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Literature – books

I Michael C. Sukop and Daniel T. Thorne (2006)
Lattice Boltzmann Modeling; an Introduction for Geoscientists and
Engineers, Springer-Verlag Berlin/Heidelberg
Practically oriented, few theoretical details, easy way to get started.

I Dieter Hänel (2004)
Molekulare Gasdynamik, Springer-Verlag Berlin/Heidelberg
A quite exhaustive and yet very accessible introduction to the kinetic theory of gases. The book is available only in German.

I Sauro Succi (2001)
The lattice Boltzmann equation for fluid dynamics and beyond,
University Press, Oxford
Practical, numerically oriented, presents the state of the art of this method by the year 2001.

I Dieter A. Wolf-Gladrow (2000)
Lattice-Gas Cellular Automata and lattice Boltzmann Models, Lecture
Notes in Mathematics 1725, Springer-Verlag Berlin/Heidelberg
Focuses mainly on the lattice automata origin of the LB method, it contains a digression to the Boltzmann equation. The

discussion on symmetry properties of a lattice is a compulsory reading for LB theorists.
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Literature – the early days

I U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett., 56, 1505,
1986
First hydrodynamic Lattice Gas, many practical limitations

I G. Mc Namara, G. Zanetti, Phys. Rev. Lett., 61, 2332, 1988
Chronologically first, unviable in 3d because of collisional complexity

I F. Higuera, J. Jimenez, Europhys. Lett. 9, 662, 1989
Viable in 3d, but only at low Reynolds (high viscosity)

I F. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9,345, 1989
Viable in 3d at Reynolds as high as grid resolution allows. Inaugurates the very influential “top-down” approach

I H. Chen, S. Chen, W. Mattheus, Phys. Rev. A, 45, R5339, 1992
Galilean invariant, Single-time relaxation collisions

I Y.H. Qian, D. d’Humieres, P. Lallemand, Europhys. Lett., 17,
479,1992
Systematic theory of single-time relaxation LB
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Literature – review papers and WWW

I R. Benzi, S. Succi, M. Vergassola,
The Lattice Boltzmann Equation: Theory and Applications,
Physics Reports, 222, 145, 1992.
Early review with many original ideas still useful today

I S. Chen, G. Doolen, Lattice Boltzmann method for fluid flows,
Ann. Rev. Fluid Mech, 30, 329, 1998.
Very readable account of the main theory and developments up to 1998

I D. Raabe,
Overview of the lattice Boltzmann method for nano- and microscale
fluid dynamics in material science and engineering, Mod. Simul.
Mater. Sci. Eng. 12, R13, 2004
Very detailed and well readbable review; see handout!

I http://www.lbmethod.org
Offers a nice list of articles, books, etc. Home of a free implementation OpenLB/Palabos

I http://thomas-pohl.info/work/lba.html
Nice JAVA applet
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Simulation of fluid flows
I Simulation of fluids

• Aiding the design of industrial products (e.g. bridges, cars, etc.)
• Allowing to analyze variables inaccessible to experiments.
• Impact of different physical phenomena can be determined easily.

I Simulations on different scales
• Microscale

• Molecular dynamics simulations allow to include microscopic
interactions.

• It is computationally too expensive to reach experimental timescales.
• Macroscale

• Although the Navier Stokes equations cannot be solved analytically
numerical solutions can be found

• Computationally efficient, huge amount of experience.
• It cannot take into account effects arising from molecular interactions.

• Mesoscale
• Mesoscopic simulation methods describe properties of particle

ensembles
• Typically length and timescales are on the nano to microscale.
• Examples are DPD, SRD, LBM.
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Simulation methods in fluid dynamics

(from Raabe)
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Properties of the lattice Boltzmann method

I Alternative way to solve the Navier-Stokes equations.
I Successor of “lattice gas” models.
I Can be derived from lattice gas or by discretizing the Boltzmann

equation.
I Simple, local dynamics.
I Ideal for parallel computing.
I Complex boundary conditions easy.
I Hydrodynamics: kinetic theory close to equilibrium.
I Mostly low Re, low Ma, low Kn flows.
I Extension to moderate Re, Kn possible.
I No noise (in contrast to lattice gas)⇒≈100 times faster!
I Conceptual difference to other methods: discrete velocities.
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Publications using the lattice Boltzmann method

Growth in number of papers with lattice Boltzmann as a “topic” (search
of article titles, abstracts, and keywords) in the Web of Science database
1992 - 2004. Solid line is fitted exponential growth curve. 2004 data
may be incomplete (from Sukop et al.).
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Kinetic theory

I Assumptions:
• dilute gas
• hard spheres
• great velocities (≈300ms−1)
• only elastic collisions

I ⇒ Exact dynamical state of system given if x, p are known for every
particle at some instant in time.

