the lowest for most 

individuals, as was expected in section 2.1.7. 
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Figure 45: Comparison of the individual-specific indifference bands per individual   

Figure 46 shows the situation-specific indifference bands found by the data-analysis (subconscious 

and conscious indifference bands), the fixed threshold model (conscious indifference bands) and the 

2-step-model (conscious indifference bands). The averages of the found indifference bands are more 

close to each other than those for the individual-specific thresholds. The subconscious indifference 

band is on average again the smallest of all four measures, while the indifference bands found by the 

2-step-model are again on average the highest. Note that the high value obtained by the 2-step-

model on OD-pair 2 is a result of, among others, the high indifference band of individuals 122 and 

223. 
 

As mentioned earlier, the different results found by the different approaches can be explained by the 

(number of) observations that are used in order to indicate the value of the indifference band. In 

addition, the fixed threshold theory uses a threshold value of 1σ for all OD-pairs    and individuals  , 

while on a more detailed level the threshold values might significantly vary. Setting these values per 

individual   might obtain more accurate values, although the current results are quite similar in order 

of magnitude to the found values using the other approaches. 
 

 
Figure 46: Comparison of the situation-specific indifference bands per OD-pair    

None of the three quantification methods obtained the exact value of the indifference band. The 

data-analysis only uses information on individuals that stated to be indifferent or observations at 

which an actual inertial choice is made, the threshold theory assumes that the thresholds are the 

same for all individuals and are fixed over time and the inertia model is based on attributes that 
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seem to be explanatory for inertial behavior although the model fit is not perfect. Therefore, all three 

methods will have some errors in quantifying the indifference band. Over all, it can be assumed that 

they all provide reasonable indications of the indifference band and the real value lies somewhere in 

between. 
 

In order to make the obtained threshold values more workable and more easily comparable to other 

situations, they are translated to percentages of the average trip travel time (shown in table 35). It is 

found that the situation-specific conscious indifference band is about 12.6%-16.3% of the average 

total travel time of a certain trip, while the individual-specific conscious indifference band is about 

12.1%-22.6% of the average total travel time. The subconscious indifference band is 8.7% of the 

average total travel time for the situation-specific point of view and 7.5% of the average total travel 

time for the individual-specific point of view. 
 

Table 35: The indifference band expressed as percentage of the average trip travel time 

OD-pair    Average 
travel time 
and travel 

time 
difference of 

OD-pair 
   [min]* 

Subconscious 
indifference band – 

Data-analysis 

Conscious 
indifference band – 

Data-analysis 

Average 
travel time 
and travel 

time 
difference 
of OD-pair 
   [min]** 

Conscious 
indifference band – 

Fixed Threshold 
Theory 

Conscious 
indifference band – 

2-step-model 

Absolute 
[min] 

Relative 
[%] 

Absolute 
[min] 

Relative 
[%] 

Absolute 
[min] 

Relative 
[%] 

Absolute 
[min] 

Relative 
[%] 

1 8.45 (0.1) 0.48 5.7 1.18 14.0 8.59 (0.5) 1.80 21.0 1.55 18.0 

2 15.77 (1.5) 1.04 6.6 1.14 7.2 15.61 (2.0) 1.31 8.4 2.55 16.3 

3 8.19 (1.6) 1.13 13.8 1.51 18.4 8.04 (1.5) 1.08 13.4 1.44 17.9 

4 9.70 (0.6) 0.37 3.8 1.11 11.4 9.83 (0.1) 1.27 12.9 1.40 14.2 

5 8.28 (2.5) 1.39 16.8 1.61 19.4 8.25 (2.5) 0.93 11.3 1.11 13.5 

Average 10.08 0.88 8.7 1.31 13.0 10.24 1.29 12.6 1.61 16.3 

Correlations average TT ***  0.06 -0.53  0.11 0.94 

Correlations ∆ TT **** 0.95 0.79  -0.64 0.15 

   

Individual   
 

Absolute 
[min] 

Relative 
[%] 

Absolute 
[min] 

Relative 
[%] 

 Absolute 
[min] 

Relative 
[%] 

Absolute 
[min] 

Relative 
[%] 

Average 10.08 0.76 7.5 1.22 12.1 10.24 - - 2.27 22.1 

*Weighted average of the travel time on the two route alternatives, based on the 2065 observations 
** Weighted average of the travel time on the two route alternatives, based on the 1193 observations 
*** Correlation between absolute indifference band and the average travel time per OD-pair    
**** Correlation between absolute indifference band and the difference in travel time per OD-pair    
 

The correlations of the absolute indifference bands with the average travel time per OD-pair    and 

the difference in average travel time per OD-pair    are calculated for each quantification method. It 

can be seen that the results of the 2-step-model are highly correlated to the average travel time of a 

trip, which means that if the average travel time of a trip increases, the indifference band also 

increases. On the contrary, there is a very low correlation with the travel time difference. For the 

other quantification methods, low correlations to the average trip travel times are found, while high 

correlations to the travel time differences are identified. Note that the results of the conscious 

indifference band obtained from data-analysis and the threshold theory have a negative correlation 

to the average trip travel time and the travel time difference respectively. This indicates that if the 

average travel time of a trip or the difference in travel time increases, the indifference band 

decreases. 
 

Overall, it seems that the data-analysis quantification methods provides indifference bands that are 

correlated to the travel time difference between the two route alternatives of a certain OD-pair   , 

while the 2-step-model provides indifference bands that are correlated to the average travel time of 

a certain OD-pair   . This might be due to the used principle of each method. For example, the data-
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analysis used travel time differences in order to determine the indifference band. Therefore the 

finding of a high correlation with the travel time differences is not that surprising. In addition, the 2-

step-model uses different attributes in order to determine the inertia threshold. The estimates of 

these attributes result in switching points that apparently follow the average trip travel times of the 

different choice situations. 

