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6 Single Component, Multiphase (SCMP) LBM  

In the previous chapter we demonstrated that LBM is useful for simulating 
the flow of a single fluid. The true strengths of LBMs however lie in their 
ability to simulate multiphase fluids. Both single and multi-component 
multiphase fluids can be simulated. ‘Component’ refers to a chemical con-
stituent such that a ‘single component’ (say H2O) multiphase system would 
involve the liquid and vapor phases of water. These are particularly rich 
systems to consider as surface tension, evaporation, condensation, and 
cavitation are possible. Liquid-vapor behavior in partially saturated porous 
media can be simulated. In contrast, a multi-component system can consist 
of separate chemical components such as oil and water; such systems have 
been studied more extensively because of their economic importance. For 
example, Darcy’s law-based relative permeability concepts for multicom-
ponent oil/water-like systems have been investigated using LBM (Buckles 
et al. 1994; Soll et al. 1994; Martys and Chen, 1996; Langaas and Papat-
zacos, 2001). 
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Figure 38. Conceptual framework for LBM models. 
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Figure 38 gives a conceptual framework for thinking about the various 
LBM models to be considered in this book. At the upper left we have the 
simple single fluid models discussed in the last two chapters: these involve 
a single chemical component whose molecules are not subjected to any 
‘long-range’ interaction forces. Adding a long-range attractive force makes 
phase separation into a liquid and its own vapor possible as discussed be-
low (upper right, single component multiphase).  

If we add a second chemical component, we have the possibility of 
simulating completely miscible fluids (basically chemical solutions) in the 
absence of long range interactions (lower left), and completely immiscible 
fluids (oil and water for example) when there are long range repulsive in-
teractions (lower right). Finally, note that the widely acclaimed inherent 
parallelism of LBM is lost when long range interactions are included. 

This chapter focuses on Single Component Multiphase (SCMP) models. 
Early examples of lattice gas SCMP models can be found in Rothman 
(1988) and Appert and Zaleski (1990). The lattice Boltzmann implementa-
tion of these models began with Shan and Chen (1993, 1994). There are 
also so-called ‘‘free energy’’ approaches proposed by Swift et al. (1996), 
and ‘‘finite density’’ models that use the Enskog equation for dense gases 
(Luo 2000; He and Doolen 2002). Zhang and Chen (2003) have also pro-
posed an approach based on tracking an energy (temperature) component. 
Such finite density or energy models seem to hold the key to the ultimate 
development of the LBM for practical applications due to the more realis-
tic and consistent treatment of the equation of state that preserves the es-
sential (molecular) physics of the process. Here we work with the Shan 
and Chen (1993, 1994) model extended for solids interactions. Although 
this model has numerous shortcomings, it is exceptionally versatile, and 
problems that have long defied quantitative treatment can now be exam-
ined. 

First we recall basic physical chemistry theory relevant to these models. 
Then we provide details on incorporating long-range forces into the LBM 
model and on the resulting LBM equation of state. The determination of 
surface tension in the model is illustrated. Simulation of homogeneous and 
heterogeneous cavitation with the model are presented. Then interactions 
with surfaces are included and contact angles, capillary rise, adsorption, 
and capillary condensation are discussed.   
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The principal distinguishing characteristic of single component multi-
phase LBMs is the incorporation of an attractive force between fluid ‘par-
ticles’. This notion is part of the foundation for the famous van der Waals 
equation of state, which we now review. 

6.1 Non-ideal Equation of State 

The ‘ideal’ or ‘perfect’ gas law characterizes the behavior of gases at low 
density. Such gas laws are also known as Equations of State (EOS). The 
ideal gas law is commonly written as 

V
nRTPnRTPV or  (54) 

where 

P is pressure (atm)
V is volume (L)
n is number of mols 
R is gas constant (0.0821 L atm mol-1 K-1)
T is temperature (K). 

Vm = V/n is the volume occupied by one mol of substance. The gas laws 
can be re-written to eliminate the number of mols n

mV
RTP . (55) 

Eqs. (54) and (55) are linear relationships between pressure and density 
(which is proportional to n/V).

The van der Waals EOS was developed to account for behaviors ob-
served in real gases while retaining conceptual simplicity. It is given by 

2

V
na

nbV
nRTP . (56) 



70      Single Component, Multiphase (SCMP) LBM               

The second term on the right accounts for attractive forces between 
molecules. Note that because a, n, and V are all positive, this term results 
in a reduction of the pressure relative to that of a perfect gas.  

The –nb term in the denominator accounts for the non-negligible vol-
ume of molecules. If the ‘hard sphere’, closest packed volume of one mol 
of molecules is b, then the minimum volume that can be occupied by n
mols of molecules is nb. As the pressure increases, the volume of the gas V
may approach nb. This will cause the denominator to approach zero and 
the pressure will rise very rapidly, effectively preventing further compres-
sion.   

The van der Waals gas law can also be rewritten in terms of the molar 
volume: 

2
1

mm V
a

bV
RTP

.
(57) 

6.1.1  P–Vm, and P–  Presentations 

The gas laws are typically presented graphically in one of two formats: in 
P–V space, pressure is plotted against volume while in P–  space, pressure 
is plotted against density. P– plots are more intuitive and useful in gen-
eral, but there is one very important manipulation that requires use of P–V
plots.  

Figure 39 shows the P–Vm plot for CO2. In this plot, the perfect gas law 
is non-linear (like y = 1/x, because P is inversely proportional to Vm). The 
van der Waals EOS at various temperatures with parameters a and b taken 
from Atkins (1978) was used to plot the other curves. Temperatures were 
selected to illustrate supercritical, critical, and subcritical behaviors. At 
high temperature (373K) CO2 is supercritical and no distinct liquid and va-
por phases can be discerned. As the temperature is decreased, a critical 
temperature is reached; below this temperature phase separation into liquid 
and vapor is possible. The key difference in the EOS curves above and be-
low the critical temperature is that above the critical temperature the 
curves decrease monotonically. Below the critical temperature the curves 
are no longer monotonic and this allows the coexistence of different molar 
volumes (different densities) of the substance at a single pressure. 
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Figure 39. P–V plot of perfect and van der Waals equations of state for 
CO2. van der Waals constants a = 3.592 l2 atm mol-2 and b = 0.4267 l mol-1

(Atkins, 1978). R = 0.0821 l atm mol K-1.

If we zoom in on a subcritical curve (Figure 40) we see that the EOS is in-
tersected 3 times at the vapor pressure of CO2 at 293K. Projecting the first 
intersection at small molar volume (high density) down to the x-axis gives 
the molar volume of the liquid. The second intersection is in what is re-
ferred to as a ‘non-physical’ portion of the EOS because the positive slope 
here indicates that increasing the pressure would cause the vapor to ex-
pand. The final intersection gives the molar volume of the equilibrium va-
por phase. It is important to note that the vapor pressure applies only to flat 
liquid-vapor interfaces; we will explore the impact of curvature later. 
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Figure 40. Detail of subcritical EOS for CO2 illustrating liquid-vapor coex-
istence (293K). The molar volumes of the liquid and vapor and the vapor 
pressure can be determined from the Maxwell Construction. 

