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Abstract

We propose the notion of Tuned Risk Aversion as a normative interpretation

of non-expected utility preferences. It refers to tuning patterns of risk (and

ambiguity) aversion to the composition of a lottery (or act) at hand, assuming

an overall ‘budget’ for accumulated risk aversion over its stages. This makes

the aversion level applied to a part intrinsically depending on the whole, in a

way that turns out to be in line with frequently observed deviations from the

Sure-Thing Principle. Uniqueness of updates is derived from a non-recursive

form of consistency, in a general axiomatic setting, that also guarantees dy-

namic choice consistency under appropriate assumptions. The Allais paradox

is used as leading example. Ambiguity aversion is illustrated by application

to the 50:51 Example.
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1 Introduction

There is an abundance of evidence that risk attitudes towards a compound lottery, or

act, cannot be properly understood in terms of risk attitudes towards each of its sub-

lotteries separately, contrary to the implications of the von Neumann-Morgenstern

expected utility framework. Since the famous example of Allais, decades of empir-

ical and theoretical research have identified systematic aspects in human decision

making that clearly violate the Independence Axiom underlying expected utility.

This has resulted in several explanations in terms of psychological factors as regret,

framing, and subjective perception of small probabilities, culminating in a variety of

well-established frameworks for modeling so-called non-expected utility preferences.

We refer to Machina and Viscusi (2013) for a recent overview on this topic. Despite

agreement on the observed facts, there is still some controversy whether these de-

viations should be interpreted as biases of the human mind, comparable to optical

illusions, or biases in the adopted principle itself, rendering it as less compelling

than it seems to be at first sight; see Heukelom (2015) for a historical account. Our

approach supports the latter view, by pointing at a straightforward explanation in

terms of Tuned Risk Aversion (TRA), which is inspired by recent findings in research

on non-recursive valuation in the context of nonlinear pricing and risk measures in

finance, see Roorda and Schumacher (2013, 2015) (henceforth RS13 and RS15) and

the references therein.

The idea of TRA is best explained in the setting of a two-stage lottery, with

only three degrees of risk aversion considered per stage: low, medium, high. To all
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the nine combinations possible we can associate an induced ‘overall’ degree of risk

aversion, applying to the lottery as a whole. Let us assume that a moderately risk

averse person considers the following three combinations as not too conservative

(a) medium in both stages, (b) first low, then high, and (c) the other way around.

Variants are possible, of course, but the point is that in general there are level curves

of overall risk aversion consisting of different patterns of distributing it. Tuned Risk

Aversion, in this simple context, amounts to applying all three possibilities in this

tuning set, and then selecting the one with minimum outcome. For example, if there

is only risk in the second stage, (b) will be chosen, while (c) is most effective if only

the first stage is risky. In this way risk aversion is tuned to the compound lottery

as a whole, by ‘spending’ it ‘economically’, where it hurts most.

Natural as it seems, this example immediately raises serious concerns about ra-

tionality of the preferences induced: how to define a meaningful updating principle,

and how to cope then with the dynamic inconsistencies that will inevitably emerge

when the Sure Thing Principle is violated?

For the update rule, we rely on the notion of sequential consistency, introduced

in Roorda and Schumacher (2007) and central in RS13 and RS15. In short, it only

requires that certainty equivalents (ceqs) today are in the range of conditional ones

tomorrow. This fits the idea of TRA much better than the far more restrictive axiom

of recursiveness. We show that nevertheless it is strong enough to induce unique

updates of initial preferences, in a quite general axiomatic framework for finite

state acts that amounts to monotonicity, continuity, and a sensitivity condition on

complete preference orderings (axioms A1-5). The implied update rule, which we

call fixed point updating, turns out to be the one considered in Pires (2002). For

TRA, with two stages, this rule amounts to applying the maximum tolerated level in

the second stage. We also show that the existence of sequentially consistent updates

imposes a restriction on initial preferences (axiom A6), which can be interpreted in
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TRA as a ban on tuning risk aversion across mutually exclusive events.

Once updates have been defined, the issue of dynamic consistency emerges even

sharper: how to rationalize the discrepancy between making conditional decisions

in a certain state beforehand (according to a given initial preference ordering) and

when that state actually materializes (according to its update)? The update may

be mathematically well-defined, but does it make sense?