10.5 Discussion and conclusion 
The findings indicate the inertia thresholds to be on average between 1.22 minutes and 2.27 

minutes, corresponding to 12.1%-22.1% of the total trip travel time. However, the width of the 

indifference band is highly dependent on the characteristics of both the choice situation   and the 

individual  . In this research the indifference band is quantified based on 5 different choice situations 

c and 21 individuals5. These numbers might be small for quantifying the indifference band. 

Nonetheless, the 21 individuals are assumed to represent the population in the Blacksburg area well, 

as individuals are recruited over a long range of ages and the amount of male and female is set 

equally. The five different trips, however, are all relatively small with an average travel time of 10.08 

minutes and an average distance of 7.7 km. One can imagine that different widths for the 

indifference band would be found if, for instance, the trips take  45 minutes and cover distances of 

 40 km. The expression of the findings in percentages of the average trip travel time might account 

for this issue. 
 

In literature, a (subconscious) perception threshold of 3 á 4 minutes (23%-31% of trip travel time) is 

found by Vreeswijk et al. (2013a), which is significantly higher than the subconscious threshold of 

0.88 minutes (situation-specific, 8.7% of trip travel time) and 0.76 minutes (individual-specific, 7.5% 

of trip travel time) found in this research. A reason for this might be the fact that the identified 

perception thresholds in this research are only indications, since no quantifiable perceptions were 

available from the dataset. However, these are not included in this analysis as it is not possible to 

assess their perception error based on the available data. In addition, (Vreeswijk et al., n.d.) found 

conscious satisficing thresholds of on average 1.18 and 1.34 minutes, which are lower than their 

found subconscious thresholds and the conscious thresholds between 1.22 minutes and 2.27 

minutes found in this research using the same dataset. 

Srinivasan and Mahmassani (1999) found evidence for route switching indifference bands of 3.44 and 

4.14 minutes, corresponding to 17%-22% of the total travel time of a certain trip. In addition, 

Mahmassani and Liu (1999) found an average relative indifference band of about 19% for pre-trip 

route switching. These percentages are comparable with the relative indifference bands found in this 

research (12.1%-22.1%). 
 

Since the width of the indifference band highly varies for each situation-individual combination the 

found values should be regarded as an indicative measure rather than a conclusive one. The different 

findings in literature suggest that there is no deterministic indifference band that fits all situations 

and all individuals. Therefore, it can only serve as a reference and outline the magnitude of the 

inertia thresholds when used in the field of route choice modeling and traffic management research. 

However, as for most practical applications it is not possible to distinguish between each individual 

driver, an indicative measure of the indifference band might be sufficient. 

  

                                                           
5
 Note that not for every situation-individual combination a value could be obtained. 
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11 Conclusions, discussions and recommendations 
This chapter will discuss the main conclusions of this research by answering the main research 

question of this research (section 11.1). Subsequently, spin-off conclusions found in this research are 

presented (section 11.2). This is followed by an elaboration on the research implications that the 

findings and conclusions involve (section 11.3). Lastly, this chapter will conclude with a number of 

recommendations and directions for future research (section 11.4). 

11.1 Main conclusions 
The objective of this research was to develop and evaluate a route choice model based on the 

notions of inertia and the indifference band in order to improve predictions on daily route choices of 

individuals and to quantify the indifference band. The focus of the research was on pre-trip route 

choices under day-to-day dynamics for the next day that a certain trip will be made. The four choice 

strategies as identified by Vreeswijk et al. (n.d.) were used as a starting point. In order to achieve the 

objective the following main research question was formulated: 

 

How and to what extent can day-to-day route choice modeling be improved by incorporating the 

principles of inertial behavior in order to predict route choice behavior accurately and quantify the 

inertia related indifference band? 

 

This research question can be broken down into three parts; (1) How to improve day-to-day route 

choice modeling by incorporating the principles of inertial behavior, (2) to what extent will the day-

to-day route choice modeling be improved and (3) what is the value for the inertia related 

indifference band according to these incorporated principles of inertial behavior. Conclusions will be 

made on all three parts. 

11.1.1 ‘How’ (1) 

First the answer to the ‘How‘-part of the question is elaborated. A day-to-day route choice model is 

developed by incorporating the principles of inertial behavior using data obtained in a real-world 

experiment. In order to do so, observed choice behavior was categorized into four groups of choice 

strategies; minimizing (by switching), minimizing (by non-switching), inertial choice making and 

compromising. Data-analysis showed that inertial behavior and the magnitude of both the conscious 

inertia threshold and subconscious perception threshold might be best explained using individual-

dependent variables and situation-dependent variables as high variations within the findings are 

identified for the different individuals and OD-pairs. 

 

Findings in literature emphasize the above mentioned finding indicating that inertial choices can be 

explained by travel time differences between route alternatives, average travel speeds and distance 

as well as factors related to the simplicity of routes. In addition, familiarity and previous experiences 

with the route alternatives are found to influence the decision to switch routes or not. Pleasure, 

delay and income are also found to be important in route switching decisions. Furthermore, it was 

found in literature that a route choice model should include a mechanism that is based on the 

expected performance of the route alternatives. 

 

Regression analysis examining six different approaches in order to account for the principles of 

inertia, showed that a combined modeling approach, consisting of a sub-model that predicts inertial 
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choices in situations that this choice strategy could be exposed and a sub-model that predicts 

compromising choices in situations that that choice strategy could be exposed (as both behaviors are 

mutually exclusive), would be the best. The obtained regression models of this combined approach 

indicate that individual characteristics and characteristics of the choice situations where most 

important in explaining exposed choice strategies such as inertia, while variables on experience were 

found to be less important. This combined model was then implemented in a 2-step modeling 

framework consisting of a Dynamic Expected Shortest Path Module and a Choice Strategy Module. 