6.1.2  Maxwell Construction and its Solution 

In the context of LBM, the key reason for using P–V representations of the 
EOS is the Maxwell Construction. The Maxwell Construction allows the 
vapor pressure and the densities of the liquid and vapor phases to be found 
analytically when a functional form of the EOS is available. Boltzmann 
(1964/1995) discusses the Maxwell Construction and Figure 40 illustrates 
its use. 

The Maxwell Construction can be stated as 

)( ,,
,

,
lmvm

V

V m VVPPdVvm

lm

. (58) 

So the area under the curve (use caution if the EOS goes below P = 0) must 
equal the area of the rectangle defined by the liquid and vapor molar vol-
umes and the vapor pressure. This is equivalent to specifying that the areas 
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A and B shown on Figure 40 must be equal. Despite its apparent simplic-
ity, the Maxwell construction can be challenging to solve. One approach is 
simply to estimate the vapor pressure from the plot. For example, the inte-
gral PdVm where P is given by the van der Waals equation (57) is  

m
mm V

abVRTPdV )ln( . (59) 

Based on inspection of the EOS curve in Figure 40, suppose we estimate a 
vapor pressure of 63 atm. For T = 293.15K we can estimate Vm,l = 0.095 li-
ters and Vm,v = 0.206 liters (by looking at a table or graph of values of 
P(Vm) for example) and evaluate the integral between these limits to obtain 
a value of approximately 7.09. For P = 63 atm the right hand side of Eq. 
(58) is 63(0.206-0.095) = 6.99; comparing this with the 7.09 from the left 
hand side indicates that improvement is possible. Increasing the vapor 
pressure to 64 atm we can estimate Vm,l and Vm,v = 0.93 and 0.194 liters re-
spectively. Then the integral value is 6.45 and the right hand side is 6.46, 
which is considerably better than the initial guess. Further refinements can 
be made. We will revisit the Maxwell Construction after the LBM EOS is 
introduced. 

6.1.3  EOS for Water/Water Vapor and P–  Presentations 

Water is of particular interest to a broad range of scientists and engineers 
but it is also more complex than can be adequately described by the stan-
dard van der Waals EOS. We explore water in some additional detail here 
and use it to introduce P–  plots. 

Figure 41 shows the perfect gas and van der Waals equations of state for 
water at 298K. There are significant differences between the CO2 and wa-
ter equations of state. Perhaps most striking is that the curve extends into 
strong negative pressures. Figure 42 shows the same information plotted as 
P( ). The virtues of such a plot are immediately apparent. The perfect gas 
law plots as a straight line through the origin and the low and high density 
(vapor and liquid) portions of the curve are clear and in familiar units. 
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Figure 41. P–Vm representation of perfect and van der Waals EOS for wa-
ter. 

It is also clear however that the van der Waals equation fails to quantita-
tively reproduce the known density (1000 kg m-3) of water. Finally, the 
known compressibility of liquid water is not well matched. Truskett et al. 
(1999) incorporated directional hydrogen bonds in a model to estimate the 
water EOS and achieved good success (Figure 43). 

One additional feature of the non-linear equations of state discussed 
here is the bottom of the valley; it is referred to as the spinodal and repre-
sents the maximum tension that a pure liquid can sustain. So, referring to 
Figure 43 for example, we can imagine beginning with pure liquid water in 
a cylinder at its familiar density of 1000 kg m-3 and then withdrawing a pis-
ton that stretches the water to a density somewhat less than 800 kg m-3. The 
pressure in the water will follow the EOS and be approximately -2000 atm.
If the density is reduced beyond the minimum of the EOS curve, the liquid 
will catastrophically phase separate into liquid and vapor in the process 
known as cavitation. For pure liquids this will occur at the spinodal and is 
called homogeneous cavitation. Heterogeneous cavitation is much more 
common and occurs at much lower tension when the structure of the liquid 
is disrupted by pre-existing bubbles or particles. We will examine both 
homogeneous and heterogeneous cavitation with LBM below.  
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Figure 42. P–  representation of perfect and van der Waals EOS for water 
at 298K. There is a gross underestimation of the density of liquid water. 
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Figure 43. Truskett et al. (1999) EOS for water showing the spinodal. In-
corporating directional hydrogen bonding allows good matching of the key 
features of water behavior. 



76      Single Component, Multiphase (SCMP) LBM               

6.2  Interparticle Forces and their Incorporation into LBM 

Lattice Boltzmann models presented thus far in this book were based ex-
clusively on streaming and collision. To simulate multiphase fluids, we 
need long range interactions between fluid ‘particles’. For our purposes in-
teractions with nearest neighbor particle densities f will be sufficient to 
simulate the basic phenomena of multiphase fluid interactions. For single 
component multiphase fluids (e.g., water/water vapor) an attractive (cohe-
sive) force F between nearest neighbor fluid particles is needed and, for 
the D2Q9 model, is induced as follows: 

8

1

),(),(),(
a

a ttwtGt aa eexxxF (60) 

where G is the interaction strength, wa is 1/9 for a = {1, 2, 3, 4}, is 1/36 for 
a = {5, 6, 7, 8}, and  is the interaction potential: 

0
0 exp . (61) 

0 and 0 are arbitrary constants. This interaction potential is special in 
that its ‘‘…behavior is consistent with that of an isothermal process...’’ 
(Shan and Chen 1994; see also He and Doolen 2002). According to Shan 
and Chen (1993), the interaction potential function must be monotonically 
increasing and bounded. Other forms of the interaction potential are com-
monly used and include for example = 0[1-exp( 0)] (Shan and 
Chen 1993; Raiskinmäki et al. 2000 and 2002; Hyväluoma et al. 2004), 

= (Martys and Chen 1996; Pan et al. 2004), and 
= g 0

2 2/[2( 0+ 2] (Qian et al. 1995).  

Figure 44 shows the Eq. (61) interaction potential function with 0 = 4 
and 0 = 200. These parameters were selected arbitrarily, but will be used 
consistently in SCMP LBM simulations in this book for convenience be-
cause the model behavior with these values has been explored more thor-
oughly. G < 0 for attraction between particles and the force is stronger 
when the density is higher. Thus, dense regions (liquid) experience a 
stronger cohesive force than vapor, which leads to surface tension phe-
nomena. 
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Figure 44. 'Isothermal' interaction potential function of Shan and Chen 
(1994) with 0 = 4 and 0 = 200. Other forms of the interaction potential are 
in common use. We use 2-D densities and pressures throughout the text. 

