
Chapter 3

Ordinary differential
equations

In molecular dynamics the motion of particles in time is computed. Since
the motion of particles in time is described by ordinary differential equations
(ODE’s), the content of this chapter is preliminary for the next chapter on
molecular dynamics.

In general ODE’s do not allow an exact solution. Simulating this motion
in time therefore requires integrating ODE’s numerically. This chapter dis-
cusses some ordinary differential equations and methods used to numerically
integrate them.

In learning to solve ODE’s with numerical integration it is helpful to
start with an ODE that allows an analytic solution, so that results obtained
with numerical integration can be compared to the analytic results. To
this end the harmonic oscillator and its analytic solution are discussed in
Section 3.1.

Secondly, Section 3.2 discusses nondimensionalization, as it is a process
which can get more out of a computer simulation.

Finally, Section 3.3 discusses several methods of numerically integrating
ODE’s. It covers to some detail the Euler, Euler-Cromer, Verlet and Runge-
Kutta integration schemes.

3.1 The harmonic oscillator

In introducing the numerical methods that solve odinary differential equa-
tions in this course, the methods are applied to solving the differential equa-
tion of the harmonic oscillator. The reason is that we can obtain an analytic
solution to this equation, allowing us to compare and judge the quality of
the numerical solutions.

In this section the analytic solution of the equation of motion of the
harmonic oscillator is derived.

22

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 23

The differential equation of the harmonic oscillator represented in Fig. 3.1
is given by

mẍ(t) = −k(xm − xe),

where m is the mass the spring acts on, k is the stiffness of the spring, xm
is the position of the mass and xe is the equilibrium position of the mass.

Figure 3.1: Schematic representation of the harmonic oscillator

Letting x = xm − xe we can rewrite this to

ẍ(t) = −
k

m
x, (3.1)

which can be interpreted as a spring with an equilibrium length of zero.

3.1.1 Analytic solution

The solution to Eq. (3.1) is given by

x(t) = A sin(ωt + δ), (3.2)

where ω is the angular frequency of oscillation given by ω = 2π/T =
�
k/m,

where T is the period of oscillation.
In order to validate the numerical solutions the velocity is also required.

The analytic solution for the velocity is given by the derivative of Eq. (3.2),
equal to

ẋ(t) = ωAcos(ωt + δ). (3.3)

The amplitude A and phase δ are determined by the intial conditions
x(0) = x0 and v(0) = ẋ(0) = v0. Substituting these in Eqs. (3.2) and (3.3),
respectively, and rewriting gives

sin δ =
x0
A
, (3.4)

cos δ =
v0
Aω

. (3.5)

We can solve for the phase δ by dividing Eq. (3.4) by Eq. (3.5):

tan δ = ω
x0
v0

⇒ δ = arctan

�

ω
x0
v0

�

. (3.6)

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 24

We can solve for the amplitude A by squaring and adding Eqs. (3.4) and
(3.5):

sin2 δ + cos2 δ = 1 =
1

A2
(x20 + (v0/ω)

2)

⇒ A =
�
x20 + (v0/ω)2 (3.7)

Ex. 2 — Write a small program that generates the analytical solution
as time series and plot x vs. t.

3.2 Nondimensionalization

Using dimensions in our computations makes them easy to understand. As-
signing dimensional units such as kilometers, kilograms and meters to the
numbers we compute with provides an easy check for consistency. But it is
not so that dimensions are necessary, and this is clear when one considers
the computations performed by a computer. A computer just uses what we
regard as pure numbers to perform its computations.

We can also perform our computations without the use of dimensions.
The process of rewriting equations to a form that makes no use of dimensions
is called ‘nondimensionalization’. There are advantages to doing so.