The first module determines a preliminary choice based on a travel time updating process and the 

second module alters this preliminary choice based on the choice strategy predicted by the 

combined regression model. It is believed that this modeling framework offers a good and simple 

starting point for incorporating the principles of inertial behavior into a route choice model. 

 

In order to extend the 2-step-model to an agent-based approach using the Bayesian sampling 

method in combination with the Cholesky Decomposition tool accounting for parameter correlations 

within the model parameters, this model performs comparable to the initial 2-step-model with a 

model performance of 74.55%. When looking at the different OD-pairs    and runs  , a similar trend 

is found in performance is found. That is, when the initial 2-step-model has a high performance on a 

certain OD-pair and lower on the next OD-pair, the agent-based 2-step-model has also a high 

performance on that specific OD-pair and a lower on the next OD-pair. This makes this agent-based 

approach very suitable for micro-simulation studies. 

Discussion 

The experimental set-up results in some limitations to the dataset which may have caused some 

observations to not be completely reality alike. These are already elaborated upon in section 3.1 and 

therefore only briefly repeated in this discussion. First of all, there was no control over the traffic 

conditions and actual travel times, and during every run the participants completed five trips 

consecutively without arrival time pressure which is often not the case in reality. These issues might 

have affected the route choice behavior that individuals would have exposed in daily life. 

Furthermore, the perceptions of individuals are only obtained prior and posterior to the experiment 

and therefore highly aggregated. 

 

In addition to these limitations, only five different OD-pairs with only two different route alternatives 

and only 20 different individuals were used for the experiment, which is low compared to other 

studies but understandable with respect to the effort and time consumption of each experimental 

run and certain budget constraints. Most other studies are based on stated preference 

questionnaires, which makes it easier to capture a higher number of OD-pairs, route alternatives and 

individuals. Nonetheless, these studies have their own limitations as they have often not much 

observations per individual and per OD-pair and are less reality alike than observations from this 

real-world experiment.  

 

In addition, only 20 runs are obtained for each individual on each OD-pair. Based on the finding that 

different choice patterns have established and the likeliness that an individual would need a long 

period of time before his choice pattern transforms in one of the other choice patterns (which might 

be more likely to be a result of a change in the road network characteristics or conditions than 

individual characteristics), it can be stated that the number of 20 runs were sufficient for the purpose 
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of this research. It is believed that a few additional runs would not result in other choice patterns, 

although more observations in general could be useful. That is because from the obtained 2065 

observations only 1193 turned out to be useful as experience on both route alternatives by each 

individual was required. This resulted in the available dataset to be quite small.  

 

Furthermore, the experiment was executed in the Blacksburg area, which is a college town within an 

area with low population density and low congestion. As a result, the research findings might be 

different if data obtained in a highly populated or congested area, such as a metropolis, was used. 

This all together makes that the results and conclusions of this research are usable but should be 

interpreted with care. 

 

The regression models are developed with care. However, the obtained model is very sensitive to the 

variables that are used as input for the stepwise regression. Therefore, different regression models 

were found with a difference in explanatory power of only 0.01 (R2). In this research the model with 

the highest explanatory power is chosen. However, the model with the slightly lower explanatory 

power might perform just as well or even better in terms of correctly predicted route choices. In 

addition, a finite number of variables are considered to be relevant in explaining the choice strategies 

as they were found in literature and the data-analysis. It might be the case that there exist other 

explanatory variables that are not included in this research, either because their importance on route 

choice behavior is not acknowledged at the moment or data about these variables were not available 

within the dataset. 

 

The 2-step-model assumes a initial expected travel time which consists of the average travel time on 

a certain route during the specific peak hour. As a smoothing factor α of 0.01 is found to achieve the 

highest model performance, the initial expected travel time becomes crucially in determining and 

updating the expected travel times for the different route alternatives. However, individuals might 

have already a certain perception error for the travel time at the beginning of their runs and 

therefore do not expect the average travel time of the specific time of day. Therefore, the 

determination of the initial expected travel time might be not reality alike and need to be 

reconsidered. A possibility might be to assume the initial expected travel time to be stochastic, 

randomly picking this from some distribution around the average travel time of a certain route for 

each individual. 

 

In addition, the 2-step-model is only applicable if the decision maker has only two route alternatives 

to choose from. In real-world route choices, more than two route alternatives might be available to 

the decision maker. Therefore, the number of alternatives first needs to be reduced to two. As Li, 

Guensler, and Ogle (2005) found that 96.7% of commuters use only two routes on a routinely basis 

(i.e. use a certain route more than twice within 10 days) for their daily trips, one can imagine that it 

might be possible to reduce the considered route alternatives using certain algorithms. An example 

might be found in the if-then search rules used within the SILK-theory as proposed by Zhang (2006a). 

 

Furthermore, both sub-models of the combined model contain the attribute ‘Maximum familiarity’ 

which is obtained prior to the experimental runs. One can imagine that after a few experimental runs 

individuals become more familiar with the route alternatives. Therefore, updating the familiarity of 
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individuals with certain routes might make the route choice model more reality alike. Again, research 

might be necessary in how to update this attribute. 

 

In order to extend the 2-step-model to an agent-based approach using the Bayesian sampling 

method in combination with the Cholesky Decomposition tool provides reasonably comparable 

results as the initial 2-step-model. Therefore, this would be a very suitable way to use the model 

within micro-simulation studies. However, in order to execute Bayesian sampling on a different 

demographic area, a dataset specific for that area is needed, including observed choices (or choice 

strategies). Otherwise, the posterior distribution cannot be found. This might be a disadvantage of 

the method application, although this data might be easily obtained using stated preference 

questionnaires, which save time and budget compared to real-world experiments. Besides, the used 

dataset in this research might be representative for multiple areas within Virginia or even the United 

States. In that case no additional data is necessary. 