The attractive force is included in the model the same way that gravity 
was incorporated earlier (Eqs. (45), (46), and (47)). 

It is important to note that we have incorporated only the molecular at-
traction aspect of the van der Waals gas model described above; the repul-
sive forces that dominate the van der Waals gas model when a gas is com-
pressed to near its ‘hard sphere’ volume are neglected in this simplest of 
SCMP models. Enskog developed theory for dense gases that has been in-
corporated in more advanced LBM models (e.g., He and Doolen, 2002; 
Martys 2001; Luo 2000; Luo, 1998). Ignoring these effects here has impor-
tant ramifications for the equations of state of the simulated gases that will 
be introduced below. At the present time, the ability of LBM to simulate 
any desired EOS is severely limited. The work of He and Doolen (2002) 
may hold the key to resolving EOS limitations (and also allow non-
isothermal flows) but requires decoupling of velocity and space discretiza-
tions and has not been explored. The approach of Zhang and Chen (2003) 
may be similarly profitable. Nevertheless, the simple Shan and Chen 
(1993, 1994) model is capable of simulating rich SCMP behaviors includ-



78      Single Component, Multiphase (SCMP) LBM               

ing surface tension/capillarity, evaporation, condensation, and homogene-
ous and heterogeneous cavitation.  

6.2.1 The SCMP LBM EOS 

Application of Eqs. (60) and (61) leads to a non-ideal EOS for the simu-
lated fluids (He and Doolen, 2002): 

   
2

2
GRTRTP . (62) 

The first term on the right hand side is the ideal gas law, which applies 
to the single component, single phase model discussed above. The value of 
RT is fixed for both the SCSP and SCMP models: 

.
3
1RT (63) 

The second term on the right hand side of (62) is the non-ideal part that 
accounts for the attractive force between the molecules and leads to a re-
duction in pressure (when G < 0) and the non-linear form of the EOS. 
When G is adequately negative that the EOS is subcritical (non-
monotonic), phase separation can occur. 

After incorporating RT, Eq. (62) becomes  

).(
63

2GP (64) 

This is plotted for a series of G values in Figure 45. This EOS is qualita-
tively similar to the van der Waals EOS and is useful in simulating Laplace 
Law and capillary phenomena. The lack of a repulsive force in the model 
however has led to unfortunate (and generally not physically correct) be-
havior where the liquid phase is actually more compressible than the vapor 
phase. (The slope dP/d  of the curve is lower in the liquid density region 
than it is in the vapor region.) This does not affect equilibrium liquid-vapor 
configurations but makes certain types of simulations more challenging 
and one always needs to be aware of it.  
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Figure 45. SCMP EOS for 0 = 4 and 0 = 200 at 5 values of G.

Eqs. (60) and (61) are implemented as follows: 

  // Compute psi, Eq. (61). 
  for( j=0; j<LY; j++) 
    for( i=0; i<LX; i++) 
      if( !is_solid_node[j][i]) 
      { 
        psi[j][i] = 4.*exp( -200. / ( rho[j][i])); 
      } 

  // Compute interaction force, Eq. (60) assuming periodic domain. 
  for( j=0; j<LY; j++) 
  { 
    jp = ( j<LY-1)?( j+1):( 0   ); 
    jn = ( j>0   )?( j-1):( LY-1); 

    for( i=0; i<LX; i++) 
    { 
      ip = ( i<LX-1)?( i+1):( 0   ); 
      in = ( i>0   )?( i-1):( LX-1); 

      Fx = 0.; 
      Fy = 0.; 

      if( !is_solid_node[j][i]) 
      { 
        Fx+= WM*ex[1]*psi[j ][ip]; 
        Fy+= WM*ey[1]*psi[j ][ip]; 
        Fx+= WM*ex[2]*psi[jp][i ]; 
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        Fy+= WM*ey[2]*psi[jp][i ]; 
        Fx+= WM*ex[3]*psi[j ][in]; 
        Fy+= WM*ey[3]*psi[j ][in]; 
        Fx+= WM*ex[4]*psi[jn][i ]; 
        Fy+= WM*ey[4]*psi[jn][i ]; 
        Fx+= WD*ex[5]*psi[jp][ip]; 
        Fy+= WD*ey[5]*psi[jp][ip]; 
        Fx+= WD*ex[6]*psi[jp][in]; 
        Fy+= WD*ey[6]*psi[jp][in]; 
        Fx+= WD*ex[7]*psi[jn][in]; 
        Fy+= WD*ey[7]*psi[jn][in]; 
        Fx+= WD*ex[8]*psi[jn][ip]; 
        Fy+= WD*ey[8]*psi[jn][ip]; 

        Fx = -G * psi[j][i] * Fx; 
        Fy = -G * psi[j][i] * Fy; 
      } 
    } 
  } 

Beware of the assumption about a periodic domain (see the note in the 
comment at the top of the code snippet). When using boundary conditions, 
the interaction force must be computed differently at those boundaries be-
cause the density is not necessarily continuous across the periodicity then. 
Hence, the three terms in Eq. (60) associated with nodes across the peri-
odic boundary are unavailable. We find that replacing those three terms 
with duplicates of the three terms in the other direction (towards the inte-
rior of the domain instead of across the boundary of the domain) gives 
good results. 

6.3  Phase (Liquid-Vapor) Separation and Interface 
Minimization

The preceding model development is enough to simulate phase separa-
tion and its dynamics. In Figure 46, we show the results of a simulation 
initialized with an average density of 200 mu lu-2 with a random variation 
incorporated via the ‘static’ initial condition included in our code. For the 
standard parameter values ( 0 = 4 and 0 = 200) and  function we adopt, 
this initial density falls on the negatively-sloped, non-physical part of the 
G = -120 EOS (Figure 45) and hence is unstable and leads to phase separa-
tion. In this case, the phase separation ultimately leads to a single droplet 
in a vapor atmosphere. Whether liquid drops or vapor bubbles are formed 
depends on the total mass in the domain and consequently on the initial 
density selected.  
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Figure 46. Time series of liquid-vapor phase separation dynamics in a 
200 200 lu2 domain. Gray scale proportional to normalized density. G = -
120, 0 = 4, 0 = 200, and  = 1. Initial density 200 mu lu-2 plus a random 
number in the interval [0,1]. Results shown at time = 0, 100, 200, 400, 800, 
1600, 3200, 6400, 12800, and 25600 ts.