I ⇒ with classical mechanics all future states are also known.
I Describe system of N particles by a distribution function

(phase space!):
f (N )(x, p, t) (1)

I Time development is described by Liouville equation (6N variables).

• real gases: 1023 particles⇒ 6 · 1023 variables
• solution: only use lower order distribution function (N = 1,2)
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Kinetic theory

I Let us restrict ourselves to first order (single particle) distributions.
I Then, the probability to find a particle at position x and time t with

momentum p is given by
f (x, p, t) (2)

I The remaining N − 1 molecules are unspecified since they are
indistinguishable (dilute gas).

I Probable number of molecule in range [x, x+ dx], [p, p+ dp]:

f (x, p, t)dxdp (3)
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Kinetic theory

I How does volume element dxdp evolve in time if a force F acts?

x→ x+
( p

m

)
dt = x+

(
dx
dt

)
dt = x+ dx (4)

p→ p+ Fdt = p+
(

dp
dt

)
dt = p+ dp (5)

I for f :
f (x+ dx, p+ dp, t + dt)dxdp = f (x, p, t)dxdp (6)

I This is the streaming process!
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Kinetic theory

I What about collisions?
I Some phase points (x, p, t ) might not arrive at

(x+ dx, p+ dp, t + dt ), but others might arrive there, but do not
come from (x, p, t )...

0−dxdpdt : number of molecules not arriving in (x+ dx, p+ dp) (7)

0+dxdpdt : number of molecules arriving in (x+ dx, p+ dp) (8)

which do not come from (x, p, t )

I ⇒ Collisions:
[
0+ − 0−

]︸ ︷︷ ︸
�

dxdpdt

I But: One would have to take into account all possible molecular
interactions!
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Kinetic theory

I Put everything together: add collision and streaming (Eq. 6):

f (x+ dx, p+ dp, t + dt)dxdp = f (x, p, t)dxdp+� dxdpdt (9)

I By adding first order terms of a Taylor expansion of the LHS

f (x+dx, p+dp, t+dt) = f (x, p, t)+dx·∇xf+dp·∇pf+
(
∂f
∂t

)
dt+. . .

(10)
I we get the Boltzmann equation:(

f (x, p, t)+ dx · ∇xf + dp · ∇pf +
(
∂f
∂t

)
dt + . . .

)
dxdp

= f (x, p, t)dxdp+� dxdpdt (11)

I Rearranging leads to:

v · ∇xf + F · ∇pf +
∂f
∂t︸ ︷︷ ︸

Streaming

= �︸︷︷︸
Collision

(12)
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Kinetic theory

I But we are still left with the collisions!
I 50 years later: Bhatnagar, Gross and Krook came up with an

approximate solution.
I Describe collisions as a relaxation towards a Maxwell-Distribution.

� = −
1
τ
[f (x, p)− f eq(x, p)] (13)

I τ is the rate at which the system relaxes towards a local
equilibrium.

I Local equilibrium: f eq
= ρ

(
2πc2

s

)−D/2
exp

(
−p2/2mc2

s

)
I cs =

√
kB T : speed of sound, D : dimension

P. L. Bhatnagar and E. P. Gross and M. Krook, Physical Review 94, 511 (1954)
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The lattice Boltzmann equation
I Fluid is described as discrete particle number densities fi (x, t).

x: lattice site 1t : time step ei : discrete velocities

fi (x+ ei1t , t +1t)− fi (x, t)︸ ︷︷ ︸
Streaming/Advection

= 1t �︸ ︷︷ ︸
Collision

I Example: D2Q9, a 2D lattice with 9 velocities

⇒ 9 distributions
per lattice site
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Possible lattice implementations

D1Q2 D1Q3

D2Q5 D2Q9

D3Q15 D3Q19
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Macroscopic variables

Physical properties of the system can be related to stochastical
moments of the distribution f , e.g.

I density ρ(x, t) =
∑

i

fi (x, t)

I momentum ρu =
∑

i

ei fi (x, t)

I momentum flux
ρuk ul + pδkl =

∑
i

ek ,i el ,i fi (x, t)

Figure : the D2Q9 lattice
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The Bhatnagar-Gross-Krook collision operator
The popular LBGK (Lattice Bhatnagar Gross Krook) collision operator:

�BGK
i =

1
τ

[
fi (x, t)− f eq

i (x, t)
]
.

f eq
i = ζiρ

[
1+ 3

ei u
c2

s
+

9
2
(ei u)2

c4
s
−

3
2

u2

c2
s

]
lattice weights: ζ0 = 4/9, ζ{1,2,3,4} = 1/9, ζ{5,6,7,8} = 1/36

speed of sound: cs

I The collision process is modeled as successive steps towards the
local equilibrium distribution, proportional to the relaxation time τ .