11.1.2  ‘To what extent’ (2) 

Now the answer to the ‘To what extent’-part of the research question is elaborated. The sensitivity 

analysis shows that the 2-step-model is not very robust as the model is sensitive to changes, and 

therewith to errors, in 9 out of 13 factors. The model is most sensitive to changes in the constants 

and the personality traits. Changes in the travel time attributes do not seem to affect the model 

performance much, although they are often considered to be most important in route choices. 

 

The 2-step-model provides correct predictions in 75.35% of the cases. This places it among the state-

of-the-art models with the highest performances. In addition, its lowest performance on the 

different OD-pairs    is the second-highest compared to the lowest performances of the state-of-

the-art models. This indicates that this model has one of the most constant performances when 

applied on different choice situations. In addition, the 2-step-model has the highest performance on 

OD-pair 2, which is a relatively longer trip with a lot of horizontal curves. This might indicate that the 

2-step-model can improve route choice modeling specifically on choice situations of this kind. 

Furthermore, the 2-step-model performs second-best of the state-of-the-art models in predictions 

on daily route choices for driver type 2 and driver type 4. This might indicate that the 2-step-model 

would especially be valuable in predicting route choices made by these driver types. 

Discussion 

For comparison of the 2-step-model with other state-of-the-art models all models are applied on the 

same dataset, namely the dataset of Tawfik. However, the 2-step-model is developed using the same 

data. Although the model coefficients are assumed to be valid after the cross-validation in chapter 6, 

one can argue if this might bias the comparison of the model performances. Besides, some 

adaptations had to be made to the state-of-the-art models in order to apply them to the available 

dataset. This might affect the model performance of the concerned models. In general, it is tried to 

implement all the models as well as possible. 

11.1.3  ‘Inertia related indifference band’ (3) 

Lastly, the answers to the ‘inertia related indifference band’-part of the research question is 

elaborated. In order to quantify the inertia threshold based on the 2-step-model, the inertia sub-

model applied in the second step of the model is used. This inertia sub-model provides a probability 

  that a certain individual   will make an inertial choice in choice situation  . It is assumed that the 
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turning point at which an individual   changes his choice behavior from sticking to his current route 

choice to switching to the other route alternative will occur when this probability   is 50%. The 

indifference band can now be found by identifying the value of the model’s attribute related to travel 

time (i.e. the attribute ‘∆ttprev’) at which this turning point of probability   being 50% is predicted for 

a certain individual   at OD-pair   . This resulted in an average situation-specific inertia threshold of 

1.67 minutes (16.3% of the average trip travel time) and an average individual-specific inertia 

threshold of 2.27 minutes (22.1% of the average trip travel time). 

 

Two other methods are used for quantifying the indifference band; the data-analysis and the 

threshold theory. Although the 2-step-model provides in general higher thresholds than those 

obtained by the data-analysis and threshold theory, they all found the same order of magnitude 

(situation-specific: 1.67, 1.31, and 1.29 minutes respectively, individual-specific: 2.27 and 1.22 

minutes respectively (no individual-specific result for threshold theory)). Overall, inertia thresholds 

between 12.1% and 22.1% of the average trip travel time are found on an individual level, using the 

OD-pair point of view inertia thresholds between 12.6% and 16.3% of the average trip travel time are 

obtained. In addition, it seems that subconscious indifference bands based on perception errors 

(7.5%-8.7% of the average trip travel time) are in general lower than conscious thresholds based on 

inertial behavior. 

Discussion 

The width of the indifference band is highly dependent on the characteristics of both the choice 

situation   and the individual  . In this research the indifference band is quantified based on 5 

different choice situations c and 21 individuals. These numbers might be small for quantifying the 

indifference band. Nonetheless, it is assumed that these individuals give a good representation of the 

population of the Blacksburg area. In addition, the five different trips are all relatively small with an 

average travel time of 10.08 minutes and an average distance of 7.7 km. Therefore, it might be the 

case that the found indifference bands are not representative for longer trips or in other areas. 

However, the found percentages of the average trip travel time are comparable to those found in 

other researches (e.g. (Mahmassani & Liu, 1999; Srinivasan & Mahmassani, 1999; Vreeswijk et al., 

2013a)). 

11.2 Spin-off conclusions 
- All state-of-the-art models showed a lower performance on the first 10 runs than on the last 

10 runs of each trip made by the individuals. This underlines the believe that individuals 

expose more experimental behavior the first few times they are making a certain trip, but as 

they become more familiar with it, more systematic and therewith more predictable 

behavior is exposed. 

- When model performances are detailed for every OD-pair   , it is found that certain state-

of-the-art models perform better on certain OD-pairs than others and vice versa. This 

indicates that in certain circumstances or choice situations a certain route choice model 

would be the best to use, leaving the implication that a hybrid model using different choice 

models for different choice situations could significantly improve current modeling practice. 

- When model performances are detailed for the four different driver types  , it is found that 

most state-of-the-art models perform best on driver types with a low level of switching 

behavior, while a higher level of switching behavior leads to lower model performances. 

Nevertheless, valuable models for each driver type could be identified. Therefore, a hybrid 



124 | P a g e  
 

model using different models for different driver types   has also potential to improve 

current modeling practice. 

- The model performance of the prospect theory and, to a lesser extent, the regret theory 

suggests that these choice models might not be that suitable in predicting day-to-day route 

choices. Although on some OD-pairs they are among the best performing models, on other 

OD-pairs they perform dramatically low. Overall, the regret theory performs very low with 

only 43.17%, while the regret theory performs better with 65.88% correctly predicted route 

choices. On the contrary, the threshold theory performed very well in predicting route 

choices as one of the models specifically based on the principles of route choice behavior. 

Particularly, since it was designed capturing long-term route switching instead of day-to-day 

dynamics and the number of available observations was therefore lower than preferred. 

