Chapter 2

Complexity, optimisation
and debugging

2.1 Complexity

The complezity, or efficiency of an algorithm is a measure of how much
resources (i.e., time and memory) an algorithm takes to produce an answer.
This is typically dependent on the problem size N. For example, if N is large,
it will take longer to determine if the integer IV is prime or to sort an array of
N integers. However, the complexity depends not only on the problem size,
but also at the exact inital conditions. For example, the sorting algorithm
might be very quick if the initial array is already sorted, but will take a long
time for randomized arrays. Equally, a prime-detection algorithm should
take longer to show that 523 is prime (it has to do many checks), than to
show that 10'® is not prime (as it is divisible by 2). Therefore, the complexity
is typically a worst-case analysis (how long can it possibly take to sort N
integers, regardless of the initial ordering). Further, since efficiency of an
algorithm matters most for large problem sizes, we restrict the analysis to
large N > 1. Thus, we want to answer the following questions:

1. Time complexity: how many elementary operations/ how much com-
puting time does the algorithm take in the worst case to solve the
problem as a function of the problem size N > 17

2. Memory complexity: how much memory does your algorithm take ...?

Since the exact computing time is very difficult to determine and hard-
ware dependent, we only measure the order of complezity; this only takes
into account the largest contribution as a function of the problem size N:
E.g., if the computing time of an algorithm equals ¢ = 2N? + 100, the order
of complexity will be O(N?). If the computing time of a second algorithm
equals ¢ = 14000N + 1000 log(N), the order of complexity will be O(N).

11



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 12

This, however, is only useful to estimate the computing costs for very large
N: Due to the large coefficients, the second algorithm will only be quicker
than the first algorithm if N > 7000!

2.1.1 Example: Finding the greatest common denominator

As a first example, we calculate the complexity of Algorithm 1, which de-
termines the greatest common divisor (GCD) of two integers m and n.

Algorithm 1 A simple algorithm for finding the GCD
Input: n,m € N
Output: largest z € N s.t. mod(n, z) =0 and mod(m,z) =0
for k =1 to min(m,n) do
if mod(n, k) = 0 and mod(m, k) = 0 then
z4+k
end if

end for

Here, mod(n, z) denotes the remainder of the long integer division, e.g.
mod(13, 5) = 3 since 13 = 2 -5 + 3. The algorithm takes all numbers k
from 1 to min(m,n) and checks if k divides both m and n. If it finds such
a common divisor, it assigns its value to z. As it loops over k in increasing
order, the value of z will be the largest common divisor, the GCD. Note
that, since 1 is a common divisor for any pair (m,n), the GCD is always
defined.

To calculate the complexity, note that each loop consists of four opera-
tions, mod(n, k) = 0, mod(m, k) = 0, the and operator and z <+ k. The
loop is repeated min(m, n) times, thus the time complexity of the algorithm
is 4N, with N = min(m, n) representing the problem size. As only four vari-
ables are used (m,n, k, z), the memory complexity is 4. Thus, the complexity
of Algorithm 1 is of order O(N) in time and O(1) in memory.

The speed of this algorithm can be improved: For example, since we are
looking for the greatest common divisor, one can start to search through all
numbers 1 to min(m,n) backwards and stop once the first common divisor
(and therefore the greatest one) is found. This is shown in Algorithm 2,
which is faster, as the loop is repeated N times only in the worst case, when
the GCD is 1. However, the order of complexity of Algorithm 2 is not better
than for Algorithm 1, as it is determined by the worst case.

The exact number of elementary operations is different for a complex function such
as mod(n,k) = 0 and a simple assignment such as z < k. However, since we are only
interested in the order of complexity, it is sufficient to know that the amount of operations
is independent of N.



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 13

Algorithm 2 An improved algorithm for finding the GCD
Input: n,m e N
Output: largest z > 1 s.t. mod(n, z) = 0 and mod(m, z) =0
for k = min(m, n) downto 1 do
if mod(n, k) = 0 and mod(m, k) = 0 then
return z <k
end if
end for

Using a very different approach, we will now show that even the order
of complexity of an algorithm can be improved. Algorithm 3, also known as
Euclid’s algorithm,? takes into account that each common divisor (therefore
also the greatest one) of m and n is also a common divisor of mod(m,n) and
n.3 Therefore, we can reduce the problem size by replacing the pair (m,n)
by (n, mod(m,n)) recursively until we reach a problem that is easy to solve.
This operation only reduces the problem size if m > n. Note, however,
that the first iteration will switch the two values if the initial data is not
in increasing order. The algorithm can be ended once mod(m,n) = 0 as
this means that n is a common divisor (and therefore the greatest one). For
example, starting the algorithm with (m,n) = (105, 252) yields (105, 252) —
(252,105) — (105,42) — (42,21) — (21,0), therefore GC'D(252,105) = 21.