When phase separation occurs, there is a strong tendency for the inter-
faces formed to minimize their total area (or length in 2-D). This is a 
straightforward consequence of free energy minimization and occurs in 
part by geometric rearrangement into the minimum surface area volume (a 
sphere or in 2-D, a circle). Depending on the initial conditions, this rear-
rangement may also involve a significant amount of coalescence of ‘blobs’ 
of each phase. In liquid-vapor systems, there can also be condensation and 
evaporation; bubbles can simply fill in or grow at the expense of mass 
elsewhere in the domain. The relatively high vapor density in the simple 
simulations described in this book indicates a potential excess of transport 
in the vapor phase relative to many real liquid-vapor systems.   

6.3.1  Spurious Interface Velocities 

Examination of the velocity fields in SCMP simulations reveals high ve-
locities perpendicular to phase boundaries. These are non-physical. They 
are present at equilibrium and there appears to be no mass exchange asso-
ciated with them. Some papers that focus on or mention these velocities 
include Wagner (2003), Lishchuk et al. (2003), Nourgaliev et al. (2003), 
and Raiskinmäki et al. (2000).   
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6.3.2  Estimating Surface Tension 

The surface tension can be estimated simply by simulating a series of 
drops and bubbles of various sizes and measuring their radii and 
inside/outside densities. The densities must be converted to pressures via 
the EOS and the difference P computed. Then the slope of a plot of 
1/radius vs. P will be the surface tension in accordance with the Laplace 
law (Eq. (7)). Figure 47 presents results leading to a surface tension of 14.3 
lu mu ts-2. Readers are encouraged to develop such a plot on their own (see 
Exercises).  
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Figure 47. Plot of curvature (1/r) vs. pressure difference used to determine 
surface tension in SCMP lattice Boltzmann model. Simulated drops and bub-
bles shown adjacent to data points at relative scale. Bubbles consistently fall 
below line and drops are consistently above; this may be due to the selection 
of a density cutoff value for measuring radii. 

6.3.3  Flat Interfaces: Maxwell Construction for SCMP LBM 

Curved interfaces are common and the relationship between radii of curva-
ture and pressure differential across them can be predicted when the sur-
face tension is known. Flat interfaces are exceptionally important however 
because the vapor pressure above them at equilibrium is the saturation va-
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por pressure, which is used in scaling many vapor pressure-dependent 
processes. At equilibrium, the pressure difference across a flat interface 
must be zero, which is consistent with the Laplace law, and the Maxwell 
Construction should apply. We have already illustrated a trial-and-error 
approach to solving the Maxwell Construction for the van der Waals equa-
tion of state. From more sophisticated numerical solutions of the Maxwell 
Construction on the SCMP LBM EOS with 0 = 4, 0 = 200, and G = -
120, we compute l = 514.64 mu lu-2 and v = 79.705 mu lu-2. These values 
differ appreciably from those observed in flat interface simulations that 
yield l = 524.39 mu lu-2 and v = 85.704 mu lu-2. The observed vapor and 
liquid densities give very similar pressures of 25.5599 and 25.5605 respec-
tively from the EOS, while the optimal Maxwell solution densities lead to 
pressures of 24.45172 and 24.45166. The reasons for this discrepancy are 
unknown and this represents a significant outstanding problem from our 
perspective. It may account wholly or in part for the less than quantitative 
results we obtain in certain types of simulations.  

6.4 Cavitation 

Cavitation is a catastrophic transition from liquid to vapor. Cavitation can 
be either ‘homogeneous’ when it occurs at the limit of the pure liquid’s 
tensile strength, or ‘heterogeneous’ when it is nucleated by preexisting 
bubbles or other disruptions in the structure of the liquid. Single compo-
nent multiphase lattice Boltzmann methods offer a virtual laboratory for 
investigation of cavitation.   

Sukop and Or (2005) conducted LB simulations of cavitation in a two-
dimensional geometry; they adapted Or and Tuller's (2002) discussion of 
three-dimensional critical bubble radius and energy cost for heterogeneous 
cavitation in 2-D. The energy cost for the creation of a vapor bubble is the 
sum of the interfacial energy needed to create the bubble and the work of 
negative pressure over the bubble area; that is, 

PrrE 22 (65)

with  = (2-D) surface tension (MLT-2), P = (2-D) pressure (MT-2), and r 
= bubble radius. This relationship is plotted in Figure 48. The energy cost 
is maximized at r* = - / P. For any given tension applied to the LB sys-
tem, r* represents a critical bubble radius. A bubble with a radius less than 
r* will be lost to condensation rather than result in cavitation because con-
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densation is more energetically favorable. Once a bubble is large enough to 
overcome the energy barrier, cavitation is the more favorable outcome. 
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Figure 48. Energy barrier as a function of seed bubble radius for different 
initial liquid pressures. Circle size proportional to critical radii. 0 = 4, 0 = 
200, and G = -120. (Sukop and Or, 2005) 

6.4.1  Homogeneous Cavitation  

Sukop and Or (2005) simulated spinodal decomposition (cavitation via 
homogeneous nucleation) in a 200 200 lu2 domain. Figure 49 shows the 
process as the change in density at two points in the domain during the 
simulation. The initial density in the liquid is 400 mu lu-2 (i.e., the liquid is 
under tension at the outset), but this simply hastens the process. The left 
and right boundaries are periodic, and constant velocity boundaries (0.005 
lu ts-1) at the top and bottom of the domain pull liquid from the domain. 
This results in increasing tension in the liquid with time until the liquid 
spinodal pressure and density are reached. Then the liquid cavitates catas-
trophically. Cavitation occurs as a linear band (lower left inset of Figure 
49) in this simulation because there is no randomness in the pres-
sure/density distribution in the domain and the vertical domain boundaries 
are periodic. In real systems, small fluctuations would result in random 
preferred loci of cavitation and bubbles would form. Severe den-
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sity/pressure fluctuations occur in the liquid phase after the onset of cavita-
tion; these eventually subside and liquid is present at density very close to 
its equilibrium, flat, free interface value of 524 mu lu-2. Smaller fluctua-
tions in the vapor phase are rapidly damped and a final density very close 
to the equilibrium value (85 mu lu-2) is attained. The relative magnitudes of 
these fluctuations are consistent with the EOS and a greater compressibil-
ity in the liquid phase.  
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Figure 49. Density as a function of time for two points inside a 200  200 
lu2 domain. The fine line follows density at a point in the domain (100,100) 
that ultimately becomes vapor, while the heavy line gives the density near the 
boundary at a point (100,1) that is ultimately liquid. Insets show density dis-
tributions in domain. (Sukop and Or, 2005) 

6.4.2  Heterogeneous cavitation 

Sukop and Or (2005) also produced results that closely match heterogene-
ous cavitation theory (Or and Tuller, 2002). Periodic boundaries were used 
on the vertical edges of the 200 200 lu2 domain and pressure boundaries 
were applied on the top and bottom. Based on the equation of state (Figure 
45), the density of the vapor and liquid phases of the fluid can be calcu-
lated for any given pressure. A density corresponding to a liquid pressure 
below that of the experimental flat free interface was used on both bounda-
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ries. (The difference between the boundary pressure and the pressure of a 
flat, free liquid-vapor interface is represented by P in Figure 48.) These 
boundary conditions effectively stretch the fluid, creating a situation favor-
able for cavitation. 