Our key observation at this point, leads to a subtle yet crucial modification of

the standard definition of dynamic choice consistency (DCC), with stick-to-your-

plan in a future state represented by a zero act, which is then compared to acts

corresponding to exchanging the initial plan for an alternative. We show that this

form of DCC is guaranteed under sequentially consistent updating for initial prefer-

ences that are super-additive (axiom A8), by deriving it from a static form of choice

consistency that such preferences have (axiom A7). A more pragmatic condition,

in terms of an externally given choice set, is proposed for other preference classes.

Choice consistency is not addressed in RS13 and RS15.

From this perspective we take a final look at the interpretation of conditional

ceqs, and their role in backward recursive evaluation. We argue that they generally

do not function as replacement values of sub-acts, because it is inherent in most

preference orderings that also other aspects of a sub-act matter. After all, this is

precisely the point of the Allais paradox, which we use as a leading example in our

exposition. These considerations lead to a revised notion of elementary building

blocks of compound acts.

By an application to the the 50:51 example, introduced in Machina (2009), we

illustrate the working of TRA in a context with both ambiguity and risk.

Finally we discuss related literature, emphasizing the contribution with respect

to the multiple prior approach of Epstein and Schneider (2003), and the close con-

nection with Pires’ rule, also known as the axiom of conditional ceq consistency
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in Eichberger et al. (2007) and Horie (2007). Some variants and extensions of our

setting are formulated to enhance comparison with these and other frameworks, in-

cluding an interpretation of updating in the Ellsberg paradox from our perspective.

This paper is organized as follows. The formal definition of TRA is given in

Section 3, after the introduction and the description of the mathematical setting.

Sections 4–6 form the axiomatic part, on resp. upating, dynamic choice, and recur-

sion in ceqs. Each section ends with a leading example on the Allais paradox, and

Section 7 contains the 50:51 example. Related literature and extensions are dis-

cussed in Section 8, and conclusions follow in Section 9. Proofs and a few technical

results are collected in an appendix, which also contains a probability triangle on

the Allais paradox as an additional illustration of the working of TRA.

2 Setting

We consider acts on a finite state space S, with consequences in s ∈ S consisting

of sub-acts with monetary outcomes in R on a finite ‘final’ state space Ss. So acts

take the form f : S̄ → R, with encompassing state space S̄ := ∪s∈SSs. The set of

all acts is denoted as A. The sub-act of an act f ∈ A in s ∈ S is denoted as fs,

and As denotes the set of all sub-acts in state s. When S̄ (Ss) is endowed with a

probability measure, a (sub-)act is also called a (sub-)lottery. An act with the same

consequence c ∈ R in all states in S̄ is called a sure thing, or the constant (act) c, or

a sure amount c. The term generalizes to sub-acts in the obvious way, and we use

the same notation for sure things on different state spaces. Contrary to common

convention, acts with the same non-constant sub-act fs in all s ∈ S are not called

constant. A first stage act f has no uncertainty after the first stage, i.e., all its

sub-acts fs are sure things. The set of all first stage acts on A is denoted as A1;

first stage acts are identified with mappings S → R.
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The inequality f ≤ g means that f(s̄) ≤ g(s̄) in all final states s̄ ∈ S̄. Conver-

gence of a sequence of acts is defined by identifying acts with vectors in Rm with

m the number of elements in S̄. The numbers min f and max f denote resp. the

minimum and maximum outcome of an act f , and range(f) = [min f,max f ].

We consider preference orderings ≼ on A with the following standard properties.

The symmetric and asymmetric part of ≼ are denoted by resp. ∼ and ≺.

(A1) (Weak order) ≼ is complete and transitive.

(A2) (Monotonicity) If f ≤ g, then f ≼ g.

(A3) (Strict monotonicity for constants) For c, d ∈ R: c < d implies c ≺ d.

(A4) (Continuity) For a series of acts (fk)k∈N and act g, if fk → f , and fk ≼ (≽)g

for all k ∈ N, then f ≼ (≽)g.

Such orderings are called regular. It is well known that these are precisely the ones

that can be represented by functions CE : A → R with the following properties:

(P1) (Normalized on constants) CE(c) = c.

(P2) (Monotonicity) If f ≤ g, then CE(f) ≤ CE(g).

(P3) (Continuity) CE is continuous.

