
1 

Advanced  
Programming in Engineering 
 
Intro (Stefan – s.luding@utwente.nl) 

Wouter den Otter, Vanessa Magnanimo, Thomas Weinhart, 
        Anthony Thornton, Stefan Luding 

MSM, CTW, MESA+, UTwente, NL 

   
 

  

•  Why is this class important for me? 

•  What will I learn in this class? 

Contents 



2 

Introduction!

Why is the class important for me?  
!
Computations are everywhere in engineering problems. "

"

Many problems are resolved with the aid of computers and 
dedicated programs today. It is important to be able to 
understand & implement numerical algorithms"

"

Is it really important for an engineer to be familiar with 
computers and programming languages? !

Open source 

Based on: 

-  HGrid  

-  MicroMacro 

	
   	
  Dosing	
  applica,on	
  example	
  …	
  



3 

Open source 

Based on: 

-  HGrid  

-  MicroMacro 

	
   	
  Dosing	
  applica,on	
  example	
  …	
  

Open source 

Based on: 

-  HGrid  

-  MicroMacro 

	
   	
  Dosing	
  applica,on	
  example	
  …	
  



4 

Open source 

Based on: 

-  HGrid  

-  MicroMacro 

flowable powder 

 

 

(screw hidden) 	
   	
  Dosing	
  applica,on	
  example	
  …	
  

© Marco Ramaioli, Nestle 

Open source 

Based on: 

-  HGrid  

-  MicroMacro 

flowable powder vs. 

sticky, chunky powder 

 

(screw hidden) 
 

	
   	
  Dosing	
  applica,on	
  example	
  …	
  O. I. Imole, MSM, 2013 



5 

Dosing: DEM vs. experiment 

 
  

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo,  
E. C. Montes, M. Ramaioli, and S. Luding.  
 
Experiments and Discrete Element Simulation of the Dosing of  
Cohesive Powders in a Canister Geometry. In preparation, PhD-thesis, O. I. Imole 2014  

5.5 Numerical Results 123

(a)

!

"

(b)

!

"

(c)

!

"

(d)

!

"

(e) (f) (g) (h)

Figure 5.5: Snapshot of the time evolution of the simulation during the dosing test with
time increasing from (a–d) and (e-h), respectively. (a–d) are taken from simulation while
comparable snapshots (e–h) are image processed experimental visualizations of the powder
profile. Colors/shades in (a–d) indicate the kinetic energy of the particles with blue (static)
and orange (dynamic) particles. For the simulation, parameters are Kc = 0.872 and µ = 0.5.
The coil is not shown for clarity.

at the rear end of the coil and arches forming during ongoing dosage are reproduced in the
simulation. Also, we must point out that the faster emptying at the rear end of the coil is due
to the design of the coil which can be mitigated through the use of conical inserts in the coil
[126]. In the next sections, we will focus on a quantitative comparison between experiments
and simulation.

5.5.2 Calibration and Sensitivity Studies

The particles used in the simulation can be seen as meso-particles consisting of an agglom-
erate of other smaller particles. Due to this, it is important that their material properties are
carefully selected based on sensitivity studies of how each parameter influence the dosing
process in comparison to the experiment.

In order to obtain relevant parameters unique for our problem, we perform various studies in
order to test the sensitivity of the essential material parameters, namely interparticle friction
and cohesion during the dosing process. To achieve this, several simulations were run where

Dosing – parameter calibration 

 
  

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo,  
E. C. Montes, M. Ramaioli, and S. Luding.  
 