Algorithm 3 Euclid’s algorithm
Input: n,m e N
Output: largest z > 1 s.t. mod(n, z) =0 and mod(m, z) =0
while n # 0 do
k < mod(m,n)
m<n
n <+ k
end while
return z < n

The complexity of Algorithm 3 is of order O(logN) in time and O(1) in
memory, and therefore much faster than the previous two algorithms. To
prove this, set k& = mod(m,n) and m > n. Then m > n > k > 0 and
m > n+ k > 2k. Therefore, (m -n)/2 > n -k, thus the product of the
two numbers will more than half with each iteration. After at most two
iterations, the product of the two numbers is less than N? = min(m,n)?.
Therefore, it will be smaller than 1 in at most logy(N?) +3 = 2logy(N) + 3
iterations. Each iteration consists of elementary operations, therefore the

algorithm takes O(log N) operations.

2T. L. Heath, The Thirteen Books of Euclid’s Elements, Cambridge Univ. Press, 1925
Sftm=a-k,n=">0-k, m=c-n+mod(m,n), then mod(m,n) = (b —a-c)k



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 14

Table 2.1: Complexity of an algorithm. For which IV can we solve a problem
which requires f(V)us computing time?

f(N) | 1 second 1 month 1 century
In N 10434294 10112569129709 101369591078130094
N 106 1012 10°
NInN 10° 101 1014
N? 103 106 107
oN 19 41 51
N! 9 14 17

2.1.2 Interpreting the order of complexity

While the order of complexity cannot predict the actual speed of your algo-
rithm, it is a good measure to estimate the problem size one can expect to
solve in a reasonable time. Table 2.1 shows the time it takes to solve a prob-
lem of given complexity. While an algorithm of complexity O(log N) can be
used for almost arbitrary problem sizes, an algorithm of polynomial order,
O(N®), can be used for moderate problem sizes. An algorithm of higher
complexity such as O(N!) or O(2V), can only be solved in a reasonable
time for very small problem sizes. The goal of algorithm design therefore is
to make the complexity as small as possible. Here are a few examples of the
complexity of the well-known algorithms for basic mathematical problems:

e Find all prime numbers from 1 to N, using the Sieve of Erathostenes:
Time complexity O(N log(log N)), memory complexity O(N).*

e Find all permutations of the numbers 1,..., N using the MATLAB
function perms: Time and memory complexity O(N!N).

You can test the time complexity of an algorithm using the MATLAB
command cputime. This is illustrated in Algorithm 4. There, a set of
problem sizes IV is chosen and the computing time t is calculated for each
value of N. Because the computing time cannot be accurately measured
for small NV and we want to finish the test in a reasonable time, we pick
the range of problem sizes N such that the computing time is not too small
and not too large (between approx. 0.01ls and 60s). If we do not know
the time complexity beforehand, we can also plot ¢ against N in log-log
scale; if the result is a straight line, its slope corresponds to the polynomial
order of complexity. If the curve is convex (e.g. curved like a parabola), the
algorithm has a higher than polynomial order and will be impractical for
large problem sizes.

4http ://en.wikipedia.org/wiki/Sieve_of_Eratosthenes



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 15

Algorithm 4 script to test the time complexity of the primes algorithm

N=logspace (5.5,8,30);
for i=1l:length (N)

tinit = cputime;

p = primes (N(1));

t(i)=cputime—tinit;
end

loglog (N, t./ (N.xlog(log(N)))," ' .—")

2.1.3 Example: Finding the running average

For many basic problems, algorithms of varying complexity exist. For exam-
ple, Algorithms 5 and 6 both compute the running average Ay = Zle i,
k=1,...,N from the input values x;. However, Algorithm 5 requires a pair
of nested loops, yielding a time complexity of ¢ ~ 25:1 k= %N (N-1)=
O(N?). Algorithm 6 is much simpler, with a time complexity of ¢ = O(N).

Algorithm 5 Calculating the running average
Input: zp e R, k=1... N
Output: Ay € R, k=1..., N, denoting the average value of z1,...,xg
for k=1to N do
Ap < Average(zxy,...,xx)
end for

Function Average
Input: z, e R, k=1... N
Output: A € R denoting the average value of x1,..., g
a+0
for m=1to k do
a < a-+ xy,
end for
A<+ a/k




CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 16

Algorithm 6 An improved algorithm for the running average

Input: ¥ € RV

Output: Ae RY, where Aj, denotes the average value of z1, ...,z
s+ 0
for k=1to N do
S 4 S+ xk
A = s/k
end for

2.1.4 Compute complexity faster

We have determined the time complexity of the nested loop in Algorithm 5
using the summing formula ¢ = YN |k = SN(N —1) = £N? = O(N?).

While the sum required here is well-known, it is sometimes more difficult
to determine sums such as S°n_, f(k). Note, however, that

k=1

N N
S fk) ~ /f(a:) dz.
0

This is illustrated in Figure 2.1. Therefore, we can estimate the time com-
plexity with an integral:

N
1
cz/xdx = 5]\72 = O(N?).
0

f(N)

YW

Figure 2.1: Computing complexity faster using an integral

2.1.5 Example: Sorting

A common problem in many programs is how to store sorted data. This can
be done using different types of data structures:



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 17

e arrays ai,ag,...,aN
e trees (discussed later)
e linked list (discussed in §4.3)

Next, we will discuss two algorithms, one using arrays and one using a
tree.