Sukop and Or (2005) inserted vapor bubbles of various sizes into their 
simulations. As shown in Figure 48, a bubble with radius just below the 
critical value cannot overcome the energy barrier and eventually con-
denses. However, a bubble with radius just above the critical value acts as 
a seed for cavitation. The LBM’s proper simulation of these phenomena at 
two different liquid tensions is demonstrated in the following figures. In 
Figure 50, for P = -1 mu ts-1, the critical radius is 13.85 lu and the radii of 
the seed bubbles are 12 and 15 lu.

Figure 50. Effect of initial seed bubble size on evolution for P = -1 mu ts-2.
Top: r = 12 lu bubble dissipates due to condensation.  Bottom: r = 15 lu bub-
ble nucleates cavitation. 

Similarly, in Figure 51, for P = -5 mu ts-1 the critical radius is 2.77 lu
and the radii of the seed bubbles shown are 2 and 4 lu. Clearly, much 
smaller seed bubbles can nucleate cavitation at higher liquid tensions 
(more negative P).
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Figure 51. Effect of initial seed bubble size on evolution for P = -5 mu ts-2.
Top: r = 2 lu bubble dissipates due to condensation.  Bottom: r = 4 lu bubble 
nucleates cavitation. 

6.5  SCMP LBM with Surfaces 

6.5.1  Fluid-Surface Forces 

In order to extend our capability to include simulation of SCMP fluids in 
porous media and other containers, it is essential that we incorporate an 
adhesive interaction between fluid particles and surfaces. The original 
method is due to Martys and Chen (1996) and is elegant in its simplicity. 
The idea is to create an analogue to the particle-particle interaction force 
used to induce phase separation. The only difference is that instead of 
summing the  functions of neighboring nodes (Eq. (60)), we sum an indi-
cator variable denoting a solid. The strength of the force contribution is 
specified by a Gads ‘adsorption’ coefficient. The equation describing this is  

a
aaaadsads tswtGt eexxxF )(),(),( , (66) 

where s is a ‘switch’ that takes on value one (1) if the site at x + ea t is a 
solid and is zero (0) otherwise. The wa are the same direction-dependent 
weighting factors used before. The C implementation of Eq. (66) is 
straightforward. The is_solid_node array is used to evaluate if a node 
neighboring the fluid node under consideration is a solid; if so, a contribu-
tion is made to the surface force.  
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  // Compute psi, Eq. (61). 
  for( j=0; j<LY; j++) 
    for( i=0; i<LX; i++) 
      if( !is_solid_node[j][i]) 
      { 
        psi[j][i] = 4.*exp( -200. / ( rho[j][i])); 
      } 

  // Compute interaction force, Eq. (66). 
  for( j=0; j<LY; j++) 
  { 
    jp = ( j<LY-1)?( j+1):( 0   ); 
    jn = ( j>0   )?( j-1):( LY-1); 

    for( i=0; i<LX; i++) 
    { 
      ip = ( i<LX-1)?( i+1):( 0   ); 
      in = ( i>0   )?( i-1):( LX-1); 

      if( !is_solid_node[j][i])  
      { 
        sum_x=0.; 
        sum_y=0.; 

        if( is_solid_node[j ][ip]) // neighbor 1 
        { sum_x = sum_x + WM*ex[1]; 
          sum_y = sum_y + WM*ey[1]; } 
        if( is_solid_node[jp][i ]) // neighbor 2 
        { sum_x = sum_x + WM*ex[2]; 
          sum_y = sum_y + WM*ey[2]; } 
        if( is_solid_node[j ][in]) // neighbor 3 
        { sum_x = sum_x + WM*ex[3]; 
          sum_y = sum_y + WM*ey[3]; } 
        if( is_solid_node[jn][i ]) // neighbor 4 
        { sum_x = sum_x + WM*ex[4]; 
          sum_y = sum_y + WM*ey[4]; } 
        if( is_solid_node[jp][ip]) // neighbor 5 
        { sum_x = sum_x + WD*ex[5]; 
          sum_y = sum_y + WD*ey[5]; } 
        if( is_solid_node[jp][in]) // neighbor 6 
        { sum_x = sum_x + WD*ex[6]; 
          sum_y = sum_y + WD*ey[6]; } 
        if( is_solid_node[jn][in]) // neighbor 7 
        { sum_x = sum_x + WD*ex[7]; 
          sum_y = sum_y + WD*ey[7]; } 
        if( is_solid_node[jn][ip]) // neighbor 8 
        { sum_x = sum_x + WD*ex[8]; 
          sum_y = sum_y + WD*ey[8]; } 

        sforce_x[j][i] = -Gads * psi[j][i] * sum_x; 
        sforce_y[j][i] = -Gads * psi[j][i] * sum_y; 
      } 
    } 
  } 
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We seem to have flexibility in the choice of the pre-sum factor (x,t);
Martys and Chen (1996) originally used while Raiskinmäki et al. 
(2000; 2002) and Hyväluoma et al. (2004) used the function = 1 - 
exp( ). For consistency with the cohesion force, we use the function 
Eq. (61) here.  

Next we introduce a few studies that used the same basic Shan and Chen 
model we develop in this book and then give more detailed discussions of 
various phenomena in the following sections. Raiskinmäki et al. (2000) 
considered the spreading dynamics of three-dimensional droplets on sur-
faces with the Shan and Chen SCMP lattice Boltzmann model. They 
showed that the simulated rate of droplet spreading on a smooth surface 
was consistent with Tanner’s Law, which states that the radius of the liq-
uid/surface interface increases as a power function of time, r ~ tq.

Raiskinmäki et al. (2002) investigated capillary rise dynamics using the 
same model.  This work showed that the Washburn Equation, which pre-
dicts the rate of capillary rise, was satisfied by the SCMP LBM simula-
tions. These authors concluded that relatively large capillary tubes – at 
least 30 lattice units across – would be needed to properly simulate the hy-
drodynamics. They also noted a discrepancy between the analytical 
Poiseuille velocity profile and the velocities of the liquid phase in an 
SCMP simulation; apparently the cohesive and adhesive forces imposed on 
the liquid affect its properties. Additional work needs to be done to assess 
this phenomenon.   

Hyväluoma et al. (2004) also used the Shan and Chen SCMP LBM in an 
investigation of mercury intrusion porosimetry.  In a similar study, Sukop 
and Or (2004) simulated contact angles, adsorption, capillary condensa-
tion, and wetting and drying of angular pores. 