I The LBGK equation is then resolving the weakly compressible
Navier-Stokes equations of a fluid with viscosity ν = c2

s1t
(
τ
1t −

1
2

)
.

I The equation of state becomes ideal-gas like:

P =
∑

i

f eq
i c2

S = ρc2
S = ρkB T .

P. L. Bhatnagar and E. P. Gross and M. Krook, Physical Review 94, 511 (1954)
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From lattice units to SI units
I The speed of sound is known to be

cs =
1
√

3

1x
1t
. (14)

I The kinematic viscosity is given by

ν = c2
s1t

(
τ

1t
−

1
2

)
. (15)

I For stability reasons τ/1t should be≈ 1.
I Assume water: cs = 1480 m

s , ν ≈ 10−6 m2

s

H⇒ 1t = 9.13 · 10−13s, 1x = 2.34 · 10−9m

I This is small because we still have a mesoscopic method.
I But: scaling possible.
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Periodic boundary conditions

ℓk = 1 ℓk = Lk
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The bounce back boundary condition

I One of the major advantages of
the LBM is the easy way of
implementing solid boundaries

I Just block out solid lattice sites
I H⇒mid-grid bounce back
I Disadvantage: slight

dependence of the exact wall
position on viscosity

I More complex boundary
conditions solve this problem

• solid walls
• complex geometries
• porous media

I Only a few lines of code needed!
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Implementing external forces

I An external body force can be used to drive the flow (mimic gravity)
I Force is implemented in a velocity term:

F = ma = m
du
dt

(16)

• density is proportional to mass
• τ is the elementary time of collisions

I Rearrange:

1u =
τF
ρ

(17)

I Add1u to the velocity used to compute f eq:

ueq
= u+1u = u+

τF
ρ

(18)

I Other forces can be added in a similar way
I (Important to remember: u = u+ 1

2 F when writing data to disk.)
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Example: flow past a cylinder

Re=0.16

Re=100

Re=41

www.lbmethod.org, Sukop et al.

file://movies/karman.gif
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Example: flow in porous media

I The lattice Boltzmann method is very popular to study e.g. flow in
porous media.

I Material properties like the permeability κ can be measured.

κ = −
〈u〉S ρν
〈∇P 〉S

(19)

ρ: fluid density
ν: kinematic viscosity
〈u〉S : average velocity
inside sample
〈∇P 〉S : average pressure
gradient inside sample

file://movies/invasion.avi
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Multiphase flows are everywhere!

Mixtures of “simple” liquids

Mixtures of “complex” fluids

Particle-laden flows
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Multiphase/multicomponent models

A number of diffuse interface models exist:
I The colour-field model (Haliday and Care)

• An order parameter field is introduced
• At an interface the densities are redistributed
• Very sharp interfaces are achieved

I The free-energy model (Oxford)
• A free-enery term is introduced to the equation of state (EOS)
• The free-energy has to be constructed carefully to have physical

meaning
• Physical parameters, e.g. the surface tension, can be set directly

I The pseudo-potential model (Shan and Chen)
• Introduction of a density dependent pseudo-potential adds nonideal

terms to the EOS
• Modification of the local equilibrium function (bottom up approach)

Ref.: Dupin et al. J. Phys. A 36, 8517 (2003).
Ref.: Swift et al., Phys. Rev. E 54, 5041 (1996).
Ref.: Shan and Chen, Phys. Rev. E 47, 1815 (1993).
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Concept of the Shan-Chen model

(from Sukop et al.)
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Implementation of the Shan Chen model

Definition of a density-dependend pseudo-potential causing the force

F SC
α =

dpα

dt
(x) = −ψα(x)

∑
α

gαα
b∑

i=0

ψα(x′)ei ,

with the effective mass ψα(x).
This force is altering the global equilibrium velocity

u =

∑
α (uα · ρα)/τα∑
α (ρα)/τα

+
Fα · τα

mα

.

Single Component Multi Phase (SCMP): F = gααψα(x)ψα(x′)

Multi Component Single Phase (MCSP): F = −gααψα(x)ψα(x′)
An extension of the Shan-Chen model even allows to model surfactants!
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The effective mass in the Shan Chen model

I The exact form of ψ(x) determines the equation of state of the
model.