Sorting with arrays: list sort

The basic algorithm for sorting a list is given in Algorithm 7. A sorted list
is created by starting with the first element, and then adding iteratively
all other elements by a) finding the correct position for an element and b)
inserting it. Since the findposition and insert sub-algorithms are used
iteratively, their complexity will ultimately determine the complexity of the
sorting algorithm.

Algorithm 7 Sorting algorithm using arrays

Input: list {a} of length N € N
Output: list {b} but now sorted
bl — al
for g =2 to N do
p = findposition(ay, b(1: q))
insert(aq, p, b(1 : q))
end for

An exemplary algorithm for the findposition and insert routines are
given in Algorithms 8 and 9. Here, we assume that the first ¢ —1 values have
already been sorted and the ¢-th value has to be inserted. The position is
found using a bisection algorithm where the position is found by iteratively
splitting the already sorted array in half and deciding in which half the
insertion has to take place. Then, all values after the insertion position are
shifted one index further back, leaving a gap into which the new element is
inserted.

The complexities of the algorithms are O(loggq) for findposition and
O(q) for insert (considering the worst case), thus the insert algorithm is the
more expensive part and determines the complexity of the search algorithm,
which is therefore O(Z(];]:l q) = O(N?).



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 18

Algorithm 8 bisection algorithm for findposition

Input: list {b} in the range [..r
Output: position £ of x in that list
m=(+r)/2
if x < a,, then
k = findposition(z, b(l..m))
else
k = findposition(z, b(m..r))
end if

Algorithm 9 Algorithm for insert

Input: list {b} in the range 1: ¢
Output: add x at position &
for k = q downto p+ 1 do
(k) =bk —1)
end for
b(p) ==z

Sorting with trees: heap sort

Next, we show that the complexity of searching algorithms can be improved
using trees. An example of a tree structure is shown in Figure 2.2. A tree
has nodes, which contain the data and which are connected by branches to
other nodes. Each node is connected to a varaible number of child nodes and
one parent node; only the root node has no parent. The distance from the
root (i.e. the amount of branches between the root and the node) is called
the depth, or level, of the node. Examples of tree structures are books,
which are structures into chapters, sections, subsections and paragraphs, or
the directory structure on the harddrive of your computer.



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 19

root

Figure 2.2: Structure and nomenclature of a tree

A tree-based sorting algorithm will not create a sorted array of values,
but will store the array in a tree which is designed such that it is cheap
to insert new elements and to extract the elements in a sorted way, i.e., to
extract the smallest element. This is illustrated in Algorithm 10. We will
show that each insertion and extraction into a tree of ¢ elements can be done
in O(log q) time, and hence the total algorithm is O(N In N).

Algorithm 10 structure of the heapsort algorithm
Input: list {a} of length N € N
Output: list {b} but now sorted

put all elements of {a} in a (special) tree

extract elements out of this tree in a sorted way — {b}

We will use a full binary tree, as shown in Figure 2.3. In a binary tree,
each node has either two children or none. In a full binary tree, each node
has two children, except the rightmost nodes on the second-lowest depth
and the nodes on the lowest depth, which have no children. This creates a
tree which has a unique mapping onto a linear array and thus can be stored
without the use of pointers to represent the branches.



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 20

7
2 4 6 8 10 12 14 16 18

Figure 2.3: A full binary tree and the mapping to a linear array

Figure 2.4: Data stored as a heap in a full binary tree

The data will be stored as a heap, as shown in Figure 2.4. In a heap
tree, the parent is smaller than both children; hence the root must contain
the smallest item. We have to ensure that the tree remains a heap tree after
each insertion and extraction. The insertion process is shown in Figure 2.5:
a number is inserted at the end of the tree. Then the tree is reordered by
iteratively comparing the new element with its parent and switching the two
nodes if the parent is larger. The extraction process is shown in Figure 2.6:
the smallest number is extracted at the root of the tree and the last element
is moved to the root. Then the tree is reordered by iteratively comparing
the new root element with the smaller of the children and switching the two



CHAPTER 2. COMPLEXITY, OPTIMISATION AND DEBUGGING 21

nodes if the child is smaller. Both these processes will ensure that the tree
remains a heap. Since the depth of a tree with ¢ nodes is [logq]|, there
are at most fo:l [logq] =~ fON log x dx switches and comparisons required
to insert and extract all elements. Therefore, the time complexity of the
sorting algorithm is O(N In N).

Figure 2.5: Inserting the number 2 into a heap tree and reordering; process
(left) and final state (right)

Figure 2.6: Extracting the smallest number (4) from a heap tree and re-
ordering; extraction (left) and reordering (right)

While the complexity of this sorting algorithm is very low, the disad-
vantage is that this method always takes ¢ = O(N In N) even if the original
data is sorted. Other sorting algorithms, like bubblesort, require O(N?) op-
erations in the worst case, but can run in only O(N) operations if the data
is "almost” sorted. Hence, in practice, you should choose a sorting algoithm
depending on your data.