- Comparing the overall performance of the dynamic 1-step-model (71.76%) with the overall 

performance of the static shortest path model (75.76%) indicates that including a dynamic 

updating process for the expectations of a certain individual for the different route 

alternatives might be unnecessary. This is opposed to what was found in literature, stating 

that a route choice model should include a mechanism that is based on the expected 

performance of the route alternatives. Apparently, day-to-day dynamics in route choices can 

be well accounted for using a static choice model. 

- Based on the agent-based 2-step-model it is found that ignoring parameter correlations 

when simulating individuals results in a model performance that is similar to the model 

performance of a random prediction process. Accounting for parameter correlations 

increases the performance of the agent-based model by approximately 25% point, 

emphasizing the importance of these parameter correlations. So it can be concluded that in 

explaining route choice behavior the explanatory variables are strongly correlated which is 

crucial in obtaining accurate model results and makes day-to-day route choice modeling 

therefore very complex. 

11.3 Research implications 
The findings in this research might have some implications for the current modeling practice. First of 

all, data-analysis showed that inertial behavior could be identified within the real-world choice 

behavior in 23% of the cases leading to lost travel time per individual per trip of around 1 minute, 

emphasizing the importance of (non-)switching behavior in route choice modeling. In total, 1/3 of all 

choices contained a suboptimal choice in terms of travel time (i.e. inertial choices (23%) + 

compromising choices (10%)). Apparently, individuals do not necessarily (want to) use the optimal 

travel time alternative. This emphasizes the potential of management measures pushing individuals 

into a certain suboptimal choice direction in order to establish a system optimum in the road 

network. 

 

In addition, this research showed the importance of individual characteristics, especially the 

personality traits, on this (non-)switching behavior. Until now, the main considerations in route 

choice models focused on the characteristics of the different route alternatives, like travel time. 

More attention to this facet of individual characteristics and insights in the four identified choice 

strategies (including inertia) might be useful to include in current modeling practice. 
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A question that rises is whether approximately 75% correctly predicted cases by the 2-step-model is 

useful for application in practice. For application on a daily and individual level it is desired to 

approach reality as close as possible and a model performance of about 75% might therefore still be 

low. However, when traffic flows are the main interest of the application a wrong predicted choice of 

an individual on one route might be compensated by a wrong predicted choice of another individual 

on the other route and therewith approach a reality alike traffic flow more closely than the provided 

model performance of 75% in this research. As the commonly used modeling approach of the 

shortest path theory obtains also a model performance of 75% which is according to other 

researches relatively high (see discussion in chapter 9), it can be assumed that a model obtaining 

75% correctly predicted cases is sufficient to be useful in practice. 

 

Despite the good performance of the 2-step-model compared to the other models, the question 

remains whether the model has the potential to be used in the common route choice modeling 

practice. The vastly applied shortest path theory provides a slightly higher performance then the 2-

step-model when applied on the used dataset in this research. In fact, this shortest path theory 

outperforms all state-of-the-art models except the threshold theory. In addition, this modeling 

approach is quite straightforward and simple, and does not need any specific data besides the 

average travel times on the different route alternatives, such as individual characteristics of the 

population. Therefore, it is believed that in the near future this commonly used modeling approach 

will remain preferred over the newly developed 2-step-model. In addition, the quite recently 

developed threshold theory outperformed the commonly used shortest path theory. However, more 

feeling and insights in this model and its application is necessary in order to be used in practice. 

Therefore, it is believed that the shortest path theory will remain preferred over this threshold model 

as well. 

 

Research findings related to the model performances of the different state-of-the-art model and the 

developed 2-step-model provide useful insights in the different choice situations and different driver 

types for which these different models are well applicable. These insights might be valuable for the 

modeling practice in the future, although they are very preliminary at the moment. However, the 

results and findings provide sufficient reason for further examination that might lead to more 

concrete findings in the future. Possibly, they change the current modeling practice using each state-

of-the-art model more case-specific and therewith increase the prediction accuracy. 

 

Research findings related to the indifference band show that the indifference band highly varies for 

each situation-individual combination and that none of the three used quantification methods 

obtains the exact value of the indifference band. The different findings suggest that there is no 

deterministic indifference band that fits all situations and all individuals. Therefore, the found values 

should be regarded as an indicative measure rather than a conclusive one and it can only serve as a 

reference and outline the magnitude of the inertia thresholds when used in the field of route choice 

modeling and traffic management research. However, since for most practical applications it is not 

possible to distinguish between each individual driver, an indicative measure of the indifference 

band might be sufficient. 
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Measures within traffic management often aim at improving the throughput in a road network by 

adjusting traffic flows and therewith influencing individual’s route choices. The found indifference 

bands of 12% to 22% of the trip travel time indicate that a significant improvement or deterioration 

of the traffic state or route characteristics on one of the available route alternatives would be 

necessary before individuals will change their route choice. It is assumed that providing travel time 

information will decrease perception errors of individuals and therewith reduce their indifference 

band. As a result, smaller changes in route characteristics and the traffic state will already effectively 

influence individual’s route choice behavior. Perception indifference bands are believed to be around 

8%-9% of the trip travel time, which accounts for about half to two-third of the total indifference 

band. However, besides eliminating perception errors and therewith lowering the indifference 

bands, these findings can also be used to reroute individuals and push traffic flows towards a system 

optimal state. After all, these indifference bands indicate the time margin in which an individual is 

not aware of the travel time differences or is just not interested in this difference. Therefore it is 

likely that individuals would accept travel information that directs them towards a particular 

suboptimal route that lies within these time boundaries. Providing travel information might 

therefore be an important (additional) measure to improve the throughput in a road network. 

11.4 Future research 
This extensive research on modeling daily route choice behavior incorporating the principles of 

inertial behavior and corresponding inertia thresholds provided several important findings. In 

addition, this research has thrown up a few questions in need of further investigation. 