One advantage of nondimensionalization is that the solution to the re-
sulting nondimensional equation can be converted to the solution to a range
of real world problems. I.e. one simulation provides the results that can be
converted to multiple real world problems. Another advantage has to do
with the limitations on the precision of numbers the computer can repre-
sent. When the numbers that appear in a problem range between orders
of magnitude too far apart for a computer to represent simultaneously with
the required accuracy, nondimensionalization might allow one to represent
the problem on a scale that a computer can represent properly. Another
advantage is that in some cases nondimensionalization reduces the number
of parameters in the equation.

Any dimensional quantity Q can be thought of as being a product of a
dimensionless quantity (a numerical value) {Q} and a dimensional unit [Q].
The nondimensional number {Q} is said to be measured in units of [Q]. To
nondimensionalize an equation, the dimensional quantities in the equation
can therefore be multiplied with an inverse dimensional unit 1/U, such that
[U] = [Q] and therefore Q/U = {Q}/{U}, a dimensionless number. An
interesting choice of U would be a unit that only depends on characteristics
of the system under consideration. For example, given a characteristic length
σ, we define a nondimensional variable x� to nondimensionalize the variable
length x according to x� := x/σ.

In the following, the differential equation of the harmonic oscillator,
Eq. (3.1), is nondimensionalized.

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 25

First we have to find enough characteristic quantities. For each unit
in the equation we define a unit that is just a multiple of the SI unit, but
depends on the characteristics of a harmonic oscillator. So we could define
a unit of length σ representing the equilibrium length, a unit of mass m0

representing the oscillating mass, and a unit of time τ representing the
period of oscillation.

In order to nondimensionalize Eq. (3.1) we replace the dimensional quan-
tities x, t, k and m with nondimensional quantities x�, t�, k� and m� by mul-
tiplying the dimensional quantities with an appropriate combination of the
inverse of units σ, m0 and τ. This can be achieved by choosing x� = x/σ,
t� = t/τ , k� = kτ2/m0 and m� = m/m0. Note that for this equation we have
now defined enough units to nondimensionalize any dimensional quantity.
For example, we could define a unit of density as ρ0 = m0/σ

3.
Instead of solving Eq. (3.1) we can now solve the nondimensional differ-

ential equation
d2x�

dt�2
= −

k�

m�
x�. (3.8)

To obtain a solution we set k� and m� to whatever we find appropriate. We
also provide dimensionless initial conditions x�0 = (1/σ)x0 and v�0 = (τ/σ)v0,
which are determined by the particular problem to be solved. This results
in the solution x� as a function of t�.

We can now obtain the solution to a real world dimensional problem by
computing x = x�σ and t = t�τ . Here σ and τ can be varied to describe
different real world problems.

The choice of reference units is somewhat arbitrary. One can use any
combination of units that together provide all the physical dimensions that
occur in the equation. Another set of reference units could be the position
σ0, the mass density ρ0 and the system energy �0.

The number of quantities to keep in mind can grow quite large. One
may find it convenient to give an overview of all the quantities in a table.
An example of such an overview is given in Tab. 3.1. It lists all dimen-
sional quantities we have in mind and their relation to the nondimensional
quantities in the simulation.

Ex. 3 — Nondimensionalize Eq. (3.1) using the reference units σ0, ρ0
and �0 and fill in the table using these units.

3.3 Numerical integration of ODE’s

Many odinary differential equations do not allow for an analytic solution. To
obtain a solution therefore requires an approximate approach, as provided
by numerical integration.

The solution to Eq. (3.1) can be approached by integrating it numerically.
To approach the exact solution, we estimate the value of x at discrete times

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 26

Dimensional quantity Quantity in simulation

reference units
position σ σ� = 1
time τ τ � = 1
mass m0 m�

0 = 1

measurable quantities

position x x� = x/σ
time t t� = t/τ
mass m m� = m/m0

stiffness k k� = kτ2/m0

angular frequency ω ω� = ωτ
period T T � = T/τ
density ρ ρ� = ρσ3/m0

energy � �� = �τ2/(m0σ
2)

Table 3.1: An overview of a nondimensionalization of the harmonic oscillator

ti = iΔt, where Δt is the size of some arbitrary time interval. Five numer-
ical integration schemes are introduced: the Euler, Euler-Cromer, Verlet,
leapfrog and Runge-Kutta integration schemes.

