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Abstract

We investigate time consistency of monetary valuations, also called monetary risk

measures or monetary utility functions. Through a number of recent research contribu-

tions, it has become clear that time consistency imposes strong constraints on families

of monetary valuations conditioned on available information at different time instants.

In this paper we add to these results by showing that consistent families of monetary

valuations are already determined uniquely by the choice of the initial valuation, under

suitable sensitivity assumptions; moreover, this statement holds even when the term

“consistency” is interpreted in a rather weak sense. The unique update rule is specified

explicitly, and we characterize the existence of consistent updates for a given initial

monetary valuation. We give examples of situations in which weak consistency is rel-

evant. An application is given to the construction of consistent families of compound

valuations, as an illustration of the additional flexibility under weak time consistency.

Keywords: dynamic risk measures; nonlinear pricing; updating; weak time consistency.

1 Introduction

Risk measures and more generally valuation functionals are used for various purposes, includ-

ing regulation, margin setting, asset pricing, and contract design; see for instance [2, 8, 4, 11].
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In many applications, it is of interest to apply valuations at different points in time. Updat-

ing rules and time consistency of convex and coherent risk measures have been investigated

extensively in recent years; see for instance [15, 21, 24, 12, 10, 3]. Attention has been paid in

particular to the notion of strong time consistency, also called dynamic consistency. We will

argue below in subsection 3.4 that, while this notion has a solid intuitive foundation in some

contexts, weaker notions of consistency can still be appropriate in particular in situations

in which an inequality of valuations does not necessarily imply a preference relationship.

As argued in [22], strong consistency inhibits the construction of families of risk measures

that maintain comparable standards of prudence on different scales; a “VaR of VaR’s”, so to

say, is likely to be very conservative. For related comments see also Schied [25, Rem. 3.5]. In

fact, it has been noted in the literature that many risk measures do not even allow strongly

consistent updates. Klöppel and Schweizer [18, Section 7.2] introduce a natural coherent risk

measure based on one-sided moments, and show that it cannot be updated in a dynamically

consistent way. A striking result by Kupper and Schachermayer [19] shows that, under mild

technical conditions, law-invariant risk measures allow strongly time consistent updates only

when they belong to the family of entropic risk measures, which is parametrized by a single

scalar parameter.

Alternative, weaker notions of time consistency have been proposed and discussed in

several papers, for instance [7, 22, 28, 27, 1, 5]. The main notions used in this paper are

sequential consistency and conditional consistency. Both consistency notions have been

introduced in [22] in the context of coherent risk measures defined on a finite outcome

space. Sequential consistency is the central notion in this paper; it formalizes the idea that

a position that is surely (un)acceptable at some future date should be deemed (un)acceptable

already now. The importance of conditional consistency derives from the fact that, even

under this weak form of consistency, updates are unique.

The uniqueness of updates, under suitable sensitivity assumptions, is one of the main

results of the present paper. The result on uniqueness is supported by the construction of an

operator that provides the update if it exists. This operator, called the refinement update, is

a generalization of the well known Bayesian updating rule. We give necessary and sufficient

conditions for the existence of consistent updates, and we show that consistent updating

of an initial risk measure is enough to construct consistent families of risk measures. The

paper concludes with an example of the construction of consistent families.

In this paper we consider the positions specified by payoffs (random variables) rather

than by payoff streams (random processes) as for instance in [10] and [17]. As in most of the

literature on risk measures, we shall limit ourselves to bounded random variables; methods

for extending results from this case to the unbounded case are provided in [9].

The literature on risk measures that has developed following the work of Artzner et al.
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[2] is marked by variations in sign conventions and terminology. The sign conventions that

we use are the same as for instance in [10]: the outcomes of random variables are interpreted

as gains, and positive values of functionals correspond to acceptable positions. The term

“monetary utility function” that has been used in a number of recent papers is a little long-

winded as noted by Jobert and Rogers [17], and moreover does not quite match the view

taken in this paper that valuations are not necessarily preference indicators. We follow the

suggestion in [17] to use the term “valuation”, even though this term may be less suitable for

applications in regulation. The term “monetary” is added as a reference to the translation

axiom that is used below, and in this way we arrive at the term “monetary valuation” for

the class of functionals that we consider.

The paper is organized as follows. Preliminaries with mostly well known material are

presented in Section 2. The notions of consistency that we use are defined in Section 3, which

we conclude by two examples that motivate the relaxation of the standard concept. The

refinement update is introduced in Section 4 as the unique candidate for a consistent update.

Existence of such an update is addressed in Section 5. An example of the construction of

a consistent family is shown in Section 6. Finally, conclusions follow in Section 7. Most of

the proofs have been collected, together with a few auxiliary results, in the Appendix.

2 Basic definitions and properties

In this section we list some basic definitions and properties and fix notation. Most of the

material is standard and the basic properties are well known (see for instance [12, 10, 14]).

2.1 Standing assumptions and notation

We work in the standard setting of a fixed filtered probability space (Ω,F , P, (Ft)t∈T ); the

parameter set T can be an interval [0, T ] or a discrete set {t0, t1, . . . , tn}, with t0 = 0 and

tn = T . We will always assume that F0 is trivial and FT = F . The terms “measurable”

and “almost surely” without further specification mean F-measurable and P -almost surely,

respectively. The complement of an event F ∈ F is denoted by F c. We write L∞ =

L∞(Ω,F , P ). Elements of L∞ will be referred to as random variables but also as “payoffs”

or “positions”. Convergence is taken in the almost sure sense unless indicated otherwise.

All equalities and inequalities applied to random variables are understood to hold almost

surely; the notation X � Y means that P (X ≤ Y ) = 1 and P (X < Y ) > 0.

Given a nonempty set S ⊂ L∞, ess supS is defined as the least element in the a.s.-

equivalence classes of measurable functions from Ω to R ∪ {∞} that dominate all elements

of S in the almost sure sense (see for instance [14]); ess inf S is defined similarly. We use

inf X and supX to refer to the essential infimum and the essential supremum, respectively,
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of an element X of L∞. We also use inf and sup in the usual sense to refer to the infimum

and supremum of a collection of real numbers; this should not lead to confusion.

The set L∞(Ω,Ft, P ) of essentially bounded Ft-measurable functions will be written as

L∞t . Conditional expectations under a probability measure Q � P are usually written as

EQt X rather than as EQ[X | Ft].

Given a random variableX ∈ L∞, the variable ‖X‖t ∈ L∞t defined by ‖X‖t = ess inf{m ∈

L∞t |m ≥ |X|} is referred to as the Ft-conditional norm of X. The notation ‖X‖ (with-

out subscript) refers to the usual L∞-norm of X. Since Ft ⊂ F , we have L∞t ⊂ L∞ and

‖X‖t ≤ ‖X‖ for all X ∈ L∞.

2.2 The class Mt of Conditional Monetary Valuations

Definition 2.1 A conditional monetary valuation with respect to Ft, also called an Ft-

conditional monetary valuation, is a mapping φt : L∞ → L∞t that satisfies the properties of

normalization (2.1), monotonicity (2.2), and Ft-translation invariance (2.3):

φt(0) = 0 (2.1)

X ≤ Y ⇒ φt(X) ≤ φt(Y ) (X,Y ∈ L∞) (2.2)

φt(X + Ct) = φt(X) + Ct (X ∈ L∞, Ct ∈ L∞t ). (2.3)

We use the notation Mt for the class of Ft-conditional monetary valuations.