- Currently, the 2-step-model performs quite well compared to other models. However, there 

might be some room left for improvements. 

o First of all, some further examination of the travel time updating process might be 

useful. In this research an averaging method and smoothing method is used. The 

smoothing method led to better results although there are some indications 

suggesting that a travel time updating method is not beneficial. It is suggested to 

replace the first step of the model by the utility maximization theory based on travel 

time, as it is found reasonable to believe that a combination of these models might 

lead to a model performance that exceeds their current performances. 

o In addition, the determination of the initial expected travel time can use some 

further examination. Currently, the average travel time on the route alternatives 

experienced by all individuals broken down by time of day is used as initial expected 

travel time. However, significant differences are found when the general average 

travel time is used (i.e. not broken down by time of day). A suggestion might be to 

assume a stochastic initial expected travel time, randomly picking this from some 

distribution around the average travel time of a certain route for each individual  . 

- It is recommended to apply the state-of-the-art models and the 2-step-model on other 

datasets in order to gain some more insights on the model performances in different choice 

situations. Eventually, it might be possible to determine from these insights which model 

would be in general the best model to apply in a certain situation, leading towards the 

development of a hybrid model as mentioned in the previous section. In addition, more 

insights in the driver types   and which models might be valuable to use for choice 

predictions for these different types could be gained as well. The findings on both the choice 

situations and driver types can be combined into one hybrid model, indicating which model 
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to use if a certain individual   exposes choice behavior of a certain driver type   at a certain 

choice situation  . 

- As the 2-step-model can only be applied in choice situations with two route alternatives, it 

should be examined how to reduce the multiple route alternatives that are available for OD-

pairs in most road networks to only two route alternatives. 

- The introduction of this research (chapter 1) mentioned that the experiment that resulted in 

the used dataset for this research is currently being repeated, adding the providing of travel 

time information to the participants to the experimental set-up. As travel time information is 

expected to affect drivers’ perception and route choice behavior, it is interesting to study 

how this travel information affects the findings presented in this research using the dataset 

of the repeated experiment. For instance, a variable on travel information can be included to 

the sub-models of the combined. After recalibration, the change in coefficients indicates the 

effect of providing travel time information on the model. 

- Finally, if the model is improved and further investigation is conducted, the 2-step-model can 

be implemented in micro-simulation studies, assigning simulated individuals to a simulated 

road network according to the route choice predictions of the 2-step-model. This can also 

provide insights in the effects of implementing the model with and without travel time 

information on the road network. 

 

Over all, the findings, conclusions and recommendations for future research underline the 

importance and relevance of this research as stated in the introduction of this research (chapter 1). 

The developed model provides an initial starting point for further improvements in route choice 

modeling. The conclusions and recommendations show some interesting findings that provide 

direction to further improvements of the modeling practice, such as the development of a hybrid 

model based on OD-pair or driver type and the importance of the travel time updating process and 

the used initializations. The model can be used in simulation research in order to analyze certain 

proposed management measures based on day-to-day dynamics or, for instance, adapt the settings 

of advanced traffic light installations based on the model predictions for the next day. In addition, a 

better understanding of the principles of inertial behavior and daily route choice behavior of 

individuals in general is obtained, which can be used as a foundation for research on the effects of 

travel information on route choice behavior. Findings on the indifference band give an indication to 

what extent individuals can be pushed into a certain direction in order to realize a more optimal use 

of the transportation network. 
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13 Appendices 
This chapter provides the appendices that are referred to in the report. Appendix A contains 

examples of the if-then rules related to the SILK theory. Appendix B shows the detailed indifference 

bands per individual and OD-pair combination for the subconscious and conscious indifference bands 

obtained from data-analysis. Appendix C contains an analysis of the sampler output of the MCMC 

sampler algorithm used for the Bayesian approach in order to obtain an agent-based 2-step-model. 

Appendix D shows the detailed conscious indifference band per individual and OD-pair combination 

obtained from the 2-step-model. 

Appendix A; If-then rules – SILK theory 
Route alternative for consideration 

Below, if-then rules are stated that replicate the heuristics individuals use to identify alternative 

routes based on spatial knowledge of the individual. 

 
Choose Route A as the alternative route for consideration, if  

 [ΔTime = (0.21 ~ infinity)]          Rule 1  

Or [ΔTime = (0.13 ~ 0.21)  

And ΔBtime = (–infinity ~ –0.57)]       Rule 2  

And ΔBtime = (–0.57 ~ 0.19)  And ΔTransfer = 0 or 1]     Rule 3  

And Time = (30 minutes ~ infinity)]       Rule 4  

And ΔBtime = (0.19 ~ infinity) And ΔTransfer = 1]     Rule 5  

Or [ΔTime = (0.04 ~ 0.13)  

And ΔBtime = (–infinity ~ –0.57)]       Rule 6  

And ΔBtime = (–0.57 ~ 0.19) And (ΔTransfer = 0 or 1)]     Rule 7  

And ΔBtime = (–0.57 ~ –0.19) And ( Time = (15 ~ 30 minutes)]    Rule 8  

And ΔBtime = (0.19 ~ 0.57) And (ΔTransfer = 1)]      Rule 9  

Or [ΔTime = (–0.04 ~ 0.04)  

And ΔBtime = (–infinity ~ –0.57)]       Rule 10  

And ΔBtime = (–0.57 ~ 0.19) And ΔTransfer = 1]      Rule 11  

And ΔBtime = (–0.57 ~ –0.19) And (ΔTransfer = 0)]     Rule 12  

And ΔBtime = (0.19 ~ 0.57) And (ΔTransfer = 1)]  

Or [ΔTime = (–0.21 ~ –0.04)  

   And ΔBtime = (–infinity ~ –0.57)]       Rule 13  

And ΔBtime = (–0.57 ~ 0.19) And (ΔTransfer = 1)]     Rule 14  

And ΔBtime = (–0.57 ~ –0.19) And (ΔTransfer = 0)]     Rule 15  

Otherwise, choose Route B as the alternative route for consideration.     Rule 16  

 

Route changing rules 

Below, if-then rules are stated that replicate the heuristics individuals use to (not) switch routes. 
 

