
Complexity

T Weinhart

Created by : R van Damme (2009), updated by A Thornton (2011)

Last update: November 2013

Preview: today’s lecture

Efficiency
What is an efficient algorithm?
Debugging
Why does this code not work?
Optimisation
What can I do to improve the speed of my code?

Efficiency/complexity of an algorithm

A non-formal definition of
’time is money, and memory is money, too’

Relevant questions:

1 How many steps does the algorithm need to solve the
problem, as a function of N � 1?
Time efficiency

2 And how many memory does your algorithm take,
as a function of N � 1?
Memory efficiency

3 Usually a worst case analysis.

Algorithm GCD

GCD(n,m) is largest z ∈ N st div(n, z) and div(m, z) are both
true; the function div(n, z) return true if and only z divides n.

input: n,m ∈ N
output: largest z ≥ 1 st div(n, z) and div(m, z) true

for k = 1 to min(m,n) do
if div(n, k) and div(m, k) then

z ← k
end if

end for

Is this a clever design? Time/memory is money. Not really....

Algorithm GCD v2

Idea: change the order of the loop

input: n,m ∈ N
output: largest z ≥ 1 st div(n, z) and div(m, z) true

for k = min(m,n) downto 1 do
if div(n, k) and div(m, k) then

return z ← k
end if

end for

Due to the for-loop you have to do something O(N) times. For
memory you need not worry here: you need O(1) memory.

But is O(N) good or bad?

Efficiency/complexity of an algorithm

Suppose we have a problem in which have a parameter N.
Examples are

Compute the N-th prime number
Compute the inverse of a N × N matrix
Compute the GCD of number a,b with N = min(a,b).
Find all permutations of an array A of length N.
Sort the elements of an array A of length N.

Complexity of an algorithm: calculus

We are mainy interested in the order of complexity, i.e., what
happens for large N.

c = 14N2 + 1000N + 1000000

⇒ c ≈ 14N2 ⇒ c = O(N2)

c = 14N2 + 0.0001 · 2N

⇒ c ≈ 0.0001 · 2N ⇒ c = O(2N)

but everything is relative: O(N3) > O(N2) but

N3 < 1010N2 if N < 1010

Complexity of an algorithm: an impression

For which N can we solve a problem taking f (N)µseconds?

f (N) ↓,T → 1 second 1 month 1 century

ln N 10434294 10112569129709 101369591078130094

N 106 1012 1015

N ln N 105 1011 1014

N2 103 106 107

2N 19 41 51

N! 9 14 17

Ex: permutations O(N!N), sorting O(N log N), GCD O(log N)

Algorithm GCD v3: Euklid’s algorithm

input: n,m ∈ N
output: largest z ≥ 1 s.t. mod (n, z) = 0 and mod (m, z) = 0

while n 6= 0 do
k ← mod(m,n)
m← n
n← k

end while
return z ← n

The product m · n will more than half with each iteration.
⇒ the algorithm requires only O(log N) operations.

Complexity of an algorithm: calculus

for k = 1 to N do
z ← k , u ← k · k

end for

Every not nested for-loop O(N), "no matter what" happens in
between: 2N = O(N).

Complexity of an algorithm: calculus

for k = 1 to N do
z ← k , u ← k · k

end for
for m = 0 to N + 3 do

z ← z + m, u ← u ·m
end for

A sequence of not nested for-loop O(N), "no matter what"
happens in between

Complexity of an algorithm: calculus

for k = 1 to N do
for m = 2 to 2 · N do

z ← k , u ← k ·m
end for

end for

Every nested double for-loop O(N2)
(N · (2N − 1) = 2N2 − N = O(N2))

Complexity of an algorithm: an example

for k = 1 to N do
a← 0
for m = 1 to k do

a← a + xm
end for
Ak = a/k

end for

What is computed here and what is the complexity of the
algorithm?

Complexity of an algorithm: an example

for k = 1 to N do
a← 0
for m = 1 to k do

a← a + xm
end for
Ak = a/k

end for

A running average:

Ak =
1
k

k∑
m=1

xm → A1 = x1, A2 =
1
2
(x1 + x2),

Efficiency of an algorithm: an example

for k = 1 to N do
a← 0
for m = 1 to k do

a← a + xm
end for
Ak = a/k

end for

What is the complexity of the algorithm?

c =
N∑

k=1

k =
1
2

N(N − 1) = O(N2)

Is this a clever algorithm?

Efficiency of an algorithm: an example

s ← 0
for k = 1 to N do

s ← s + xk
Ak = s/k

end for

The complexity of the algorithm is now O(N).

Do it yourself

Describe an algorithm that finds the maximum of n numbers.
What is its complexity?
Does it cost twice as much to find the max and the min?

z = a1
for k = 2 to n do

if ak > z then
z = ak

end if
end for

is an O(n) algorithm: n − 1 comparisons are being made.

Do it yourself

So n − 1 comparisons made for finding the max; if we would try
to find the max and the min of this set, does it cost 2(n − 1)
comparisons?

Take n even (makes little difference).

Do it yourself

1. Take the first two numbers: a1,a2. You need one
comparison to find out which is min and which is max.
Suppose a1 > a2, then mx = a1, mn = a2.

2. Now take a3,a4; we need one comparison which is min
and which is max of the two. Assume a4 > a3. Then

if (a4 > mx)→ mx = a4

if (a3 < mn)→ mn = a3.

Hence we need 3 comparisons to deal with 2 numbers. So in
total we need n/2 · 3 = 3

2n < 2n comparisons.

Computing a determinant

∣∣∣∣∣∣∣∣
A1,1 · · · A1,n

...

An,1 · · · An,n

∣∣∣∣∣∣∣∣ = A1,1 ·

∣∣∣∣∣∣∣∣
A2,2 · · · A2,n

...

An,2 · · · An,n

∣∣∣∣∣∣∣∣−

. . .± A1,n ·

∣∣∣∣∣∣∣∣
A2,1 · · · A2,n−1

...

An−1,1 · · · An−1,n−1

∣∣∣∣∣∣∣∣
One n × n determinant costs computing n n − 1× n − 1
determinants plus n multiplications plus n − 1 additions

One n × n determinant costs computing n n − 1× n − 1
determinants plus n multiplications plus n − 1 additions

We neglect multiplications and additions:

C(n) = nC(n − 1), C(2) = 3

One by one:

C(2) = 3 → C(3) = 9 → C(4) = 36 → C(5) = 180

C(n) =
3
2

n!

Thanks to Gauss, we can compute determinants in n3 steps,
however, so this is what Linear Algebra taught you!!

Debugging

Check error messages and M-lint warnings
Use the MATLAB debugger
Example: surface normal, bubble sort

Optimisation

Preallocate arrays
Vectorize your code
Use logical operators
Use the MATLAB profiler
Don’t change data types of a variable