3.3.1 Euler integration

For the Euler method the estimation goes as follows. Suppose we know
the position and velocity at some time ti, which we denote by xi and vi,
i.e. we know xi = x(ti) and vi = v(ti). We can then estimate the position
at the next time step ti+1 = ti +Δt by assuming the velocity stays constant
during the time interval Δt. We thus estimate xi+1 ≈ xi + viΔt. Now,
using this to compute the position at the next time step xi+2 would require
the velocity vi+1. Analogous to computing xi+1, this can be estimated by
vi+1 = vi + aiΔt. Here ai is the acceleration at time step ti, which for a
harmonic oscillator we can compute from Eq. (3.1): ai = ẍi = −ω2xi, where
ω =

�
k/m.

Thus, given an intial position x0 and intial velocity v0, we can now
estimate the solution x(t) at times ti = t0 + iΔt, with i = 1, 2, ...,M, and
M = tmax/Δt by computing

xi+1 = xi + viΔt, (3.9)

vi+1 = vi + aiΔt, (3.10)

where ai = −ω2xi.
A single integration step using the Euler method is visualized in Fig. 3.2.

Given the exact solution xi = x(ti) and vi = ẋi(ti), the approximation of
the solution at the next time step xi+1 = x(ti+1) is visualized.

There are two major disadvantages to the Euler integration scheme. One
is that the integration scheme recovers the Taylor expansion of x(ti +Δt) =

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 27

x

Euler method integration step

t
i

t
i+1

x
i

x
i+1

Figure 3.2: Visualization of an Euler method integration step

x(ti) + ẋ(ti)Δt + . . . up to first order in Δt only, making the error per step
(commonly referred to as the local error) proportional to Δt2. The other
is that the scheme tends to ‘overshoot’ the analytic solution at every step,
thereby accumulating local errors into a global error (the total error over
a trajectory of length tmax) that in simulations is found to be proportional
to the employed time step.1 An algorithm with this property is first order
accurate. Consequently, decreasing the time step Δt by a factor h (and
simultaneously increasing the number of steps by a factor h to conserve tmax)
makes the error only a factor h smaller, hence making your time step smaller
is therefore not that effective in improving the accuracy of the calculated
trajectory. Higher order schemes exist for which the error decreases by a
factor hn with n > 1.

3.3.2 Euler-Cromer integration

The Euler scheme has the disadvantage of constantly overshooting the exact
solution. The Euler-Cromer scheme avoids this by estimating the position
xi+1 using not the velocity at the current time, vi, but the estimated velocity
at the next time, vi+1. It is as if it anticipates where to go next, avoiding the
constant overshooting. Of course this requires that we estimate vi+1 first.

Using the Euler-Cromer scheme, given the intial position and velocity
x0 and v0, we can estimate the solution x(t) at time ti, i = 1, 2, ...,M, by
computing

vi+1 = vi + aiΔt, (3.11)

xi+1 = xi + vi+1Δt, (3.12)

where for the harmonic oscillator ai = −ω2xi with ω =
�

k/m.

1 A run of length tmax requires tmax/Δt steps, each contributing a local error O(Δt2),
thus accumulating a global error proportional to tmaxΔt.

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 28

A single integration step using the Euler-Cromer method is visualized in
Fig. 3.3. Given the exact solution xi = x(ti), it shows the approximation of
the solution at the next time step xi+1 = x(ti+1).

x
Euler−Cromer method integration step

t
i

t
i+1

x
i

x
i+1

Figure 3.3: Visualization of an Euler-Cromer method integration step

Simulations of a harmonic oscillator using the Euler-Cromer scheme show
that it performs much better than the original Euler scheme. Nevertheless,
the simulations also reveal that the Euler-Cromer scheme is still only first
order accurate, just like the Euler scheme. An explanation for this apparent
contradiction is provided below.