Experiments and Discrete Element Simulation of the Dosing of  
Cohesive Powders in a Canister Geometry. In preparation, PhD-thesis, O. I. Imole 2014  

124 Chapter 5 Dosing of cohesive powders in a simplified canister geometry

the interparticle friction is fixed in each case and cohesion is varied. Note that for each
simulation, we obtain data on the cumulative dosed mass and the number of doses. From
each simulation, the respective mass per dose β are obtained within the linear region where
initial conditions and other artefacts due to arching are absent. The mass per dose β is then
systematically compared for different interparticle friction and cohesion and bench-marked
against the obtained experimental β value. We choose β as a calibration parameter since
it is largely independent of the initial mass (see Fig. 5.3a). The For the sake of brevity,
this calibration procedure is performed on using a total mass of 48grams in the box and the
narrow pitch coil with 8 complete turns. We attempted a calibration with higher masses as
compared with the experiments but we observe that due to arching occurring when cohesion
is high, the plot of the cumulative dosed mass becomes non-linear. This made defining an
appropriate β challenging therefore requires further work. In the mean time, we focus the
calibration with the lower mass.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

! 
[g

]

Kc

µ=0.1
µ=0.5

µ=0.65
!exp

Figure 5.6: Calibration of the cohesive stiffness Kc = kc/k and inter particle friction µ . Here
we plot the mass per dose β for different Kc and different µ as given in the inset. The dotted
horizontal line shows the experimental β value.

In Fig. 5.6, we show the mass per dose β , plotted against the interparticle cohesive stiffness
Kc and different interparticle friction coefficient µ . The horizontal dotted line shows the
mass per dose obtained in the experiment with value 3.702g/dose. A first observation is the
consistent decrease of β with increasing Kc for all friction. This is due to reduced flowability
of the bulk sample with increasing cohesion. We note however that for the highest friction,
we observe a slight increase in the β values obtained at high cohesion. This is a consequence
of arching that sets in due to high cohesion causing a bridge in the flow especially in the
region above the coil. This leads to highly unsteady mass throughput from the box.

Comparing the data for different friction, we observe a decrease in β with increasing µ .



6 

Dosing: DEM vs. experiment 

 
  

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo,  
E. C. Montes, M. Ramaioli, and S. Luding.  
 
Experiments and Discrete Element Simulation of the Dosing of  
Cohesive Powders in a Canister Geometry. In preparation, PhD-thesis, O. I. Imole 2014  

Multiscale modeling 

Fully resolved (DNS) Unresolved (DPM) Atomistic (MD) 

Continuum approach Atomistic approach 

1210 m− 610 m− 1 m 310 m

K. Yazdchi S. Srivastava  R.M. Hartkamp 



7 

Multiscale modeling 

Fully resolved (DNS) Unresolved (DPM) Atomistic (MD) 

Continuum approach Atoms/Molecules 

1210 m− 610 m− 1 m 310 m

K. Yazdchi, I. Gueven M. Robinson, S. Srivastava  W.denOtter & R.Hartkamp 

Example: DEM-FEM 
Single particle settling 

Particles on moving mesh (with gravity) 



8 

Example: Fluidization DEM-FEM 

Fluidization on moving mesh with 800 particles (with 
gravity) 

Realistic simulation of powder dispersion by a liquid jet 

•  Dispersion of grains by a liquid jet 
=> food processing industry (Nestlé) 

•  Controlled Lab-Experiment  
(camera, pressure sensor & MRI) data* for 
poppy seeds dispersed in water 

•  Goals: 
1.  Validate SPH-DEM results to experiments 
2.  Investigate dynamics of dispersed bed  
3.  Map process parameters to different regimes 

 initial wet vs. initial dry particles 

*Courtesy Dr Marco Ramaioli & Chloe Trarieux  

MRI 

wet 

dry 



9 

Wet Start 

Dry Start 



10 

Experiment & Simulation of powder dispersion by a 
liquid jet 

•  Application: Particle dispersion  
 (collaboration with Nestle) 

 
•  Method: SPH-DEM 

•  Results: 
•  Wet – Recovers qualitative features  

from experiment: Jet, dispersion …  
•  Dry – Fails to recover some  

major features (e.g. bed lift regime).  
•  Surface tension not modeled yet. 

Introduction!