For elements of M0, i.e. mappings from L∞ to R, the term “unconditional monetary val-

uation” will sometimes be used. An element φt of Mt is called a concave Ft-conditional

monetary valuation if it satisfies Ft-concavity :

φt(ΛtX+(1−Λt)Y ) ≥ Λtφt(X)+(1−Λt)φt(Y ) (X,Y ∈ L∞; Λt ∈ L∞t , 0 ≤ Λt ≤ 1), (2.4)

and φt ∈Mt is called coherent if it in addition satisfies Ft-positive homogeneity :

φt(ΛtX) = Λtφt(X) (X ∈ L∞; Λt ∈ L∞t , Λt ≥ 0). (2.5)

The Ft-local property is always satisfied by elements of Mt [12, Prop. 1,2], [10, Prop. 3.3]:

φt(1FX + 1F cY ) = 1Fφt(X) + 1F cφt(Y ) (F ∈ Ft; X, Y ∈ L∞). (2.6)

Under the normalization assumption, the local property is equivalent to Ft-regularity [12,

Prop. 1]:

φt(1FX) = 1Fφt(X) (F ∈ Ft; X ∈ L∞). (2.7)

Additional assumptions relating to monotonicity that will be used frequently are sensitivity

(2.8) and strong sensitivity (2.9):

X � 0 ⇒ φt(X) � 0 (X ∈ L∞) (2.8)
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X � Y ⇒ φt(X) � φt(Y ) (X,Y ∈ L∞). (2.9)

A mapping that is monotonic and strongly sensitive is said to be strictly monotonic. A

mapping φt is continuous from above if

Xn ↘ X ⇒ φt(Xn)↘ φt(X) (Xn ∈ L∞, n = 1, 2, . . . ; X ∈ L∞). (2.10)

A dynamic monetary valuation corresponding to the filtration (Ft)t∈T is a family (φt)t∈T

with φt ∈Mt for each t ∈ T . The class of dynamic monetary valuations for a given filtered

probability space (Ω,F , P, (Ft)t∈T ) is denoted by MT .

2.3 Acceptance sets and conditional requirements

The acceptance set of a normalized monotonic mapping φ : L∞ → L∞ is defined by

A(φ) = {X ∈ L∞ |φ(X) ≥ 0}.

We will frequently write At as an abbreviation of A(φt), when the mapping φt is clear

from context. The acceptance set of an Ft-conditional monetary valuation satisfies three

properties that we express here for a general set S ⊂ L∞, namely acceptance of zero (2.11),

solidness (2.12), and Ft-nonnegativity (2.13):1

0 ∈ S (2.11)

X ∈ S, Y ≥ X ⇒ Y ∈ S (Y ∈ L∞) (2.12)

X ∈ L∞t ∩ S ⇒ X ≥ 0. (2.13)

Below we shall refer to these three properties as the “basic conditions”. Such acceptance

sets always have the Ft-local property (2.14) and the Ft-closedness property (2.15):

X,Y ∈ S ⇒ 1FX + 1F cY ∈ S (F ∈ Ft) (2.14)

Xn ∈ S (n = 1, 2, . . . ), ‖Xn −X‖t → 0 ⇒ X ∈ S (X ∈ L∞). (2.15)

The Ft-closedness property follows from the inequality |φt(X) − φt(Y )| ≤ ‖X − Y ‖t [10,

Prop. 3.3].

The five conditions (2.11–2.15) are not only necessary but also sufficient for a set S ⊂ L∞

to be the acceptance set of an Ft-conditional monetary valuation. The proposition below,

obtained from [12] and [10], states this fact and also explains how to relate a conditional

monetary valuation to a subset S satisfying only the basic conditions. That construction

1The term “normalization” is sometimes used for properties (2.11) and (2.13) together. This phrase may

be too simple however since it does not indicate that the defined notion depends on the σ-algebra Ft.
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relies on the notion of a conditional capital requirement, introduced in [12], which associates

to an arbitrary set S ⊂ L∞ the mapping from L∞ to L∞t given by

φtS(X) = ess sup{Yt ∈ L∞t |X − Yt ∈ S}. (2.16)

For the convenience of the reader, the proof of the proposition is summarized in the Ap-

pendix.

Proposition 2.2 A set S ⊂ L∞ is the acceptance set of an Ft-conditional monetary val-

uation if and only if it satisfies the five conditions (2.11–2.15). The associated conditional

monetary valuation is uniquely determined as the capital requirement φtS of S, defined by

(2.16). More generally, for any S ⊂ L∞ satisfying the basic conditions (2.11–2.13), φtS is

the element of Mt whose acceptance set is equal to the smallest extension of S that satisfies

(2.14–2.15). If in addition S is convex , then φtS is a concave valuation.

It follows that the construction of capital requirements induces a one-to-one correspondence

between conditional monetary valuations φt ∈Mt and their acceptance sets, given by

φt = φtA(φt)
. (2.17)

The acceptance set of a concave valuation is convex, and in fact satisfies the stronger property

of Ft-convexity which is expressed as follows:

ΛtX + (1− Λt)Y ∈ S (X, Y ∈ S; Λt ∈ L∞t , 0 ≤ Λt ≤ 1). (2.18)

Sensitivity of a conditional monetary valuation φt is reflected by the property of negative

cone exclusion:

X � 0 ⇒ X 6∈ S. (2.19)

For later reference, we identify two properties that represent distinct features of the

Ft-local property (2.14). The first property, closedness under Ft-isolation, is related to

restricting a given position, while the second, Ft-complementarity, relates to joining two

mutually exclusive positions. These two properties are expressed as follows:

X ∈ S ⇒ 1FX ∈ S (X ∈ L∞, F ∈ Ft) (2.20)

1FX ∈ S, 1F cX ∈ S ⇒ X ∈ S (X ∈ L∞, F ∈ Ft). (2.21)

Proposition 2.3 Let Ft be a sub-σ-algebra. A set S ⊂ L∞ that satisfies 0 ∈ S has the

Ft-local property if and only if it has both the Ft-complementarity property and the property

of closedness under Ft-isolation.
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Proof First, assume that S has the local property. For any X ∈ S and F ∈ Ft, we have

1FX = 1FX + 1F c0 ∈ S, so that S is closed under Ft-isolation. To prove the complemen-

tarity property, let X ∈ L∞ and F ∈ Ft be such that 1FX ∈ S and 1F cX ∈ S. Writing

X = 1F (1FX) + 1F c(1F cX), we see that the local property implies that X ∈ S.

Conversely, assume now that S is closed under Ft-isolation and has the Ft-complementarity

property. Take X,Y ∈ S, and F ∈ Ft, and write Z = 1FX + 1F cY ∈ S. We need to prove

that Z ∈ S. Note that 1FZ = 1FX ∈ S and 1F cZ = 1F cY ∈ S by the closedness under

Ft-isolation of S. By the Ft-complementarity, this suffices to show that indeed Z ∈ S. �

3 Time consistency

3.1 Sequential consistency

Several notions of time consistency are used in the literature. The notion of sequential

consistency is central in this paper. This notion is defined as follows.

Definition 3.1 Let be given φs ∈ Ms and φt ∈ Mt with s ≤ t. We say that φs and

φt are sequentially consistent, or that φt is a sequentially consistent Ft-update of φs, if the

following conditions hold:

φt(X) ≥ 0 ⇒ φs(X) ≥ 0 (X ∈ L∞) (3.1a)

φt(X) ≤ 0 ⇒ φs(X) ≤ 0 (X ∈ L∞). (3.1b)

The condition (3.1a) is known as “weak acceptance consistency” [7, 13, 26] while the prop-

erty (3.1b) has been called “weak rejection consistency” [26]. We shall use the simpler

terms acceptance consistency and rejection consistency instead. The combination of the

two properties, which we refer to as sequential consistency, was used by Weber in a study

of distribution-invariant risk measures [28].

The following characterizations of sequential consistency may aid the intuition (cf. [22,

Thm. 4.2], [26, Kor. 3.1.8]). Recall that we use inf X (supX) to denote the essential infimum

(supremum) of an element of L∞; in particular, inf X and supX are constants.

Lemma 3.2 The monetary valuation φt ∈Mt is a sequentially consistent update of φs ∈Ms

if and only if the following equivalent conditions hold:

(i) φt(X) = 0⇒ φs(X) = 0 (X ∈ L∞)

(ii) φs(X − φt(X)) = 0 (X ∈ L∞)

(iii) inf φt(X) ≤ φs(X) ≤ supφt(X) (X ∈ L∞).

7



Proof Clearly, property (i) is implied by sequential consistency. For any X ∈ L∞ we have

φt(X − φt(X)) = 0, so that property (ii) is implied by property (i). If property (ii) holds,

then for any X ∈ L∞ we have

φs(X)− inf φt(X) = φs(X − inf φt(X)) ≥ φs(X − φt(X)) = 0

and likewise φs(X) − supφt(X) ≤ 0, so that (iii) is satisfied. Finally, it is immediate that

property (iii) implies sequential consistency. �

The notion of strict sequential consistency is defined as sequential consistency with the

added requirement

φt(X) � 0⇒ φs(X) � 0 (X ∈ L∞). (3.2)

It is easily verified that under strong sensitivity this is equivalent to sequential consistency.