6.5.2  Contact Angles 

Varying the Gads parameter allows simulation of the complete range of 
contact angles. In Figure 52, we show SCMP simulations that yield 3 spe-
cial contact angles: 0, 90, and 180 degrees.  

We compute the necessary Gads parameter for the three special contact 
angles by balancing the cohesive and adhesive forces in different ways. 
Assume that we are at points of either pure liquid or pure vapor. Then the 
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point’s neighbors all have the same density as found at the point itself. 
From Eq. (60), the forces can then be written as 

8

1

2

a
aawG eF , (67) 

where the s are all equal and can be combined. So, for the vapor and liq-
uid phases respectively, we have 

8

1

2

a
aav

v wG eF (68) 

and
8

1

2

a
aal

l wG eF . (69) 

A fluid node completely surrounded by solid surfaces would experience 
a different force. From Eq. (66) we obtain for vapor and liquid respec-
tively: 

8

1a
aavads

v
ads wG eF (70) 

and

8

1a
aalads

l
ads wG eF . (71) 

Note that the  factors are not squared here because the indicator variable 
s appears inside the summation rather than the  values.  

We also consider the forces at points that have the average  value to 
represent the interface between liquid and vapor: 

8

1

2

a
aawG eF (72) 

and
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8

1a
aaadsads wG eF , (73) 

where 

v2
1 . (74) 

Note that all of the equations [(68) through (73)] contain the same summa-
tion term.  

On a surface that is completely wetted by the liquid yielding a contact 
angle of 0 degrees, the adhesive force between the solid and the liquid is 
equal to the cohesive force of the liquid. Setting 

adsFF (75) 

gives  
8

1

8

1

2

a
aalads

a
aal wGwG ee , (76) 

which reduces to  

lads GG , (77) 

For the usual liquid density (albeit a flat free interface value) of 524.39 mu
lu-2,  = 2.7316. The cohesion parameter has been selected as G = -120, so 
Gads = -327.79. It is easy to check if this is reasonable with simulations. 
Figure 52 shows the results. 

   
Figure 52. Simulation of 0, 90, and 180 degree contact angles based on the 

force balance rationale discussed in the text. For the cohesive interaction pa-
rameter G = -120 and the  function parameters 0 = 4 and 0 = 200, Gads = -
327.79, -187.16, and -46.534 respectively. 
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On a surface that is wetted by the liquid to an extent exactly between 
completely wettable and completely non-wettable for a contact angle of 
90°, the adhesive force of the solid on the interface between liquid and va-
por is equal to the cohesive force at the liquid-vapor interface. Setting 

adsFF (78) 

leads to  

2
)( vl

ads GGG , (79) 

which gives Gads = -187.16 for G = -120, l = 2.7316, and (with v = 85.70 
mu lu2) v = 0.38774.  

Finally, on a surface that is completely non-wettable by the liquid for a 
contact angle of 180 degrees, the adhesive force between the solid and the 
vapor must equal the cohesive force of the vapor. Setting 

v
ads

v FF (80) 

gives Gads = -46.534 by the same procedure used for the 0-degree contact 
angle except that v = 0.38774 is the proportionality constant based on v
= 85.70 mu lu-2.

Readers should carry out similar simulations (see Exercises). Our ex-
perience suggests that it is easily possible to create zones of excessive den-
sity adjacent to surfaces with the magnitude of Gads too large. This is 
probably another consequence of the lack of a repulsive interaction be-
tween the particles. The approach for selecting Gads suggested here should 
make the process more rational than the trial-and-error procedure often fol-
lowed. Our method is ad hoc however and questions remain on what is the 
most appropriate technique.  

Considerable work on dynamic contact angles using LBM has also been 
completed (especially with the free-energy LBM; e.g., Zhang and Kwok, 
2004; Raiskinmäki et al. 2002; Briant et al. 2002; Fan et al. 2001). A more 
fundamental basis and method for incorporating surface adsorption is 
needed (e.g., the various adsorption models discussed in Adamson and 
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Gast (1997) for example); nevertheless, reasonable results can be obtained. 
We demonstrate some applications in the following sections. 

6.5.3  Capillary Rise 

The SCMP LBM can be effectively used to simulate capillary rise in a 
simple capillary and by extension capillary rise phenomena in more com-
plex porous media. The use of the dimensionless Bond number Bo – which 
relates capillary and gravitational forces – allows the simulation of direct 
analogues of real systems in the same way as the Reynolds number al-
lowed the simulation of equivalent flow regimes.  

We can adjust the surface adhesion parameter Gads so that the desired 
contact angle is attained. For simplicity, we make the contact angle zero 
and we can use the 2-D Young-Laplace equation with a zero contact angle 
term to determine the pressure difference across a curved (2-D) interface: 

r
P . (81) 

With zero contact angle (and assuming there is no adsorbed liquid film), 
the interface radius of curvature is identical to the half-width of the 2-D 
capillary tube (a slit). For small capillaries in 3-D, Hyväluoma et al. (2004) 
have demonstrated that the ratio of capillary cross-sectional area to perime-
ter can account for discretization and is preferable to the radius for use in 
Eq. (81). 

The hydrostatic pressure difference between the top and bottom of a 
column of incompressible liquid of height h in a gravitational field g is 

ghP . (82) 

Equating the right hand sides of (81) and (82) gives 

r
gh , (83) 

which can be rearranged as the capillary rise equation: 
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gr
h . (84) 

The dimensionless Bond number reflects the balance between gravita-
tional and capillary forces and is  

grBo
2

. (85) 

Bo is effectively r/h. To illustrate its use in defining an LBM capillary rise 
arrangement equivalent to a real capillary system, we consider a real capil-
lary slit 0.002 m in width (‘radius’ = 0.001 m) in contact with a pool of wa-
ter with density 1000 kg m-3 and gravity g = 9.8 m s-2. The surface tension 
of water is 72.13 10-3 Nm-1. Solving for the capillary rise we obtain 

m
smmkgm

Nmh 3
233

13

1036.7
  9.8  10  001.0

1013.72
. (86) 

Now we can compute the Bond number for the real system: Bo = r/h = 
1/7.36. Defining an analogous LBM system can begin with a domain size. 
Say that the maximum capillary length and rise we wish to simulate is on 
the order of 300 lu. From the Bond number, r = h Bo, and in our specific 
case the radius r = 300 lu/7.36 = 41 lu.