What can we do with the computer?  
Ø Evaluation of (experimental) data"
Ø Solving physical/engineering problems"
Ø Numerical “experiments“"

How do we do that? !
Ø Compiler languages (C, C++, Fortran,...)"
Ø Interpreter languages (MATLAB,…)"

What do we learn?  
Ø Translate problems to algorithms"
Ø Practical experiences (exercises, debugging…)"



11 

Introduction!
Program:!
§  Algorithms to solve differential equations"
§  Finite differences (MD for solids 1D+2D)"
§  Finite element method (same solid)"
§  Molecular dynamics with Lennard-Jones for fluids"
§  Measuring pressure, temperature and diffusion in MD!
§  Random numbers & Fractals "
§  Monte-Carlo for solving integrals and (some) PDEs"
§  Finite Volume (e.g. shock problem)"
§  SPH (Fluids) and Lattice Boltzmann (Fluids)"

Introduction!

When is the class?  
From 10 November "

"

"

"

Monday Morning ½  8.45-10.30 Theory 

Monday Morning ¾ 10.45-12.30 Practice 



12 

Introduction!

When is the class?  
From 10 November "

"

"
10/11/13 - Introduction to APiE (Stefan Luding & Thomas Weinhart)  
17/11/13 - ODE1 (Thomas Weinhart)  
24/11/13 - ODE2 (Wouter den Otter)  
01/12/13 -  
08/12/13 -  
15/12/13 -  
05/01/14 -  
12/01/14 -  
"

Monday Morning ½  8.45-10.30 Theory 

Monday Morning ¾ 10.45-12.30 Practice 

Introduction!

Where is the class?  
see BB: default"

OH 112"

"



13 

Introduction!

Questions? 
 
w.k.denOtter@utwente.nl 
v.magnanimo@utwente.nl 
t.weinhart@utwente.nl 
a.r.thornton@utwente.nl 
s.luding@utwente.nl 
  
"

"

•  Introduction – Examples 1&2 

•  1st Goal: Debugging and Matlab Optimization  

•  2nd Goal: Solve Differential Equations (ODE) 

•  3rd Goal:  … 1D/2D Molecular Dynamics (ODE) 

•  Morning 3/4: Practical Exercises … 

    

Contents 



14 

Previous Course PiE: Exercises 

1.  #include<iostream> 
2.  #include<fstream> 
3.  #include<cmath> 
4.  using namespace std; 
5.  int main(int argc, char *argv[]) 
6.  { 
7.      const int ipmax=20; 
8.      int inum; 
9.      cout << "Type number: "; 
10.      cin >> inum; 
11.    
12.      if(inum < pow(2.0,ipmax))  // check number 
13.      { 
14.         cout << "Base 10: " << inum  << endl; 
15.         cout << "Base 2: "; 
16.    
17.         // perform binary check for 2^ipmax 
18.         for(int i=ipmax; i>=0; i--) 
19.         { 
20.              if(inum >= pow(2.0,i)) 
21.              { 
22.                 inum -= pow(2.0,i); 
23.                 cout << '1'; 
24.              } 
25.              else 
26.                 cout << '0'; 
27.         } 
28.         cout << endl; 
29.      } 
30.      else 
31.      { 
32.         cout << "ERROR: input-number " << inum << " > " 
33.              << pow(2.0,ipmax) << " too large!" << endl; 
34.      } 
35.      system("PAUSE"); 
36.      return EXIT_SUCCESS; 
37.  }    

inum>=2i 

INPUT 

END 

Loop: i=20,…,0 

0 

1 
yes 

no 

inum=inum–2i  

Differential Equations 

1  Mass-spring system 



15 

Differential Equations 

2  Pendulum 

Differential Equations 



16 

Differential Eqs 

Poincare-cut 
 
instead of x-t-plot 
 
view: v-x-plot 
 
attractors/chaos 

Advanced Programming in Engineering 191158500!
Vanessa Magnanimo, Thomas Weinhart, Wouter den Otter,  

Nicolas Rivas, Marnix Schrojenstein Lantmann, Stefan Luding 

Questions? 

08:45h – 10:30h 
room: OH112!

10:45h – 12:30h 
room: OH112!
!
Submission: Code+Support-files+PDF report!