3.2 Strong time consistency

The notion of time consistency that is used most frequently in the literature is strong time

consistency, also called dynamic consistency or just time consistency ; see for instance [3,

Def. 5.2], [16, Def. 18], [13, Def. 3.1]. We will also refer to it as strong time consistency.

Definition 3.3 Let be given φs ∈Ms and φt ∈Mt with s ≤ t. We say that φs and φt are

strongly time consistent, or that φt is a strongly time consistent update of φs, if the following

relation holds for all X ∈ L∞:

φs(φt(X)) = φs(X). (3.3)

A characterization in terms of acceptance sets is given in [13]. The definition of strong time

consistency is sometimes given in the form of one of the following equivalent implications:

φt(X) = φt(Y )⇒ φs(X) = φs(Y ) (X,Y ∈ L∞, s ≤ t), (3.4)

φt(X) ≤ φt(Y )⇒ φs(X) ≤ φs(Y ) (X,Y ∈ L∞, s ≤ t). (3.5)

Under Ft-translation invariance, these conditions are both equivalent to the definition above,

as can be seen by taking Y = φt(X), cf. [1, Prop 1.16]. It is immediately clear from

the definitions that strong time consistency implies sequential consistency. Reasons for

considering the weaker notion will be discussed in subsection 3.4 below.

3.3 Conditional consistency

Finally we introduce a notion that is even weaker (under suitable sensitivity assumptions)

than sequential consistency. This notion plays a key role in uniqueness of updating.
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Definition 3.4 Let be given φs ∈ Ms and φt ∈ Mt with s ≤ t. We say that φs and φt

are conditionally consistent, or that φt is a conditionally consistent Ft-update of φs, if the

following condition holds:

φt(X) ≥ 0 ⇔ ∀F ∈ Ft : φs(1FX) ≥ 0 (X ∈ L∞). (3.6)

The condition in the definition states that approval of a position at level t is equivalent

to approval at the aggregate level s not only of the position itself, but also of its isolated

versions where isolation is taken up to level t.

In order to describe the notion of conditional consistency in terms of acceptance sets, we

introduce the following construction.

Definition 3.5 Given a set S ⊂ L∞ such that 0 ∈ S, the Ft-restriction of S is the set St

defined by

St = {X ∈ S | 1FX ∈ S for all F ∈ Ft}. (3.7)

The set St can be described alternatively as the largest subset of S that is closed under

Ft-isolation. Definition 3.5 has been used before by Tutsch [26, p. 88], in the situation in

which the set S is the acceptance set As of a monetary valuation φs ∈ Ms. She refers to

this set, which we denote by Ats, as the acceptance set of φs with respect to Ft.

Conditional consistency can now be formulated compactly as the requirement that

At = Ats. (3.8)

Since the acceptance set At is closed under Ft-isolation as a consequence of the local prop-

erty, we have At ⊂ Ats if and only if At ⊂ As. In other words, acceptance consistency

is equivalent to inclusion from left to right in (3.8). The reverse inclusion, which is called

the consecutivity property in [26], is not equivalent to rejection consistency, however. The

relations between various notions of consistency are indicated in the following proposition,

whose proof is in the Appendix.

Proposition 3.6 Let be given φs ∈ Ms and φt ∈ Mt with s ≤ t. Conditional consistency

of φs and φt is implied in each of the following cases:

1. φs and φt are strongly time consistent, and φs is sensitive

2. φs and φt are sequentially consistent, and φs is strongly sensitive

3. φs and φt are strictly sequentially consistent.

The following proposition shows that conditional consistency is strong enough to preserve

some properties of interest.

9



Proposition 3.7 Let be given a sensitive monetary valuation φs ∈ Ms, and let φt be a

conditionally consistent Ft-update of φs. Then the following statements hold:

(i) φt is sensitive;

(ii) if φs is concave, then so is φt;

(iii) if φs is continuous from above, then so is φt.

The proof is given in the Appendix. It is also shown in the Appendix (Lemma 8.5) that

strong sensitivity is preserved under sequentially consistent updating.

3.4 Strong versus weak time consistency

The characterizations (3.4) and (3.5) of strong time consistency are often seen as having a

solid intuitive foundation. In [9], for instance, it is argued that “a violation of this condition

clearly leads to capital requirements that are inconsistent over time”. Also in [12] it is

concluded that “the financial meaning of time consistency is based on general intuition”.

However, different contexts may lead to different intuitions. We present two examples below

in which violations of (3.5) occur without apparent contradictions at least in our view.

Example 3.8 Consider a nonrecombining two-step binomial tree, with 1% probability for

all downward branches. Let φ̂0 and φ̂1 denote the single-step worst-case operators between

time 0 to time 1 and between time 1 to time 2, respectively. Define a conditional monetary

valuation φ by

φ1 = φ̂1, φ0(X) = min
(
E0[φ̂1(X)], φ̂0(E1[X])

)
(X ∈ L∞) (3.9)

(cf. Sequential TVaR as proposed in [22]). This conditional valuation is sequentially con-

sistent but not strongly time consistent. Indeed, compare the two positions (in obvious

notation, from up-up to down-down) X = (0, 0, 0,−1) and Y = (0.1, 0.1,−0.9,−0.9). We

have φ1(X) = (0,−1) < φ1(Y ) = (0.1,−0.9) whereas φ0(X) = −0.01 > φ0(Y ) = −0.9.

Nevertheless, from a risk management perspective at 99% confidence level, these outcomes

do not seem unreasonable. It is important to note that the inequality φ0(X) > φ0(Y ) does

not necessarily mean that an entity that holds position Y at time 0 would be happy to

replace Y by X; other criteria besides the one given by the functional φ0 may also play a

role in determining the attractiveness of positions.

We may compare the outcomes to the ones obtained from the strongly consistent condi-

tional valuation that is based on the single-step operators φ̂0 and φ̂1:

φ′1 = φ̂1, φ′0(X) = φ̂0(φ̂1(X)) (X ∈ L∞). (3.10)
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We have φ′0(X) = −1 < φ′0(Y ) = −0.9. The evaluation of the position X appears very

conservative.

The substantially different positions (0, 0,−1,−1) and (0, 0, 0,−1) are equally evaluated

under φ′0. Under strong consistency it has to be this way, because these two positions are

equally evaluated under φ′1. In other words, strong consistency implies no distinction can

be made at an anterior node between on the one hand a reserve that should be maintained

at a given later node to cover a potential loss, and on the other hand a sure loss of the same

size at that node.

Example 3.9 In this example we think of valuation functionals as producing ask prices for

financial contracts. Consider a stochastic payoff X in the (distant) future; let φ0(X) be its

ask price at time 0, and let φ1(X) denote its ask price at time 1. We can also consider the

ask price at time 0 of the contract that pays φ1(X) at time 1. This contract allows the

holder to buy at time 1 the asset that pays X at time T , but the holder may as well use the

payoff in a different way. If the asset paying X was already bought at time 0, conversion to

cash at time 1 would only be possible at the bid price of the asset at time 1, which may be

considerably lower than the ask price. It would be reasonable therefore that the inequality

φ0(φ1(X)) > φ0(X)

holds. Take δ > 0 such that φ0(φ1(X)) − δ > φ0(X), and consider the contract Y that

pays φ1(X) − δ at time 1. Obviously we have φ1(Y ) < φ1(X), while at the same time

φ0(Y ) = φ0(φ1(X)) − δ > φ0(X). There appears to be no contradiction though. If the bid

price of X at time 1 would be higher than the cash amount Y , then certainly X would be

preferred to Y at that time, but the inequality is in terms of ask prices. As in the previous

example, it seems to be essential that inequality of valuations does not necessarily imply a

preference relation.

4 Uniqueness of updating

It is a well known fact, recalled in Prop. 2.2 above, that any given conditional monetary val-

uation can be viewed as the conditional capital requirement corresponding to its acceptance

set. The construction of the Ft-restriction, introduced in Section 3 to express conditional

consistency in terms of acceptance sets, modifies a given acceptance set in a way that relates

to the filtration member Ft. This suggests a particular way of updating a given monetary

valuation. Namely, given φs ∈ Ms, take its acceptance set As, construct the Ft-restriction

Ats, and define the Ft-update of φs as the conditional capital requirement that corresponds

to Ats. In fact, if the update is to be conditionally consistent, this construction provides
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the only feasible candidate, since by definition of conditional consistency the acceptance set

of the update must be equal to the Ft-restriction of the acceptance set of the monetary

valuation at the earlier time. Since as we have seen above conditional consistency is implied,

under suitable sensitivity assumptions, by strong time consistency as well as by sequential

consistency, this implies that we obtain a criterion for a given monetary valuation to be a

member of a sequentially or strongly time consistent family of monetary valuations. Namely,

it suffices to check whether the update that was described above has the property.