3.3.3 Verlet integration

A higher order scheme is the Verlet integration scheme. It is derived by
considering the Taylor series expansion of the position x(t). The Taylor
series expansion of xi+1 truncated to second order is

xi+1 ≈ xi + ẋiΔt +
1

2
ẍiΔt2. (3.13)

Doing the same for xi−1 gives

xi−1 ≈ xi − ẋiΔt +
1

2
ẍiΔt2. (3.14)

Adding Eqs. (3.13) and (3.14) we get an approximation for xi+1 in terms of
ẍi, xi and xi−1:

xi+1 ≈ 2xi − xi−1 + ẍiΔt2. (3.15)

We are thus let to the Verlet algorithm, which calculates the next position
from

xi+1 = 2xi − xi−1 + aiΔt2. (3.16)

Given initial conditions x(0) = x0 and ẋ(0) = v0, we still need x−1 = x(−Δt)
to obtain x1. When this information is not available, it can be generated by
an Euler approximation: x−1 = x0 − v0Δt.

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 29

The advantages of the Verlet integration scheme are that it is rather sim-
ple and compact, yet it is second order accurate. This means that reducing
the step size by a factor h (while simultaneously increasing the number of
steps by a factor h to conserve tmax) makes the global error in the numer-
ical solution h2 times as small.2 This in contrast to the Euler and Euler-
Cromer schemes, which are only first order accurate. Also, unlike the Euler
and Euler-Cromer algorithms but in agreement with Newton’s equations of
motion, the trajectory generated by the Verlet scheme is time reversible.
Furthermore, the Verlet scheme is a symplectic integrator, meaning that the
trajectories generated by the algorithm conserve volume in phase space (as
do Newton’s equations of motion). The latter two properties contribute to
the long term stability of trajectores calculated by the Verlet scheme, as
reflected by a total energy that fluctuates around an average value rather
than decreasing to zero or growing to infinity. This stability is in marked
contrast to the Euler and Runge-Kutta (see below) methods, which see the
total energy grow to infinity or decrease to zero, respectively. Note that long
term stability is not to be confused with long term accuracy.

The disadvantages of Verlet integration are that it only works efficiently
for differential equations of the form ẍ = f(x), and that the velocities are
not readily available.

3.3.4 Leapfrog integration

Closely related to the Verlet scheme is the leapfrog scheme. An auxiliary
variable wi is introduced, defined as

wi = (xi − xi−1) /Δt. (3.17)

The above Verlet scheme is then readily rewritten as

wi+1 = wi + aiΔt (3.18)

xi+1 = xi + wi+iΔt. (3.19)

The difference between this second order scheme and the superficially identi-
cal first order Euler-Cromer scheme is subtle. In the Euler-Cromer scheme,
the velocity vi is the numerical approximation of the velocity at the integer
timestep: vi ≈ v(ti). In the leapfrog scheme, the velocity wi is by defi-
nition equal to the average velocity between ti−1 and ti, which makes wi

a numerical approximation for the velocity at the half-integer time step,

2 The local error in the Verlet scheme is O(Δt4), a significant improvement over the
O(Δt2) of the Euler scheme. Unfortunately, the factor 2 in Eq. (3.16) makes the global
error grow quicker than linear with the number of steps, resulting in a global error over
a run of length tmax proportional to Δt2. Note that to achieve this performance, x0 and
x−1 must be exactly identical to x(t0) and x(t−1), respectively. Bootstrapping the Verlet
scheme with the Euler step x−1 = x0 − v0Δt reduces the global accuracy to first order.