Functions satisfying P1 and P2 are called certainty equivalence functions (ceq func-

tions). We call them regular if they also satisfy P3. Ceq functions on A1 are denoted

by ce.

We use the symbol ≼1 for the state-dependent vector of preference orderings

conditioned on the information after the first stage, i.e., ≼1= (≼s)s∈S with ≼s the

ordering for sub-acts in state s ∈ S; f ≼1 g means that fs ≼s gs for all s ∈ S.

The notion of regularity extends to ≼1 in the obvious way, and we use the symbol
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cce for its ‘conditional’ ceq function. Concretely, cce : A → Rn, with cce(f)(s)

the certainty equivalent of sub-act fs under ≼s, and n the number of states in S;

cce(f) ≡ c means f ∼1 c. The outcome cce(f) is identified with a first stage act in

A1, so that ce(cce(f)) is a meaningful expression.

3 Definition of TRA

TRA defines a preference ordering for compound acts in terms of an externally given

family of preference functions per stage for a range of risk- and/or ambiguity aver-

sion levels (aversion levels for short). We abstract from the way in which aversion

is defined, and just assume a given parametrization of the degree of aversion with

respect to a given ‘risk/ambiguity-neutral’ benchmark, having zero degree by con-

vention, in the spirit of Yaari’s notion of comparative risk aversion (Yaari, 1969),

see also Epstein (1999). More specifically, we assume that the following regular ceq

functions are given:

• cea : A1 → R for a ∈ A, with 0 ∈ A ⊂ R denoting a range of aversion levels

over the first stage, and cea non-increasing in a.

• cceb : A → A1 ≃ Rn for b ∈ B with 0 ∈ B ⊂ Rn specifying given ranges of

aversion levels for the second stage in each state, and cceb non-increasing in

each entry of b.

TRA is defined as taking the worst outcome over different patterns of aversion over

the stages.

Definition 3.1 Tuned Risk Aversion, specified by a non-empty set R ⊂ A × B,

called the tuning set, corresponds to the preference ordering represented by the

function CER : A → R given by

(3.1) CER(f) = inf
(a,b)∈R

cea(cceb(f)).
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Some remarks are in order here. As the notation suggests, CER is indeed a ceq

function, and CER is regular, i.e., satisfies the continuity property P3, under some

additional regularity assumptions, see Lemma 10.1 in the appendix. In that case

the infimum is achieved on compact tuning sets.

Every TRA-preference ordering CER has a maximum tuning set,

(3.2) Rmax = {(a, b) ∈ A×B | cea(cceb(f)) ≥ CER(f) for all f ∈ A}.

As we explained in the introduction, the crux of TRA is that the tuning set R

need not be rectangular, but may reflect mutual restrictions between a and b.

At the outset, no restrictions are imposed on the benchmarks ce0 and cce0,

besides axioms A1-4. For lotteries, a standard choice is to let a = 0 and b = 0

correspond to taking (conditional) expectations under the given reference measure.

More generally, one may choose ce0 and cce0 some linear functionals. A standard

way to mirror positive to negative levels in nonlinear pricing is by setting ce−a(f) =

− cea(−f), cf. Section 6.

Our definition of TRA can be extended in several obvious ways. Extension of

TRA to more than two stages is addressed in Section 6, together with backward

evaluation of CER. We have assumed a single aversion parameter for each stage,

resp. a ∈ A, b ∈ B, but we could also incorporate different types of aversion in each

stage, leading to higher dimensional sets A and B; in fact, the example in Section

7 suggests an extension in this direction, see also Section 8.1. This indicates that

a full axiomatic characterization of TRA may be complicated, and probably not

particularly illuminating. In the discussion of consistency issues, however, we follow

a purely axiomatic approach that does not refer to TRA, but takes starting point

in axioms A1-4 only.

Example 3.2 We apply TRA to the lotteries of the Allais paradox, depicted in

compound form in Figure 1. It has been well documented that many subjects prefer
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Figure 1: The four lotteries related to the Allais paradox (payoffs in $million).

a1 over a2, and a3 over a4, contrary to the Certainty-Independence Axiom that states

that preferences should not switch if only the consequence in state c is changed from

0 to 1 while the sub-lottery is kept the same.

In our setting, the lotteries are viewed as acts f : S̄ → R with final state space

S̄ = {u, d, c}, and also as compound acts on state space S = {s, s′} with s = {u, d}.

