“Two Computational Paradigms for Big Data”
by Ravi Kumar
Abstract
This talk will cover two non-conventional computational models for analyzing big data.
The first is data streams: in this model, data arrives in a stream and the algorithm is tasked with computing a function of the data without explicitly storing it.
The second is map-reduce: in this model, data is distributed across many machines and computation is done as sequence of map and reduce operations.
We will present a few algorithms in these models and discuss their scalability.