We still need to incorporate the density of the LBM liquid and deter-
mine a gravity value to use in the simulation. Rearranging Eq. (84) we can 
solve for g as   

hr
g (87) 

or g = 2.222 10-6 lu ts-2 for our model problem. We chose a domain size of 
1000 600 lu2 with a wall on the bottom and  = 1 (preliminary observa-
tions suggest that the rise might be affected by , but we have not investi-
gated this). To expedite the computer run we begin with the capillary filled 
to the approximate rise height from an initially flat liquid/vapor interface at 
y = 180 lu. The results are shown in Figure 53. The simulated rise of 334 
lu is about 10% greater than the target value of 300 lu computed analyti-
cally above. In part this is due to the presence of a non-negligible wetting 
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film (Langmuir 1938) with a thickness of approximately 3 lu on the capil-
lary walls. Recomputing the expected rise with Eq. (84) and a effective 
capillary radius of 38 lu together with the observed average liquid density 
in the capillary (523.5 mu lu-2) yields 324 lu – still an approximation. 

Figure 53. Capillary rise in a 1000 600 lu2 domain at 81,000 ts. Density of 
fluid shown as gray scale. Capillary walls in white. Dark edges show wetting 
film. 

As discussed in relation to the SCMP EOS, the model we use simulates 
compressible liquid and gas phases. The liquid phase is actually more 
compressible than the gas phase.  

The hydrostatic pressure difference between the top and bottom of a 
column of compressible fluid of height h in a gravitational field g under 
isothermal conditions is approximately (Halliday and Resnick, 1978) 

10
0

0
P

gh

ePP . (88) 

Here 0 and P0 are the density and pressure at some reference level in the 
fluid. We can set the P on the left side of Eq. (88) to the P from the 
Young-Laplace equation (81) and rearrange to have a capillary rise equa-
tion for compressible fluids: 
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where a zero contact angle has been assumed. If the reference density is 
the flat, free interface value of 524.39 mu lu-2 inside the capillary slit at the 
level of the free liquid pool outside the slit, then the reference pressure is 
24.66 from the EOS. Considering again the effective half-width of the slit 
due to the adsorbed liquid film, we compute a capillary rise of 329 lu,
which is reasonably close to the simulated result.  

Thus we have several possible strategies; we can ensure that g remains 
small and that fluid compression is negligible or we can account for the 
compressibility. The first approach was used by DiPietro et al. (1994) in an 
early lattice gas simulation of capillary phenomena. Hyväluoma et al. 
(2004) used an integrated density through the liquid to remove the effect of 
the compressibility. The above analysis incorporating the compressibility 
is probably more fundamental and should apply to a broader range of pa-
rameters, but we have not investigated it further.  

6.5.4  Adsorption/Capillary Condensation 

Important phenomena that occur when a vapor phase interacts with a sur-
face include adsorption and capillary condensation. Adsorption is the ac-
cumulation of the vapor phase chemical on the solid surface. This accumu-
lation will commonly result in surface condensation and the formation of a 
liquid film. Numerous physicochemical processes can be responsible for 
the formation of such films, but if one limits consideration to ubiquitous 
van der Waals interactions (Tuller et al. 1999), then as a first approxima-
tion the thickness of the film formed is a function of the vapor pressure and 
a Hamaker constant Aslv that quantifies the interaction of the solid surface 
with vapor through a liquid film.  

3
6

)( slvAh . (90) 

Here  is the disjoining pressure (P relative to flat, free interface).  
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When films on opposing surfaces grow towards one another – such as 
on opposite walls of a pore – a critical film thickness is reached beyond 
which the pore spontaneously fills completely.  The critical thickness is 
approximately H/3 where H is the aperture width. The equation governing 
the   simultaneous growth of the films on opposing surfaces is an extension 
of Eq. (90): 

,
6266 333 hH

A
hH

A
h

A slvlvlslv (91) 

where Alvl is a new Hamaker constant that governs the interaction of liquid 
with liquid through an intervening vapor phase. It is possible to estimate 
the values of the Hamaker constants by fitting Eqs. (90) and (91) to simu-
lations. With 1 or 2 adjustable parameters these are rather inflexible equa-
tions however and good fits using the current LBM are elusive. Simula-
tions of film adsorption and capillary condensation with the SC LBM 
model have not been widely reported in the literature – probably because 
of difficulties in obtaining satisfying results. Sukop and Or (2003) pre-
sented some promising preliminary results using a different form of the 
adhesive force (Figure 54), but our current, presumably improved code 
does not seem to simulate these particular phenomena as well. More de-
tailed analysis of the nature of the approximation of surface forces in LBM 
is needed.  



98      Single Component, Multiphase (SCMP) LBM               

0.0001

0.001

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

Saturation

-D
is

jo
in

in
g 

Pr
es

su
re

 (m
u 

ts
-2

)

P
vap = 25.703 m

u
ts

-2

Tem
poral Evolution

50 lu slit

28 lu slit

Figure 54. Simulation of film adsorption and capillary condensation from 
Sukop and Or (2003). The surface force Eq. (66) used the density rather than 
the  function and was not divided by the density as Eq. (47) requires. 

6.5.5  Hysteretic Wetting/Drying of Porous Media 

Despite challenges with the detailed surface adsorption and capillary con-
densation simulations, LBM has been used successfully to simulate the 
hysteretic wetting and drying of porous media. We refer readers to Pan et 
al. (2004) and Vogel et al. (2005) for 3-D examples. 

6.5.6  Fluid Displacement in Porous Media 

The displacement of one fluid by another in porous media leads to a rich 
variety of behaviors depending on the properties of the fluids, the rate of 
displacement, gravitational effects, and the structure of the medium. 
Lenormand (1988) condensed the fluid properties and displacement rate 
into two parameters and showed the variety of behaviors experimentally. 
As we have seen previously for other fluid phenomena, such observations 
present opportunities for validation of lattice Boltzmann methods. We pre-
sent Lenormand’s results and some early attempts at simulating such be-
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havior with LBM here (Sukop and Or 2003); more advanced efforts should 
follow.

Figure 55. Fluid displacement phase diagram and displacement patterns 
adapted from Lenormand et al. (1988) with permission of Cambridge Univer-
sity Press. The displacement fronts have different characteristic shapes de-
pending on the Capillary number Ca and the viscosity ratio M. The inset on 
the lower left shows that the 'stable displacement' field expands as the Bond 
number increases (Berkowitz and Ewing, 1998).  

The Capillary number (Ca) is a dimensionless number that gives the rela-
tive magnitude of viscous and capillary forces.  It can be stated as (Fried-
man, 1999): 

cos
uCa (92)

with u the inlet/outlet velocity,  the viscosity of injected fluid, porosity ,
interfacial tension between fluids , and contact angle  Under many con-
ditions, the other variables are fixed and the Capillary number can be con-
sidered a measure of velocity.  
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The second key variable considered by Lenormand is the ratio (M) of 
the viscosities of the injected and displaced fluids: 

displaced

injectedM (93) 

While this ratio can be varied freely in experimental work by choosing 
appropriate fluid pairs, this is less straightforward in simple LBM models.  
For the D2Q9 SCMP model, we find 
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M (94) 

which indicates that the viscosity ratio is controlled by the density ratio 
when  is held constant. For the parameters used for SCMP throughout this 
text, the ratio of vapor to liquid density is on the order of 0.1; far greater 
density contrasts are generally the norm in the physical world. Similarly to 
the non-physical relative compressibilities of the liquid and vapor phases 
noted above, these fixed density and viscosity ratios are not a significant 
drawback for the computation of equilibrium interface configurations; in 
fact equilibrium conditions may be attained more quickly due to significant 
mass transport in the vapor phase. These ratios can affect numerous other 
phenomena of interest however, and the desire to vary the viscosity ratio to 
simulate these displacement processes is a good example. 