To carry out this program, we first of all need to check whether the set Ats does indeed

define a conditional capital requirement. Conditions for this to be the case have been

formulated in Prop. 2.2. We verify that these conditions are satisfied.

Proposition 4.1 If S ⊂ L∞ satisfies the three properties (2.11) (acceptance of zero), (2.12)

(solidness), and (2.19) (negative cone exclusion), then the Ft-restriction St of S satisfies

(2.11) and (2.12) as well, and moreover St has the conditional nonnegativity property (2.13)

with respect to Ft.

Proof The inheritance of the properties of solidness and acceptance of zero is trivial. To

show the conditional nonnegativity property, suppose there exists Xt ∈ L∞t ∩ St such that

Xt 6≥ 0. Then there exist ε > 0 and F ∈ Ft with P (F ) > 0 such that 1FXt ≤ −ε1F .

Since Xt ∈ St and F ∈ Ft, we have 1FXt ∈ S. By the solidness of S it then follows that

−ε1F ∈ S, which is incompatible with the negative cone exclusion property (2.19). �

It is easily verified that the proposition is applicable to the acceptance setAs of a sensitive

Fs-conditional monetary valuation.

Corollary 4.2 If φs ∈ Ms is sensitive, then the Ft-restriction Ats of its acceptance

set As satisfies the basic properties of Prop. 2.2, namely acceptance of zero, solidness, and

conditional nonnegativity.

As a consequence, the following definition is justified.

Definition 4.3 Let a sensitive Fs-conditional monetary valuation φs be given, and let

t ≥ s. The Ft-refinement update of φs is the Ft-conditional monetary valuation φts defined

by

φts(X) = ess sup{Y ∈ L∞t |φs(1F (X − Y )) ≥ 0 for all F ∈ Ft}. (4.1)

The uniqueness of updating that was already mentioned above can now be stated more

formally. We know, as recalled in Prop. 2.2, that a monetary valuation is the conditional

capital requirement of its acceptance set, so the refinement update provides the unique

candidate for a conditionally consistent update, having At = Ats. In view of Prop. 3.6,
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this must also hold for (strict) sequentially and strongly time consistent updates, under

appropriate sensitivity conditions.

Theorem 4.4 Let a sensitive Fs-conditional monetary valuation φs be given, and let t ≥ s.

The refinement update φts of φs is the unique conditionally, strictly sequentially, and/or

strongly time consistent Ft-update of φs, if such an update of φs exists. If φs is strongly

sensitive, this claim also holds for the sequentially consistent Ft-update of φs.

Uniqueness of strongly time consistent updating has been proved in a different way by

Cheridito et al. [10, Cor. 4.8]. Uniqueness of sequentially consistent updating was proved un-

der some technical conditions for distribution-invariant risk measures by Weber [28, Cor. 4.1].

Application of the theorem in a particular case may or may not be straightforward,

depending on whether the refinement update is easily computed and the desired type of

consistency can be easily verified. As an illustration, we give an example of a valuation that

does not allow a conditionally consistent update.

Example 4.5 Consider a nonrecombining two-step binomial tree with probability 1
2 for all

branches; we use notation as in Example 3.8. Define an unconditional concave valuation

φ0 : R4 → R by

φ0(X) = min( 1
4 (x1 + x2 + x3 + x4), 1

6 (x1 + 2x2 + 2x3 + x4 + 1)).

This valuation is strongly sensitive. Calculation shows that the refinement update φ1 : R4 →

R2 is given by

φ1(X) =
(

min( 1
2 (x1 + x2), 1

3 (x1 + 2x2 + 1)),min( 1
2 (x3 + x4), 1

3 (2x3 + x4 + 1))
)
.

To see that the refinement update is not conditionally consistent, take X = (1,−1,−1, 1);

we have φ1(X) = (0, 0) while φ0(X) = −1. In other words, even acceptance consistency does

not hold. Therefore, the valuation φ0 does not admit a conditionally consistent update, and

neither does it allow a sequentially consistent or a strongly time consistent update. Looking

at the situation in more detail, we can see that both vectors (1,−1, 0, 0) and (0, 0,−1, 1)

belong to A1
0, but their sum does not. Therefore A1

0 does not satisfy the F1-complementarity

property, and hence cannot be the acceptance set of anF1-conditional monetary valuation.

Consider now a dynamic monetary valuation φ ∈ MT associated to the given filtration

(Ft)t∈T , that is, a family (φt)t∈T such that, for each t ∈ T , φt ∈Mt. It would be reasonable

to speak of a strongly time consistent dynamic valuation if, for each s, t ∈ T with s ≤ t, φt

is a strongly time consistent update of φs, and likewise for other notions of consistency. The

conditions in Thm. 4.4 provide criteria for an initial valuation φ0 to admit consistent updates

with respect to more detailed σ-algebras (Ft)t∈T , but it remains to be seen whether in this
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way a consistent family is defined, since in principle it may happen that φ0 is consistent

with φs and also with φt, but φs and φt are not consistent with each other. In fact simple

examples show that such situations may indeed arise if the notion of consistency that is

used is acceptance consistency. The same holds if one uses the notion of middle rejection

consistency which is defined [20, Def. 2.1.2, Prop. 2.1.6] (cf. also [26, Thm. 3.1.5]) by the

condition φs(X) ≤ φs(φt(X)) for X ∈ L∞ and s ≤ t. In the case of conditional consistency,

however, consistent updating of φ0 is enough to construct a consistent family. Under strong

sensitivity, the same holds for sequential consistency and for strong time consistency. This

is a consequence of the following proposition.

Proposition 4.6 Let be given φs ∈ Ms, φt ∈ Mt, and φu ∈ Mu, with s ≤ t ≤ u. If φt

is a conditionally consistent update of φs, then φu is a conditionally consistent update of φt

if and only if it is a conditionally consistent update of φs. Under the assumption that φs

is strongly sensitive, the same statement holds when “conditionally consistent” is replaced

throughout either by “(strictly) sequentially consistent” or by “strongly time consistent”.

The proof of the proposition is given in the Appendix.

5 Membership of consistent families

It was shown above that the refinement update provides the unique candidate for consistent

updating. As shown in Example 4.5, the refinement update need not be conditionally

consistent, let alone sequentially or strongly time consistent. This means that, given an

unconditional valuation φ0 ∈ M0, it is not in general true that this valuation is a member

of a consistent family of valuations, even if we require only conditional consistency. On the

other hand, as shown in the previous section, membership of such a family does follow if we

can show that consistent updating of the initial valuation φ0 is possible with respect to the

σ-algebras belonging to the given filtration (Ft)t∈T .

Given the uniqueness result Thm. 4.4, to decide whether or not a conditionally consistent

update exists it is sufficient to compute the refinement update and to check whether it

satisfies the requirements (3.6). In fact it is enough to verify acceptance consistency, as

shown in the following proposition.

Proposition 5.1 Let φt be the Ft-refinement update of a given φs ∈ Ms. Then φt is a

conditionally consistent update of φs if it is an acceptance consistent update.

Proof Suppose φt is the Ft-refinement update of φs and (3.1a) holds. The implication

from right to left in (3.6) follows from the definition of the refinement update. Moreover
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(as noted by Tutsch [26, Kor. 3.1.8(d’)]), if φt(X) ≥ 0, then for any F ∈ Ft also φt(1FX) =

1Fφt(X) ≥ 0, and we can conclude that φs(1FX) ≥ 0 by applying (3.1a) to 1FX. �

In other words, the proposition states that if the refinement update of a given monetary

valuation is not conditionally consistent, then it is in fact not even acceptance consistent.

This is the situation we encountered in Example 4.5. In [26, Remark 8.2] a similar observa-

tion has been made for the class of convex risk measures.