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 30

wi ≈ v((i − 1
2)Δt).3 Continuing this line of thought, one may approximate

the velocity at the integer timestep by the average v(ti) ≈
1
2(wi+wi+1). The

alternation of full step positions xi and midstep velocities wi is reflected in
the name of the scheme, leapfrog integration, after the child’s game. Just
like the Verlet scheme, it only works efficiently for differential equations of
the form ẍ = f(x). Note the time symmetry underlying the Verlet and
leapfrog schemes; symmetry is often a good property to have in a numerical
scheme.

3.3.5 Runge-Kutta integration

The last integration scheme we discuss is the second order accurate Runge-
Kutta scheme, also called the midpoint method. It is thus, as Verlet inte-
gration, second order accurate, but in contrast to the Verlet scheme it can
be applied to differential equations of the form ẍ = f(x, ẋ).

The Runge-Kutta scheme works by using the velocity and accelerations
at intermediate times ti+1/2 in estimating ti+1, so

xi+1 = xi + Δtv̄i (3.20)

vi+1 = vi + Δtāi, (3.21)

where v̄i = vi+1/2 and āi = ai+1/2. To compute v̄i and āi we use the
Euler scheme. For the harmonic oscillator the velocity at the intermediate
timestep can be computed by

v̄i = vi +
Δt

2
ai,

where ai = −ω2xi, ω =
�

k/m by Eq. (3.1). The intermediate acceleration
can be computed by substituting the intermediate position in Eq. (3.1);

āi = −
k

m
x̄i,

where x̄i = xi+1/2, approximated with the Euler method by

x̄i = xi +
Δt

2
vi.

A single integration step using the midpoint method is visualized in
Fig. 3.4. Given the exact solution xi = x(ti) the approximation of the
solution at the next time step xi+1 = x(ti+1) is visualized.

For a differential equation of the general form ẋ = f(t, x) where x de-
notes a vector, the Runge-Kutta scheme results in

xi+1 = xi + Δtf

�

ti+1/2, xi +
Δt

2
f(ti, xi)

�

. (3.22)

3 This approximation is sufficiently accurate for a run started with x0 = x(t0) and
w0 = ẋ(−1

2
Δt) to generate a second order accurate trajectory.

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 31

x

Midpoint method integration step

t
i

t
i+1/2

t
i+1

x
i

x
i+1

Figure 3.4: Visualization of a Midpoint method integration step

It is now shown how Eq. (3.1) can be solved using the general form of
the midpoint method, Eq. (3.22).

In order to get Eq. (3.1) into the form ẋ = f(t, x) we must introduce the
extra equation

ẋ = v.

From Eq. (3.1) we can now write

v̇ = −
k

m
x.

To rewrite these coupled differential equations in a suitable form, we use the
vector x = [x, v]T. Now, the equation

ẋ = f(t, x),

with

f(t, x) =

�
v

− k
mx

�

, (3.23)

is equivalent to Eq. (3.1).
Now suppose we have the initial conditions x(0) = x0 and v(0) = v0, or

x0 = [x0, v0]
T ,

stiffness k and mass m, then we can compute x1 by substituting this into
Eq. (3.22) with i = 0 and f(t, x) given by Eq. (3.23), and so on to compute
x2, x3,

3.3.6 MATLAB ode45

In order to numerically solve a differential equation the above schemes can
be implemented by hand. MATLAB comes with a family of implemented

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 32

numerical solvers, however. The MATLAB function ode45 implements a
different member of the Runge-Kutta family of ODE solvers, namely the
Dormand-Prince method.

In the simplest case the function call is

[t, y] = ode45(odefun, tspan, y0);

We will now first discuss the input arguments and output arguments.
The argument odefun is a function handle to a function m-file imple-

menting the function f(t, x), which is Eq. (3.23) for the harmonic oscillator.
Suppose this function is implemented in MATLAB as in Listing 3.1, then
odefun should be assigned with

odefun = @harmonic oscillator rhs;

function dxdt = harmonic oscillator rhs(t, x)

k = 1;
m = 1;

dxdt = [x(2);
−k / m * x(1)];