A few strategies are available for varying the viscosity ratio. Ultimately, 
incorporation of a real equation of state would give the true density con-
trast. A more immediate approach would be to simply change the EOS pa-
rameters to increase the density contrast. This can lead to numerical insta-
bilities however. A second approach is to vary  as a function of density 
(Tölke et al. 2002; Nie et al. 1998). We have not experimented with this in 
the context of SCMP models yet, but successfully use it to simulate the 
flow of immiscible fluids below. 

Single component multiphase lattice Boltzmann methods were applied to 
invasion percolation in simplified porous media by Sukop and Or (2003). 
They demonstrated the invading fluid’s selectivity for the largest available 
pore and showed how this is affected by Ca. These abilities are crucial to 
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simulation of behavior in larger networks. To simulate these displacement 
processes, Sukop and Or (2003) induced interface movement from a 
phase-separated initial condition with fixed velocity (uy = constant, ux = 0) 
boundary conditions at the vapor inlet and liquid outlet in keeping with the 
typical experimental practice of constant flow rate. They maintained con-
stant equal volumetric fluxes at the inlet and outlet. Since the (2-
dimensional) volume of the fluid injected per unit time is the velocity mul-
tiplied by the inlet length, equal volumetric fluxes in the vapor and liquid 
correspond to equal velocities in the two phases. Implementation of the 
constant velocity boundary conditions followed the approach proposed by 
Zou and He (1997).  

Figure 56 shows invasion of injected vapor phase through a perforated 
plate with holes of varying size. In the upper time sequence of images at 
low Ca; only the largest pore is invaded. In contrast, the bottom sequence 
shows invasion of the 2 largest pores at larger Ca when viscous effects be-
come more important. These results are similar to those obtained by An-  

Figure 56. Time series (left to right) of invasion of vapor through plate 
with perforations of 16, 14, and 11 lu. Ca = 10-3 (top) and Ca = 10-2 (bottom). 
Liquid black, vapor gray, solids dark gray. (Sukop and Or, 2003) At low 
Capillary number, capillary forces dominate and only the largest pore is in-
vaded by vapor. Increasing the Capillary number (displacement velocity in 
this case) causes a second pore to be invaded despite its smaller size. 
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gelopoulos, et al. (1998) with the free energy lattice Boltzmann model; se-
lectivity for the largest pore was demonstrated but the effect of Ca was not 
investigated in that work.  

Figure 57 illustrates the effects of changes in Ca in a network of pores. 
Each simulation is carried out on a 200 200 lattice with the same random 
arrangement of disks of three different sizes. For the disks, r = 2.5, 3.5, or 
4.5 lu. The domains are periodic in the x direction, although disks at the 
left and right edges of the domain are fixed at large size and effectively 
bound the invasion process. Results near breakthrough for two Ca are 
shown. There are significant differences in the invasion patterns as a func-
tion of Ca. 

Figure 57. Vapor invasion into a porous medium consisting of random 
disks at two Capillary numbers. Ca = 10-3 (left) and Ca = 10-2 (right). Liquid 
black, vapor gray, solids white. 

As noted in the caption of Figure 55, gravity can play a role in stabiliz-
ing (flattening) a fluid invasion front at certain Bond numbers when the 
displaced fluid is denser and tends to collect at the bottom of the domain. 
Figure 58 illustrates the effect. 
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Figure 58. Effect of gravity on displacement front. The front is ramified in 
the absence of gravity (left). Gravity stabilizes front when the invading fluid 
is less dense (right). Liquid black, vapor gray, solids white. 

6.6 Exercises 

1. Plot a family of curves of  vs. P for different G (0, -80, -100, -120, 
and -140). Use 0 = 4, 0 = 200 mu lu-2.

2. Use the Maxwell Construction to estimate the equilibrium vapor pres-
sure from an equation of state with G = -120 and the  function parameters 

0 = 4 and 0 = 200 mu lu-2.

3. Simulate a flat interface in a fully periodic domain by beginning with 
an initial condition with density 500 mu lu-2 in half of the domain and den-
sity 80 mu lu-2 in the other half. Use the same parameters as in Exercise 2. 
Run the model to equilibrium and measure the equilibrium densities. 
Compute the pressure in each phase using the EOS and comment on your 
results.

4. Simulate drops and bubbles of various sizes in a fully periodic do-
main by starting with different initial densities in the unstable portion of 
the EOS (seeds or randomness in the initial density distribution may be 
necessary to prevent a metastable situation). Measure the drop and bubble 
diameters and the inside and outside densities. Convert the densities to 
pressures using the EOS. Plot the pressure difference (high – low) as a 
function of the inverse radii (the curvature), fit a line and estimate the sur-
face tension. Track and report all units.  
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5. Compute the critical radius for heterogeneous cavitation under an ini-
tial fluid tension of -2 mu ts-1. Use the LBM model to simulate the fate of 
bubbles of size greater than and less than the critical radius. 

6. Simulate different contact angles by adding a surface and varying 
Gads. It is helpful to start with a liquid ‘blob’ near the surface. Plot the den-
sity profile through the vapor, liquid, and solid. 

7. The water-water vapor surface tension is 72.13 10-3 N m-1 at 25C. 
Compute the capillary rise in a clean glass slit of radius 0.001 m in the 
Earth’s gravitational field. We choose a slit to reduce the problem to a 2 
dimensional one, in which there is only one possible radius of curvature. 
Assume the contact angle is zero. Show all units. 

8. Compute the Bond number for the capillary rise problem above. 

9. Propose and run a lattice Boltzmann model illustrating capillary rise 
at the Bond number found in Exercise 8.  Remember that r should be at 
least 5 or so lattice units and that the ‘pool’ of liquid that the capillary will 
be immersed into should be wide enough that a pool height unaffected by 
capillary rise can serve as a reference level for measuring the liquid rise in 
your capillary. What is the expected capillary rise in your model? Show all 
calculations and units. Remember to use a surface adhesion parameter that 
corresponds closely to the desired contact angle; too big or too small may 
cause problems. Plot the steady-state result of your model. What is the ob-
served capillary rise? Compare the ratio h/r for the case on Earth, the pre-
dicted LB case, and the simulated case. 