In cases in which the computation of the refinement update and verification of acceptance

consistency is not easily achieved, it is of interest to have alternative conditions for the ex-

istence of conditionally consistent updates. According to Prop. 2.2, there are five properties

that need to be satisfied in order for the Ft-restriction of the acceptance set As to qualify

as the acceptance set of an Ft-conditional monetary valuation. The three “basic conditions”

mentioned at the beginning of subsection 2.3 are always satisfied for an Ft-update of an

acceptance set. The two remaining properties are Ft-closedness and the Ft-local property.

As may be expected, the closedness property holds under a continuity assumption. The

proof of the lemma below can be found in the Appendix.

Lemma 5.2 If φ : L∞ → L∞ is normalized, monotonic, and continuous from above, then,

for any σ-algebra Ft ⊂ F , the Ft-restriction of the acceptance set of φ is Ft-closed.

The existence of conditional updates can therefore be characterized as follows for valuations

that are continuous from above.

Proposition 5.3 If φs ∈ Ms is sensitive and continuous from above, then φs admits a

conditionally consistent Ft-update if and only if it has the following property:

[∃G ∈ Ft : ∀F ∈ Ft : φs(1F∩GX) ≥ 0, φs(1F∩GcX) ≥ 0 ] ⇒ φs(X) ≥ 0 (X ∈ L∞).

(5.1)

Proof As already noted above, under the stated conditions the valuation φs admits a

conditionally consistent Ft-update if and only if the Ft-restriction Ats of the acceptance set

of φs has the Ft-local property (2.14). It was shown in Prop. 2.3 that the Ft-local property

is equivalent to the combination of the Ft-complementarity property (2.21) and closedness

under Ft-isolation (2.20). The latter property is always satisfied by Ft-restrictions, so that

it only remains to show that the property (5.1) is equivalent to Ft-complementarity of Ats.

By definition, Ft-complementarity of Ats means that, for X ∈ L∞, we have

[∃G ∈ Ft : ∀F ∈ Ft : φs(1F∩GX) ≥ 0, φs(1F∩GcX) ≥ 0 ] ⇒ ∀F ∈ Ft : φs(1FX) ≥ 0.

(5.2)

This property obviously implies (5.1). Conversely, suppose that (5.1) holds, and let X ∈ L∞

be such that the condition on the left hand side of (5.2) is fulfilled. Take H ∈ Ft. The
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condition in (5.2) is then fulfilled also for 1HX instead of X, and since this premise is the

same as in (5.1) it follows that φs(1HX) ≥ 0. Therefore the conclusion of (5.2) holds.

Consequently (5.2) is equivalent to (5.1). �

We will refer to (5.1) as the property of complementary acceptance. This criterion

is considerably weaker than the Ft-complementarity property of the acceptance set of φs,

which may be formulated as

[∃G ∈ Ft : φs(1GX) ≥ 0, φs(1GcX) ≥ 0 ] ⇒ φs(X) ≥ 0 (X ∈ L∞). (5.3)

Indeed, the premise of (5.1) implies the one in (5.3).

If we require that the local property of the refinement should hold generically, that is,

with respect to any filtration, then we can formulate an even simpler necessary and sufficient

condition. This is a consequence of the following lemma. The property (5.4) that is used

below may be called generic complementarity.

Lemma 5.4 Let S ⊂ L∞ be such that 0 ∈ S. The Ft-refinement St satisfies the Ft-local

property for all σ-algebras Ft ⊂ F if and only if the following property holds:

X,Y ∈ S, P
(
{X = 0} ∪ {Y = 0}

)
= 1 ⇒ X + Y ∈ S. (5.4)

Proof The sufficiency part follows from the discussion above. For the necessity, let X,Y ∈

S be such that P
(
{X = 0} ∪ {Y = 0}

)
= 1. Define F = {X 6= 0} ∈ F , and take

Ft = {∅, F, F c,Ω}. We have 1FX = X ∈ S and 1F cX = 0 ∈ S, so that X ∈ St, and likewise

Y ∈ St. By assumption the set St has the Ft-local property, so that 1FX + 1F cY ∈ St.

Since 1FX = X, 1F cY = Y , and St ⊂ S, this implies X + Y ∈ S. �

A result showing that coherent risk measures that are sensitive and continuous from

above can always be updated in a conditionally consistent way was proved in the context

of tree models in [22, Thm. 7.1]. A more general statement follows below. The update rule

that is used for this class is known as Bayesian updating. The proposition below therefore

shows that the refinement update can be viewed as a generalization of Bayesian updating

to valuations that are not of the coherent (“multiple-prior”) type.

Proposition 5.5 Let Q be a collection of probability measures that are all absolutely con-

tinuous with respect to the reference measure P . Define

φt(X) = ess inf
Q∈Q

EQt X (X ∈ L∞, t ∈ T ). (5.5)

Assume that φ0 is sensitive. The dynamic valuation (φt)t∈T that is defined in this way is

conditionally consistent.
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Proof Take s, t ∈ T with s ≤ t. We need to show that φt(X) ≥ 0 if and only if φs(1FX) ≥ 0

for all F ∈ Ft. First, let X ∈ L∞ be such that φt(X) ≥ 0. Take F ∈ Ft and Q ∈ Q. It

follows from φt(X) ≥ 0 that EQt X ≥ 0 and hence 1FE
Q
t X ≥ 0, so that EQs (1FX) =

EQs E
Q
t (1FX) = EQs (1FE

Q
t X) ≥ 0. Therefore we have φs(1FX) ≥ 0 for all F ∈ Ft, as

required. For the converse, note that since EQs (1FX) = EQs (1FE
Q
t X) for F ∈ Ft, it follows

from φs(1FX) ≥ 0 for all F ∈ Ft that φs(1FE
Q
t X) for all F ∈ Ft. Using Lemma 8.4 in the

Appendix, we can conclude from this that EQt X ≥ 0. �

The sensitivity requirement in the proposition holds if the collection Q contains at least one

measure that is equivalent to P , and requires that the convex hull of Q contains such an

element, cf. [13, Cor 3.6].

Necessary and sufficient conditions for the existence of sequentially consistent updates

were given for the class of law-invariant concave valuations by Weber [28, Thm. 4.3, 4.4]. The

strongly time consistent families within the same class have been fully described by Kupper

and Schachermayer [19]. Alternative characterizations (not requiring law invariance) are

provided in the following two propositions.

Proposition 5.6 A strongly sensitive Fs-conditional monetary valuation φs admits a se-

quentially consistent Ft-update if and only if it admits a conditionally consistent update and

for each X ∈ L∞ there exists Ct ∈ L∞t such that

φs(1F (X − Ct)) = 0 (F ∈ Ft). (5.6)

Proposition 5.7 A strongly sensitive Fs-conditional monetary valuation φs admits a strongly

time consistent Ft-update if and only if for each X ∈ L∞ there exists Ct ∈ L∞t such that

φs(1FX) = φs(1FCt) (F ∈ Ft). (5.7)

The proofs of both propositions are in the Appendix.

6 Dynamic compound valuations

To illustrate the construction of consistent families, we discuss in this section dynamic

valuations that are constructed by means of compounding. In general, starting with some

collection Φ of dynamic valuations φ = (φt)t∈T , one can define a new dynamic valuation

φ̂ = (φ̂t)t∈T by

φ̂t(X) = ess inf
φ∈Φ

φt(X) (X ∈ L∞). (6.1)

It is easily verified that indeed φ̂t ∈Mt if Φ ⊂MT . The valuation that is obtained in this

way is an example of a compound valuation.
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The dynamic valuations obtained from (6.1) are in general not strongly time consis-

tent, even if all dynamic valuations in the collection Φ do have this property. Acceptance

consistency holds, however; this follows from the lemma below.

Lemma 6.1 Let Φ be a collection of dynamic valuations φ = (φt)t∈T in MT . Define a

dynamic valuation φ̂ = (φ̂t)t∈T by (6.1). If all dynamic valuations φ ∈ Φ are strongly time

consistent, then the dynamic valuation φ̂ satisfies

φ̂s(X) ≥ φ̂s(φ̂t(X))

for X ∈ L∞ and s ≤ t.

Proof We have φ̂s(X) = ess infφ φs(X) = ess infφ φs(φt(X)) ≥ ess infφ φs(ess infφ φt(X)) =

ess infφ φs(φ̂t(X)) = φ̂s(φ̂t(X)). �

It is possible to prove in fairly general situations that even conditional consistency holds.