I The easiest:
ψα(x) ∝ ρ (20)

I Typical for single component multiphase:

ψα(x) = ψ0 exp(−ρ0/ρ) (21)

I Typical for multicomponent and multiphase:

ψα(x) = ψ0 (1− exp (−ρα/ρ0)) (22)
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EOS for the single component multiphase model
I For the single component multiphase Shan-Chen model we can

write down an equation of state:

P = ρkB T +
gααkB T

2
(ψα (x))2 , kB T = c2

s =
1
3

(23)

(from Sukop et al.)
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Example: the Laplace law

I In droplets the pressure is always higher than at the outside.
I The pressure difference1P = Pin − Pout depends on radius r and

surface tension σ .

1P =
σ

r
(24)
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Example: Young-Laplace and the contact angle

I Study flow on (patterned) hydrophobic/hydrophilic surfaces
I Our approach: implement a repulsive “Shan-Chen like” force

between surface and fluid in order to model hydrophobic surfaces:
Fwf = 9

w gwf9
f ,9α

= 1− e−ρ
α/ρ0 , gwf is an interaction parameter.

I ⇒variable contact angles possible θ = 101
o

θ = 160
o

file://movies/dropatwall.avi
file://movies/dropatwall.avi
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Moving boundaries

First proposed in 1994 by Ladd:

I Idea: particles occupy some nodes, no
slip boundary conditions

I Momentum change of the fluid bouncing
back is transferred to particles

I Moving wall boundary condition

fi (x, t) = f ∗
ī
(x, t −1t)+ 2ρζi ei uwall︸ ︷︷ ︸

first order correction term

I Solve Newton’s equations for particles
(MD)
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Example: a coarse-grained model for blood cells

Cell-cell interaction
I repulsive Hooke potential

φ(rij ) =

{
ε
(
1− rij/σ

)2
rij < σ

0 rij ≥ σ

I orientation-dependent energy and
range parameters ε, σ

I zero-energy surface approximately
that of ellipsoids

Cell-plasma interaction
I LB3D (D3Q19, BGK)
I suspended rigid

particles; ellipsoidal
shape

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.5 1.0 1.5 2.0

φ
/ε

rij/σ
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Example: hydrodynamic interactions

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6

re
l.

flo
w

ra
te

time [s]

upper branch

lower branch

Observations
I clogging visible
I effect of ε̄r

I RBCs choose faster branch as
known from literature.

file://movies/junction-movie.avi
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Example blood: computational costs

10243 lattice sites;
2.3× 106 particles

 1

 2

 4

 8

 16

 32

 1  2  4  8  16  32

sp
ee

du
p 

(e
ac

h 
no

rm
al

iz
ed

 to
 1

02
4 

co
re

s)
number of cores [1024]

10242×2048 LB nodes, 4080510 MD particles

no md
md

md, manual domain decomposition
ideal

strong scaling on BlueGene/P (FZJ)
Data for 32k cores

I ≈ 2 LB time steps per second
I 64k lattice sites per core
I ≈ 32 particles per core

file://movies/shear-movie.avi
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Example: colloids in multiphase flows

Dinsmore et al,
Science Vol. 298. no. 5595, pp.
1006-1009 (2002)

file://movies/pickering-large.avi
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Commercial application

Turbulent flows (with Exa’s PowerFlow)
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Exercises

1. A basic lattice Boltzmann code (15 points)
• Unpack the provided zip file and study LBM_SandT.m.
• What does the code simulate?
• Identify initialization, boundary conditions, streaming, collision.

2. Flow around a cylinder
• Run cylinder.m and reproduce flow fields as on slide 23. For this,

modify the maximum velocity, viscosity, cylinder diameter to achieve
the required range of Re. Be careful: you might need to modify the
code in order to change these values independently and to make
sure to stay within the limits of stability (umax < 0.1,0.5 < τ < 2).
(15 points)

• Change the initial condition to be able to read an arbitrary geometry
from a file and study the flow to a model porous medium of your
choice. (10 points)

• Compute the permeability κ of your porous medium (see slide 24)
(15 points).
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3. Muliphase flow
• Run shanchen.m. What is the code doing and what does happen if

you modify the coupling parameter G ? What are the limits of phase
separation and miscibility? (15 points)

• Modify the initial condition to start with a spherical droplet. (10
points)

• Compute the surface tension σ for different G as on slide 31. For
this, let the droplet equilibrate and measure its radius as well as the
presure difference between the inside and outside. (20 points)

4. Play with the remaining Matlab scripts. What do they do?
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