Change route, if  

[ΔTime ≤ -39%]          Rule 1  

or [ΔTime ≤ -11% and ΔPleasure ≥ -1]        Rule 2  

or [ΔFamiliarity ≥ 3 and Commute time ≤ 20 min]      Rule 3  

or [ΔTime ≤ 6% and ΔPleasure ≥ 3]        Rule 4  

or [ΔTime ≤ 15% and Δ Familiarity ≥ 2 and ΔDelay ≥ -40%]      Rule 5  

or [Familiarity = 1 and ΔTime ≤ 51% and Commute time ≤ 20 min and Income = 1]   Rule 6  

or [Delay ≥ 4 min and ΔStops ≤ 0 and Commute distance ≤ 8 miles]     Rule 7  

or [ΔPleasure ≥ 2 and ΔFamiliarity ≥ 0 and Commute time ≤ 16 min]    Rule 8  

Otherwise, continue to use the current route.        Rule 9 
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Appendix B; Indifference band per individual-situation combination from 

data-analysis 
This appendix contains the detailed values found for the subconscious and conscious indifference 

bands based on the data-analysis in chapter 3.3. 

B.1 Detailed subconscious indifference bands based on perceptions 

Table 36 shows the detailed subconscious indifference bands based on the perceptions of individuals 

as stated in the post-run questionnaire. Only the observations in which an individual   stated that 

there was no difference in travel time on that OD-pair    or that one route alternative would be 

shorter in travel time than the other route alternative, while based on his experienced travel times 

the other route alternative would be the shorter one, are used. The indifference band is determined 

as the average experienced travel time difference of that specific individual   on that specific OD-pair 

   during the 20 runs  . 

 
Table 36: Detailed subconscious indifference bands based on perceptions*** 

Individual\OD-pair OD-1 OD-2 OD-3 OD-4 OD-5 Averages*: 

111 - - 0.75 - 1.98 1.37 

112 - 0.60 1.36 - - 0.98 

113 0.06 - 0.36 0.47 - 0.30 

114 0.97 - - - - 0.97 

115 - - - - - - 

116 0.61 - - - - 0.61 

121 0.63 - 1.75 0.32 - 0.90 

122 0.44 0.60 - - - 0.52 

123 - - - - - - 

124 - - - - - - 

125 0.95 - - 0.18 - 0.56 

211 - - - - - - 

212 0.58 0.36 2.19 0.20 - 0.83 

213 - - - - - - 

214 0.38 0.65 - - - 0.52 

215 0.39 - - 0.39 - 0.39 

221 0.10 - 0.05 - 0.80 0.32 

222 0.38 1.05 1.23 0.48 - 0.78 

223 0.08 2.08 1.34 0.57 - 1.02 

224 1.16 - - - - 1.16 

225 0.00 1.94 - - - 0.97 

Averages*: 0.48 1.04 1.13 0.37 1.39 0.88**\0.76** 

* In calculating the average thresholds, the OD-pair/individual combination in which no incorrect perception was stated are not included. 
**Weighted averages. 
***Underlined indifference bands are obtained by the statements containing perceptions that the longer route alternative was the 
shortest, while the non-underlined indifference bands are obtained by the statements containing an indifferent perception. 
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B.2 Detailed conscious indifference bands based on inertial choices 

Table 37 shows the detailed conscious indifference bands based on the inertial choices individuals 

made during the experiment. For each individual   and OD-pair    combination the maximum travel 

time difference of the inertial choices is determined, indicating the magnitude of the indifference 

band. 

 
Table 37: Detailed conscious indifference bands based on inertial choices 

Individual\OD-pair OD-1 OD-2 OD-3 OD-4 OD-5 Averages*: 

111 0.23 - 0.23 0.31 - 0.25 

112 0.64 1.35 2.16 - - 1.38 

113 1.13 - 2.10 2.90 - 2.04 

114 0.98 0.66 0.09 - 0.78 0.63 

115 2.82 1.68 - - 1.84 2.11 

116 0.99 2.32 0.58 0.28 - 1.04 

121 0.59 - 2.53 0.74 - 1.29 

122 0.44 0.73 2.00 1.13 1.43 1.14 

123 - 2.74 0.70 0.74 - 1.39 

124 0.85 0.09 1.07 0.03 - 0.51 

125 2.41 0.00 0.66 1.30 - 1.09 

211 1.12 - - 0.33 - 0.72 

212 2.49 0.03 2.65 2.07 - 1.81 

213 0.60 0.79 - - - 0.69 

214 0.92 0.70 1.53 - 2.04 1.30 

215 0.08 - - 1.99 - 1.03 

221 0.59 - 0.42 0.83 - 0.61 

222 2.42 0.97 2.27 0.63 2.58 1.78 

223 1.18 2.17 3.62 1.33 - 2.08 

224 2.78 0.15 - 1.96 0.95 1.46 

225 0.30 2.75 - - - 1.53 

Averages*: 1.18 1.14 1.51 1.11 1.61 1.31**\1.22** 

* In calculating the average thresholds, the OD-pair/individual combination in which no inertial choice is made are not included. 
** Weighted averages. 
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Appendix C; Bayesian sampler output analysis 
This appendix shows an analysis of the sampler output of the MCMC sampler algorithm within 

Matlab in order to determine whether the sample can reasonably be treated as a set of random 

realizations from the target posterior distribution. The analysis methods as suggested by MathWorks 

(i.e. the computer software company that produced Matlab) are used, see MathWorks (2014). 