Let Φt denote the collection of Ft-conditional evaluations obtained by taking the instantia-

tions of the dynamic valuations in the collection Φ at time t:

Φt := {ψ |ψ = φt for some φ ∈ Φ}. (6.2)

We consider a setting in which the conditional expectation operator under the reference

measure, EPs , acts as a ‘central’ element that can be combined with any element of Φt, i.e.,

φt ∈ Φt ⇒ EPs φt ∈ Φs (s < t). (6.3)

Proposition 6.2 Let Φ ⊂ MT be a collection of strongly time consistent dynamic valu-

ations that satisfies (6.3). Then the dynamic valuation φ̂ defined by (6.1) is conditionally

consistent.

Proof Take s and t with 0 ≤ s < t ≤ T , and let X be an element of L∞. We need to show

that φ̂t(X) ≥ 0 if and only if φ̂s(1FX) ≥ 0 for all F ∈ Ft. Suppose first that φ̂t(X) ≥ 0.

For F ∈ Ft, we then have, by Lemma 6.1, φ̂s(1FX) ≥ φ̂s(φ̂t(1FX)) = φ̂s(1F φ̂t(X)) ≥ 0.

Next, assume that φ̂t(X) 6≥ 0. Then there must exist an element φt ∈ Φt, and F ∈ Ft
such that φt(1FX) � 0, and, by assumption (6.3), φ̂s(1FX) ≤ EPs φt(1FX) � 0. �

We prove sequential consistency under the following additional assumption, which de-

scribes a property of closure under conditional pasting:

φt, φ
′
t ∈ Φt ⇒ 1Fφt + 1F cφ′t ∈ Φt (t ∈ T , F ∈ Ft) (6.4)

Proposition 6.3 Under the assumption (6.4) and the assumptions of Prop. 6.2, the dy-

namic valuation defined by (6.1) is sequentially consistent.
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Proof We show that φ̂s(X) = 0 for s < t and X ∈ L∞ such that φ̂t(X) = 0; sequential con-

sistency then follows from Prop. 3.2. The inequality φ̂s(X) ≥ 0 follows from the assumption

φ̂t(X) = 0 by Lemma 6.1.

The reverse inequality can be proved as follows. From (6.4) it follows that for any

pair φt, φ
′
t in Φt, also their minimum min(φt, φ

′
t) belongs to Φt, so that the family E :=

{φt(X) |φt ∈ Φt} is directed downwards. It now follows (see for instance [14, Thm. A.33])

that there exists a sequence (φkt )k∈N in Φt such that φkt (X)↘ 0. Then, also for φks := EPs φ
k
t ,

φks(X)↘ 0. By assumption (6.3), φks ∈ Φs for all k, and hence φ̂s(X) ≤ 0, which we had to

prove. �

Example 6.4 We consider compound valuations defined in terms of entropic risk measures

on a discrete time axis T = {0, . . . , T}. Define, for a given t ∈ T and nonnegative, Ft-

measurable parameter βt, the mapping φ̄βt

t : L∞t+1 → L∞t by

φ̄βt

t (X) = − 1

βt
logEPt exp(−βtX) (X ∈ L∞t+1). (6.5)

For zero parameter values the right hand side is replaced by EPt , as usual. The mappings

φ̄βt

t can subsequently be pieced together to form monetary valuations:

φβT

T (X) = X (6.6a)

φβt

t (X) = φ̄βt

t (φ
βt+1

t+1 (X)). (6.6b)

This recursion is a discrete-time version of the construction of families of conditional eval-

uations in terms of backward stochastic differential equations; cf. [6] and the references

therein. The construction results in dynamic valuations φβ ∈ MT , parametrized by the

vector β := (β0, β1, . . . , βT−1). Note that by construction the valuations are strongly time

consistent, unlike the ones obtained from a similar definition in [1, Section 4.5] in terms of

adapted risk aversion levels over the entire remaining horizon. Compound valuations can

now be defined by choosing sets B of admissible parameter vectors β, cf. (6.1). Strongly time

consistent compound valuations are completely determined by their single-step properties,

and hence correspond to letting B be equal to a singleton that specifies the applied level of

risk aversion per time step. If one imposes that risk aversion is time- and state-independent,

then more specifically βt = c for all t ∈ T , where c is a fixed nonnegative real parameter.

Sequentially consistent examples can be obtained, for instance, by considering sets of the

form

B = {(β0, . . . , βT ) |
t−1∑
k=s

βk ≤ B(s, t)}, (6.7)

whereB is a function that specifies a “budget” for risk tolerance across the interval [s, t]. This

follows from the proposition above, which is applicable under the obvious condition that the
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budget does not decrease if the interval is extended. To illustrate that the additional freedom

does not rely on introducing more parameters, one can consider taking B(s, t) = c. More

generally, one can make the budget grow with period length, and set B(s, t) = c(t− s)α, for

some α ∈ [0, 1]. This includes the strongly time consistent example given earlier, for α = 1.

By choosing lower values of α, one can tune long term features of the compound valuation

without changing the induced one-step properties, a feature that is not available under strong

time consistency.

We briefly indicate how this additional flexibility can be used to accommodate that

two positions with the same ask price tomorrow may have different ask prices today, as

argued in Example 3.9. Suppose that the bid and ask price of positions X ′ ∈ L∞ at t

are given by resp. bt(X
′) = φ̂t(X

′) and at(X
′) = −φ̂t(−X ′), where φ̂ is the dynamic

compound valuation corresponding to a budget function of the form B(s, t) = c(t − s)α,

as described above. For concreteness, consider a nonrecombining two-period binomial tree

with uniform reference measure P , as in Example 4.5. Take c = 1, and consider the cases

(i) α = 0, (ii) α = 1
2 , and (iii) the strongly time consistent case α = 1. Following the idea

of Example 3.9, consider position X = (2, 1, 1, 0), which yields a1(X) = (1.62, 0.62). So

Y = (1.62, 1.62, 0.62, 0.62) has the same ask price at t = 1, and its initial ask price turns out

to be a0(Y ) = 1.24, independently of α. For X, however, the outcomes of a0(X) in the three

cases are 1.12, 1.17, and, of course, 1.24, respectively. These values have been determined

by first computing −φ̄β1

1 (−X) as a (non-decreasing) function of β1 ∈ [0, c], then applying

−φ̄β0

0 to each outcome with β0 equal to the maximum tolerated value min{c, c2α− β1}, and

finally maximizing with respect to β1. Note the additional degree of freedom in the backward

recursion, related to keeping track of the amount of “consumed” risk aversion represented

by β1.

If one restricts attention to deterministic parameter values βt ∈ R, these constructions

still yield conditionally consistent dynamic valuations, as claimed by Proposition 6.2. How-

ever, sequential consistency is lost in general if the number of time periods is more than two,

as is easily verified by extending the example to three steps.

7 Conclusions

The construction of dynamic risk measures and nonlinear pricing operators that combine

time consistency with reasonable levels of prudence across different time scales remains a

challenging task. In this paper we have analyzed time consistency of families of monetary

valuations, which are monetary risk measures under a positive sign convention. We have

shown that, even under very weak interpretations of the notion of time consistency, the

choice of the initial valuation already fully determines the family of valuations to which it
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belongs, if certain sensitivity conditions are satisfied. By considering different notions of

time consistency, we obtain a categorization of monetary valuations in valuations that allow

conditionally consistent updating, valuations that allow sequentially consistent updating,

and valuations that allow strongly consistent updating. By means of examples related to

regulation and to nonlinear pricing, we have indicated that weak forms of consistency can

be motivated. We have provided characterizations of the possibility of updating in several

senses, and we have given an example of the construction of consistent families which allow

flexibility in the specification of prudence over time. An issue that calls for further research

is the fact that the necessary and sufficient conditions that we have given for membership of

consistent families are not always easy to verify. It would be desirable to have more readily

verifiable necessary and/or sufficient conditions. Criteria for weak consistency in terms of

dual representations are provided in [23].

8 Appendix

8.1 Auxiliary results

We prove a few auxiliary results. The following lemma can be proved by an argument similar

to the reasoning in the proof of Thm. 4.33 in [14].

Lemma 8.1 Let φ : L∞ → L∞ be a normalized monotonic mapping that is continuous from

above, and let X ∈ L∞. If there exists a bounded sequence (Xn)n≥1 such that Xn → X and

φ(Xn) ≥ 0 for all n, then φ(X) ≥ 0.