Listing 3.1: content of harmonic oscillator rhs.m

The second argument tspan is a vector specifying the time interval the
simulation should cover. It could be assigned with

tspan = [t0, tf];

where t0 and tf are the start and end times, respectively.
The third argument y0 is a vector specifying the initial conditions, which

in this case could be defined with

y0 = [x0; v0];

Here x0 and v0 are the initial position and velocity, respectively.
The call to ode45 returns a column vector t with all the time points the

solution was computed at and a matrix y whose rows correspond to the solu-
tion at a time point. The y is thus what x is in Eq. (3.23). We can now plot
the position and velocity vs. time with the commands plot(t, x(:, 1))
and plot(t, x(:, 2)), respectively. Figure 3.5 shows the plot resulting
from the commands in Listing 3.2.

3.3.7 Other integration schemes

A lot more methods have been developed to numerically integrate ordinary
differential equations. Important characteristics are of what order such a

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 33

% Simulation parameters
t0 = 0; % start time
tf = 4 * pi; % end time
x0 = 0; % initial position
v0 = 1; % initial velocity

% Use ode45 to simulate
odefun = @harmonic oscillator rhs; % function handle to f(t, x)
tspan = [t0, tf]; % simulation time span
y0 = [x0; v0]; % initial conditions
[t, x] = ode45(odefun, tspan, y0); % call to ode45

% Plot result
plot(t, x(:, 1));
xlabel('time t'); ylabel('position x'); axis tight;

Listing 3.2: solving harmonic oscillator using ode45 and plotting the result

numerical integration scheme is, how stable it is and which type of equation
it can solve.

Higher order schemes converge faster, and thus are cheaper to use when
the problem is sufficiently complicated. Using a lower order scheme might
take longer because although the computation per timestep is cheaper, the
number of timesteps required to obtain the solution can be so much greater
than it is for a method of higher order that the total amount of computation
required is greater.

Higher order schemes are given by e.g. Runge-Kutta schemes, the most
famous being the RK4 method, multistep methods and predictor-corrector
methods. Both Runge-Kutta and multi-step methods use more and more
information to determine the next time step, leading to a higher order of ac-
curacy. The difference is that Runge-Kutta schemes discard the information
used to compute the next time step for each time step, whereas multi-step
methods reuse the same information for the computation of several time
steps. Predictor-corrector methods are a class of methods in which first
a prediction of the solution at the next time step is made, and next this
prediction is used to compute a better approximation to the same solution.
Many more methods exist and an overview can be found on Wikipedia by
searching for ‘template:numerical integrators’ 4.

Stability is an issue when the size of the time step required by a method
is determined by stability reasons instead of accuracy reasons. For many
algorithms a timestep that should lead to an accurate enough solution is
not sufficient because it causes the solution to ‘explode’. Equations whose

4the ‘template:’ part is necessary because the page is in the template namespace on
Wikipedia, not the default main namespace

CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS 34

0 5 10
−1

−0.5

0

0.5

1

time t

p
o
si

tio
n
 x

Figure 3.5: Position as a function of time of the harmonic oscillator as
simulated with ode45

numerical integration by certain methods causes this behaviour are called
stiff. A stable algorithm allows the size of the timestep to be determined by
accuracy reasons only and therefore leads to a smaller number of timesteps
required for obtaining a solution. In general, implicit methods are more
stable and computationally less expensive in solving stiff problems. For
implicit methods the solution for the next time step can not be expressed
explicitly in solutions at previous time steps, requiring extra computation
to solve for the next time step.

In general, integration schemes are restricted to a specific class of equa-
tions. For example, the midpoint method discussed before can only integrate
equations of the form y�(t) = f(t, y(t)), y(t0) = y0. Also, numerically inte-
grating partial differential equations generally requires very different meth-
ods from the ones just discussed. Examples of methods to numerically in-
tegrate partial differential equations are finite difference methods, the finite
element method and the finite volume method. The last two are discussed
later in this course.