C.1 Sampler output analysis inertia model 

The sampler output for the inertia model is obtained using a burning rate of 350 and a thinning rate 

of 2000 in order to obtain 1000 samples. This output is found to be a representative sample based on 

the output analysis using different visualizations of the output and its characteristics. 

 
Figure 47: Moving averages of the sampled coefficients for the inertia sub-model (over window of 50 iterations) 

Figure 47 shows the moving average plots for the coefficients of the inertia model. These show 

moving averages over a window of 50 iterations. As a result, the first 50 values are not comparable to 

the rest of the plot. It is found that for most variables a relatively stationary state is obtained. 
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Figure 48: Value of sampled coefficients for the inertia sub-model 

Figure 48 shows the sample coefficient values for each variable of the inertia model. It is apparent 

from these plots that the initial value of the sampling sequence has no influence on the samples, 

which means that the used burning rate of 350, throwing the first 350 obtained samples away, has 

done his job. Furthermore, the relatively stationary state is reflected by the horizontal trend that is 

visible. 
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Figure 49: Variations in the autocorrelation of the sampled coefficients for the inertia sub-model 

Figure 49 shows the variation in the autocorrelation of the model coefficients of the inertia model. 

These plots show if the samples mix rapidly and if the sample can be treated as a sample of 

independent values. A confidence interval of 99% is used, represented by the blue horizontal lines. 

Within these lines the autocorrelation is not significant. For all variables the samples do mix within 

the confidence interval, although for some variables this is takes some time, leaving room for 

improvements. This could be improved by using a higher thinning rate. However, the thinning rate is 

already set at a very high value of 2000. At this moment, it is believed that this is the best obtained 

sample in terms of mixing speed as increasing this value did not improve the sample. 
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Figure 50: The mean of the sampled coefficients updated after each additional sample for the inertia sub-model 

Figure 50 shows the estimated posterior means from the random samples for the inertia model. This 

indicates if the used sample size is large enough. All means of the coefficients seem to stabilize. 

Therefore, it is assumed that the used sample size is large enough. 
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C.2 Sampler output analysis compromising model 

The sampler output for the compromising model is obtained using a burning rate of 250 and a 

thinning rate of 1500 in order to obtain 500 simulated samples. This output is found to be a 

representative sample based on the output analysis using different visualizations of the output and 

its characteristics. 

 
Figure 51: Moving averages of the sampled coefficients for the compromising sub-model (over window of 50 iterations) 

Figure 51 shows the moving average plots for the coefficients of the compromising model. These 

show moving averages over a window of 50 iterations. As a result, the first 50 values are not 

comparable to the rest of the plot. It is found that for all variables a reasonable stationary state is 

obtained. 
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Figure 52: Value of sampled coefficients for the compromising sub-model 

Figure 52 shows the sample coefficient values for each variable of the compromising model. It is 

apparent from these plots that the initial value of the sampling sequence has no influence on the 

samples for all variables. This means that the used burning rate of 250, throwing the first 250 

obtained samples away, has done his job. 
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Figure 53: Variations in the autocorrelation of the sampled coefficients for the compromising sub-model 

Figure 53 shows the variation in the autocorrelation of the model coefficients of the compromising 

model. A confidence interval of 99% is used, represented by the blue horizontal lines. Within these 

lines the autocorrelation is not significant. Based on these plots it can be stated that the samples mix 

rapidly and can be treated as samples of independent values. 
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Figure 54: The mean of the sampled coefficients updated after each additional sample for the compromising sub-model 

Figure 54 shows the estimated posterior means from the random samples for the compromising 

model. It is found that all means of the coefficients stabilize reasonably, indicating that the used 

sample size is large enough. 
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Appendix D; Indifference band per individual-situation combination from 

the 2-step-model 
This appendix contains the detailed values found for the conscious indifference bands based on the 

2-step-model. 

13.1.1 Detailed conscious indifference band obtained from 2-step-model 

Table 38 shows the detailed conscious indifference bands obtained by the 2-step-model. Using the 

inertia sub-model the indifference band is found by adjusting the travel time attribute in order to 

find the probability   of an individual   exposing inertial behavior at OD-pair    to be 50%, which is 

assumed to be the switching point. After all, at a probability   lower than 50%, it is more likely that 

an individual   will make a switching choice, while at a probability   higher than 50% it is more likely 

that this individual   will stick to his current route choice. 

 
Table 38: Detailed conscious indifference bands based on the 2-step-model 

Individual\OD-pair OD-1 OD-2 OD-3 OD-4 OD-5 Averages*: 

111 0 0 0.17 0.17 0.17 0.10 

112 - - 1.25 - - 1.25 

113 3.02 - 3.02 3.02 - 3.02 

114 0.24 1.09 0.24 - 0.24 0.45 

115 - - - - - - 

116 2.41 3.52 2.69 2.41 - 2.76 

121 0 - 0 0 0 0.00 

122 - 10.77 - - - 10.77 

123 1.81 2.37 2.37 1.81 1.53 1.98 

124 - 0 - - - 0.00 

125 1.06 1.62 1.06 1.06 1.06 1.17 

211 2.52 2.42 2.42 2.42 - 2.45 

212 0.84 0.84 0.84 0.84 0.84 0.84 

213 - - - - - - 

214 3.17 3.17 3.17 - 3.17 3.17 

215 1.13 1.13 1.13 2.25 - 1.41 

221 1.11 1.4 - - 1.4 1.30 

222 - - - - - - 

223 4.39 5.51 - - - 4.95 

224 1.57 1.85 1.85 - 1.57 1.71 

225 0 - 0 0 - 0.00 

Averages*: 1.55 2.55 1.44 1.40 1.11 1.67**\2.27** 

* In calculating the average thresholds, the OD-pair/individual combination in which no indifference is stated are not included. 
** Weighted averages. 

 