Lemma 8.2 Let φ : L∞ → L∞ be strictly monotonic. If Xt, Yt ∈ L∞t are such that

φ(1FXt) ≥ φ(1FYt) for all F ∈ Ft, then Xt ≥ Yt.

Proof Let the assumptions of the lemma hold. If Xt 6≥ Yt, then there exists ε > 0 such

that the set F = {Yt ≥ Xt + ε} has positive measure. It follows from 1FXt ≤ 1F (Yt − ε)

that

φ(1FYt) ≤ φ(1FXt) ≤ φ(1F (Yt − ε)) ≤ φ(1FYt)

and consequently all inequalities above are in fact equalities. It then follows from the strong

sensitivity of φ that 1F = 0, i. e. P (F ) = 0, and we have a contradiction. �

Corollary 8.3 Let φ : L∞ → L∞ be strictly monotonic. If Xt, Yt ∈ L∞t are such that

φ(1FXt) = φ(1FYt) for all F ∈ Ft, then Xt = Yt.

Lemma 8.4 Let φ : L∞ → L∞ be normalized, monotonic, and sensitive. If Xt ∈ L∞t is

such that φ(1FXt) ≥ 0 for all F ∈ Ft, then Xt ≥ 0.
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Proof Apply the argument in the proof of Lemma 8.2 with Yt = 0, noting that φ(Yt) =

φ(0) = 0 and replacing strong sensitivity with sensitivity. �

8.2 Proof of Prop. 2.2

The necessity of the five conditions has already been shown. To prove the remaining claims,

we first have to show that (2.16) indeed defines a mapping φtS : L∞ → L∞t if S satisfies the

basic conditions. Take X ∈ L∞, and let Yt ∈ L∞t be such that X−Yt ∈ S. It follows from the

solidness of S that then also ‖X‖t−Yt ∈ S. Since ‖X‖t−Yt ∈ L∞t , the Ft-nonnegativity of

S implies that Yt ≤ ‖X‖t. This shows that the essential supremum in (2.16) is finite-valued

(actually φtS(X) ≤ ‖X‖t) so that indeed φtS(X) ∈ L∞t for every X ∈ L∞.

Next we verify that φtS has all the properties of an Ft-conditional monetary valuation if

S satisfies the basic conditions. The Ft-nonnegativity of S and the assumption that 0 ∈ S

together imply that ess inf L∞t ∩ S = 0 so that φtS(0) = 0 as required. The monotonicity

property (2.2) of φtS is immediate from the solidness of S. The conditional translation prop-

erty (2.3) of φtS follows, in fact without any assumptions on the set S, from the corresponding

property of the essential supremum.

For the claim on A(φtS), we refer to [10, Prop. 3.10]. All claims but the last one now

follow.

Finally we consider conditional concavity. It follows as in the proof of Prop. 3 in [12] that

the convexity of S implies that the mapping φtS is F0-concave, i.e., φtS(λX + (1 − λ)Y ≥

λφtS(X) + (1 − λ)φtS(Y ) for λ ∈ R with 0 ≤ λ ≤ 1 and X,Y ∈ L∞. It was shown in [10,

Prop. 3.3] that monotonicity and conditional translation invariance of φt ∈ Mt together

imply the conditional local property as well as the inequality φt(X) − φt(Y ) ≤ ‖X − Y ‖t
in L∞t , and in the same paper it is shown that the latter two properties together with

F0-concavity imply Ft-concavity [10, Rem. 3.4].

8.3 Proof of Prop. 3.6

The inclusion At ⊂ Ats is equivalent to acceptance consistency as noted in the main text,

and it is immediate from the definitions that acceptance consistency is implied by sequential

consistency and by strong time consistency. It remains to prove that the reverse inclusion,

consecutivity, holds under each of the three conditions mentioned. That is, we need to show

the implication from right to left in (3.6). Take X ∈ L∞, and suppose that φs(1FX) ≥ 0

for all F ∈ Ft. Consider now each of the three conditions.

1. Take F = {φt(X) ≤ 0}, so that 1Fφt(X) ≤ 0. Under strong time consistency, we can

write

0 ≤ φs(1FX) = φs(φt(1FX)) = φs(1Fφt(X)) ≤ 0.
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It follows that φs(1Fφt(X)) = 0; sensitivity then implies that 1Fφt(X) = 0, or in other

words φt(X) ≥ 0.

2. Take F as above. Under sequential consistency we can write, using item (ii) in Lemma

3.2:

0 ≤ φs(1FX) ≤ φs(1FX − 1Fφt(X)) = φs(1FX − φt(1FX)) = 0. (8.1)

It follows that all inequalities are in fact equalities, and strong sensitivity of φs implies that

1Fφt(X) = 0, i.e. φt(X) ≥ 0.

3. Strict sequential consistency implies that, for X ∈ L∞ such that φt(X) ≤ 0, we can

conclude that φt(X) = 0 when φs(X) = 0. With F as above, the relations (8.1) imply that

φs(1FX) = 0 whereas we also have φt(1FX) = 1Fφt(X) ≤ 0. It follows once more that

1Fφt(X) = 0.

8.4 Proof of Prop. 3.7

Concerning item (i), since φs is sensitive, its acceptance set has the negative cone exclusion

property. This property is inherited by the Ft-restriction of A(φs) which is the acceptance

set of φt, and it follows that φt is sensitive as well. Item (ii) follows from Prop. 2.2.

Now consider the claim concerning continuity. Suppose that (Xn)n≥1 is a nonincreasing

sequence of elements of L∞ that converges to X ∈ L∞. By the monotonicity of φt, the

sequence (φt(Xn))n≥1 is nonincreasing as well and is bounded from below by φt(X), so

that we can define Z = limn→∞ φt(Xn). To prove the continuity from above, we must

show that Z = φt(X). We have φt(Xn) ≥ φt(X) for all n, which already implies that

Z ≥ φt(X). Because Z is the pointwise limit of a sequence of Ft-measurable functions, it is

itself Ft-measurable, so the inequality Z ≤ φt(Xn), which holds for each n, may be written

as φt(Xn −Z) ≥ 0. By conditional consistency, this means that φs(1F (Xn −Z)) ≥ 0 for all

F ∈ Ft. Since 1F (Xn − Z)↘ 1F (X − Z), the assumed continuity from above of φs implies

that φs(1F (X − Z)) ≥ 0 for all F ∈ Ft, which means that φt(X − Z) ≥ 0. Again using the

Ft-measurability of Z, we conclude that φt(X) ≥ Z.

8.5 Proof of Prop. 4.6

The property expressed in Prop. 4.6 for sequentially or strongly time consistent updating

does not follow from the corresponding property for conditionally consistent updating, since

we need to prove an implication that has a stronger premise but also a stronger conclusion.

We therefore provide three separate proofs.
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Conditional consistency

Assume that φu is a conditionally consistent update of φt and φt is a conditionally consistent

update of φs. We want to show that φu is also a conditionally consistent update of φs, which

means that φu(X) ≥ 0 if and only if φs(1FX) ≥ 0 for all F ∈ Fu. First, take X ∈ L∞ such

that φu(X) ≥ 0. For all F ∈ Fu, we have φt(1FX) ≥ 0 which implies that φs(1FX) ≥ 0.

Conversely, suppose that φs(1FX) ≥ 0 for all F ∈ Fu. Take F ∈ Fu and F ′ ∈ Ft ⊂ Fu;

then, since F ′ ∩ F ∈ Fu, we have φs(1F ′1FX) = φs(1F ′∩FX) ≥ 0. The fact that this

holds for all F ′ ∈ Ft implies, because φt is a conditionally consistent update of φs, that

φt(1FX) ≥ 0. This inequality in its turn holds for all F ∈ Fu, and so, because φu is a

conditionally consistent update of φt, it follows that φu(X) ≥ 0.

Now assume that both φu and φt are conditionally consistent updates of φs. We want to

show that φu(X) ≥ 0 if and only if φt(1FX) ≥ 0 for all F ∈ Fu. First, take X ∈ L∞ such

that φu(X) ≥ 0. Take F ∈ Fu. For all F ′ ∈ Ft we have F∩F ′ ∈ Fu so that φs(1F ′1FX) ≥ 0.

It follows that φt(1FX) ≥ 0. Conversely, suppose that φt(1FX) ≥ 0 for all F ∈ Fu; then

we also have φs(1FX) ≥ 0 for all F ∈ Fu, so that φu(X) ≥ 0.

(Strict) sequential consistency

Under strong sensitivity, the strict and non-strict versions are equivalent, cf. (3.2). We

formulate the proof for sequential consistency. If φu is a sequentially consistent update of

φt, then it follows immediately from the definition that it is also a sequentially consistent

update of φs. Assume now that φu is a sequentially consistent update of φs, and suppose

it is not a sequentially consistent update of φt, due to a violation of acceptance consistency

(3.1a) (the proof in case of a rejection inconsistency is analogous). Then there exists X ∈ L∞

such that φu(X) ≥ 0 and φt(X) 6≥ 0, so that there is an F ∈ Ft with P (F ) > 0 and

an ε > 0 such that 1Fφt(X) ≤ −ε1F . Take η ∈ (0, ε). Because F ∈ Ft ⊂ Fu, we

have φu(1F (X + η)) ≥ φu(1F (X)) = 1Fφu(X) ≥ 0 so that φs(1F (X + η)) ≥ 0 by the

assumed sequential consistency of φu and φs. The conditional monetary valuation φt is also

a sequentially consistent update of φs, so that from φt(1F (X + η)) = 1F (φt(X) + η) ≤ 0 it

follows that φs(1F (X + η)) ≤ 0. We conclude that φs(1F (X + η)) = 0. Since this holds for

all 0 < η < ε, strong sensitivity of φs now implies that 1F = 0, and we have a contradiction.

Strong time consistency

Assume that φu is a strongly time consistent update of φt, and φt of φs. Then, for any

X ∈ L∞, we have φs(φu(X)) = φs(φt(φu(X))) = φs(φt(X)) = φs(X) so that φu is a

strongly time consistent update of φs. Conversely, assume now that φt and φu are strongly
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time consistent updates of φs. Take X ∈ L∞. For any F ∈ Ft, we have, since Ft ⊂ Fu,

φs(1Fφt(φu(X))) = φs(φt(φu(1FX))) = φs(φu(1FX)) = φs(1FX) = φs(1Fφt(X))

and it follows that φt(φu(X)) = φt(X) by Cor. 8.3 in the Appendix. This corollary applies if

φt is strongly sensitive. This follows from the following lemma, which is applicable because

sequential consistency is implied by strong time consistency.

Lemma 8.5 A sequentially consistent update of a strongly sensitive conditional monetary

valuation is itself strongly sensitive.

Proof Let Fs and Ft be sub-σ-algebras such that Fs ⊂ Ft; let φs ∈ Ms and φt ∈ Mt

Suppose that φs is strongly sensitive and that φt is a sequentially consistent update of

φs. To prove that φt is strongly sensitive as well, take X,Y ∈ L∞ such that X ≥ Y

and φt(X) = φt(Y ). Due to sequential consistency (cf. item (ii) in Lemma 3.2), we have

φs(X − φt(X)) = 0 and also φs(Y − φt(X)) = φs(Y − φt(Y )) = 0. Since X − φt(X) ≥

Y − φt(X), strong sensitivity of φs implies that X − φt(X) = Y − φt(X) and therefore

X = Y . �

8.6 Proof of Lemma 5.2

Write S := A(φ). Take X ∈ L∞, and let (Xn)n≥1 be a sequence of payoffs Xn ∈ St such

that ‖Xn − X‖t → 0. Note that we then also have Xn → X. Take F ∈ Ft; we want to

show that 1FX ∈ S. By Egorov’s theorem, we can find for any m ∈ N a set Gm ∈ Ft with

P (Gm) > 1− 1
m such that the convergence of ‖Xn−X‖t to 0 is uniform on Gm. In particular

it follows, for fixed m, that (1Gm
‖Xn −X‖t)n≥1 is a bounded sequence, which implies that

(1Gm
Xn)n≥1 is a bounded sequence as well. From Xn → X it follows that 1Gm∩FXn →

1Gm∩FX. Moreover, since Gm ∈ Ft and Xn ∈ (A(φ))t, we have φ(1Gm∩FXn) ≥ 0 for all

n. By Lemma 8.1, it follows that φ(1Gm∩FX) ≥ 0. Now, the sequence (1Gm∩FX)m≥1 is

a bounded sequence that converges to 1FX and that satisfies φ(1Gm∩FX) ≥ 0 for all m.

Using Lemma 8.1 again, we conclude that φ(1FX) ≥ 0. Since F ∈ Ft was arbitrary, it

follows that X ∈ St.

8.7 Proof of Prop. 5.6

If φs has a sequentially consistent update φt, then Ct = φt(X) satisfies the requirements

of the proposition. Conversely, suppose now that φs ∈ Ms has a conditionally consistent

Ft-update, say φt, and that for each X ∈ L∞ there exists Ct ∈ L∞t such that (5.6) holds.

To prove that the update φt is sequentially consistent, it is sufficient, in view of Lemma 3.2,

to show that the latter condition implies Ct = φt(X). Therefore, take X ∈ L∞, and let
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Ct ∈ L∞t be such that (5.6) holds. By conditional consistency, the condition (5.6) implies

that φt(X − Ct) ≥ 0 and hence Ct ≤ φt(X). To prove the reverse inequality, take Yt ∈ L∞t
and suppose that

φs(1F (X − Ct − Yt)) ≥ 0 for all F ∈ Ft.

Take in particular F = {Yt ≥ 0}. We then have 1FYt ≥ 0 so that 1F (X − Ct) ≥ 1F (X −

Ct − Yt). Using (5.6), we can write

0 = φs(1F (X − Ct)) ≥ φs(1F (X − Ct − Yt)) ≥ 0.

The strong sensitivity of φs now implies that 1FYt = 1Yt≥0Yt = 0 so that Yt ≤ 0. We have

shown that

ess sup{Yt ∈ L∞t |φs(1F (X − Ct − Yt)) ≥ 0 for all F ∈ Ft} ≤ 0. (8.2)

The conditional monetary valuation φt must be equal to the refinement update of φs, by

Thm. 4.4. In view of the expression given for the refinement update in (4.1), it follows from

(8.2) that φt(X − Ct) ≤ 0. Therefore, we obtain the inequality φt(X) ≤ Ct, and the proof

is complete.

8.8 Proof of Prop. 5.7

If φs admits a strongly time consistent update φt, then Ct = φt(X) satisfies the requirements

of the proposition; indeed, φt(X) ∈ L∞t and, for all F ∈ Ft, φs(1Fφt(X)) = φs(φt(1FX)) =

φs(1FX). Conversely, suppose now that for each X ∈ L∞ there exists Ct ∈ L∞t such

that (5.7) holds. It follows from Cor. 8.3 that for each given X there can be only one such

Ct ∈ L∞t , and so we can define a mapping ψ : L∞ → L∞t implicitly by

φs(1FX) = φs(1Fψ(X)) (F ∈ Ft). (8.3)

If we can show that the mapping ψ belongs to Mt, then strong time consistency follows

from (8.3) and the proof will be complete.

In order to prove that ψ ∈ Mt, it suffices [9, Rem. 3.4] to prove that ψ is normalized

and monotonic, and that it satisfies the local property as well as translation invariance (i.e.

ψ(X + m) = ψ(X) + m for X ∈ L∞ and m ∈ R). The normalization property is trivial,

and monotonicity follows from an application of Lemma 8.2 in the Appendix. Because ψ is

normalized, the local property is equivalent to regularity. Take G ∈ Ft and X ∈ L∞. We

have, for all F ∈ Ft,

φs(1Fψ(1GX)) = φs(1F 1GX) = φs(1F 1Gψ(X))

and moreover 1Gψ(X) ∈ L∞t , so that ψ(1GX) = 1Gψ(X) as was to be proved. To show

translation invariance, first note that ψ(m) = m for all m ∈ R. Now take X ∈ L∞ and
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m ∈ R. Using the translation invariance of φs as well as the regularity property of ψ which

has already been proved and the property φs(X) = φs(ψ(X)) which is a special case of (8.3),

we can write, for F ∈ Ft,

φs(1F (X +m)) = φs(1FX − 1F cm) +m = φs(ψ(1FX − 1F cm)) +m =

= φs(1Fψ(X)− 1F cm) +m = φs(1Fψ(X) + 1Fm) =

= φs(1F (ψ(X) +m)).

Also, we have ψ(X) +m ∈ L∞t . It follows that ψ(X +m) = ψ(X) +m, and this completes

the proof.
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