We consider constant absolute risk aversion per stage, with a limit on the sum

of their degrees,

(3.3) CEγ(f) = min{cea(cceb(f)) | a, b ≥ 0, a+ b ≤ γ}.

Here cea is the certainty equivalent

(3.4) −1

a
log(pe−ax1 + (1− p)e−ax2)

of a binary lottery with probability p on outcome x1 and 1−p on x2 under expected

exponential utility u(x) = 1 − e−ax; ce0 is the expected value. The vector function

cceb is defined similarly in s (in s′ it is the identity function). Notice that both

stages are treated alike in CEγ, so TRA does not rely on time dependency or extra

model parameters.

The break-even point for the sub-lotteries, cceb(a2)(s) = 1, is reached for b = 2.4.

So a1 ≻ a2 if and only if γ > 2.4, e.g., cceb(a2)(s) = 0.80 for b = 3. It turns out that

for the other pair of lotteries, risk aversion is most effective in the first stage, i.e.,

9



the minimum in (3.3) for a3 and a4 is achieved for (a, b) = (γ, 0). Consequently, for

the second stage expected values are considered, and hence a3 is preferred over a4

for all γ. So CEγ is in line with the Allais preferences for γ > 2.4. Taking γ = 3,

for example, yields a1 ∼ 1, a2 ∼ 0.98, a3 ∼ 0.039 and a4 ∼ 0.036.

This shows that the Allais preferences observed may be interpreted as an effect

of tuning risk aversion. The example is continued in the next sections. As an

additional result, the effect of TRA is depicted in a so-called probability triangle,

in Section 10.2 of the appendix.

4 Sequential consistency and unique updating

In this section we describe the notion of dynamic consistency that we use, and its

consequences for updating preferences. We follow an entirely axiomatic approach,

independent of TRA. The results are applied to TRA at the end of the section.

Throughout this section≼ denotes an (initial) preference ordering onA, and≼1=

(≼s)s∈S a conditional one. In line with RS13, we impose the following relationship

between ≼ and ≼1. Recall that f ≼1 g means that fs ≼s gs for all s ∈ S.

Definition 4.1 (Sequential Consistency) We say that the pair ≼,≼1 is sequen-

tially consistent, or that ≼1 is a sequentially consistent update of ≼, if

(4.1) c ≼1 f ≼1 d ⇒ c ≼ f ≼ d (f ∈ A, c, d ∈ R)

The following characterization further underlines the strong intuition of this axiom.

Lemma 4.2 If ≼1 is regular, sequential consistency (4.1) is equivalent to

(4.2) f ∼1 c ⇒ f ∼ c
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In terms of ceq functions CE for ≼ and cce for ≼1, these criteria are respectively

CE(f) ∈ range(cce(f))

cce(f) ≡ c ⇒ CE(f) = c.(4.3)

So sequential consistency requires that the ‘initial’ ceq of an act (under ≼) must

be in the range of the ‘sequential’ conditional ceqs (under ≼1), hence the name.1

The characterization (4.2) expresses that if today one foresees indifference with a

sure thing tomorrow, one is indifferent already today.

The theorem below shows that sequential consistency is strong enough to imply

uniqueness of updates, under axioms A1-4 and a mild regularity condition on ≼

(axiom A5 below), and furthermore that the existence of a sequentially consistent

update poses another, more substantial requirement on ≼ (axiom A6 below).

Let f c
s ∈ A denote the act with sub-act fs in state s of S, and sure thing c ∈ R

in all other states of S.

(A5) (c-Sensitivity) If f c
s ∼ c, then fd

s ≻ d for d < c and fd
s ≺ d for d > c (f ∈ A,

s ∈ S, c, d ∈ range(fs)).

(A6) (c-Consistency) If, for all s ∈ S, f c
s ∼ c and c ∈ range(fs), then f ∼ c

(f ∈ A).

Axiom A5 compares a sub-act fs in the context of different values for all other

sub-acts being sure things of equal value in R. The premise of the axiom, f c
s ∼ c,

means that the sub-act fs is like c under ≼, in the context of c in other states; it is

‘neutral’ in the context of c. The axiom now imposes that ≼ recognizes that fs rises

above a worse context d < c. Similarly, for d > c, ≼ should sense that sub-act fs is

worse than d. The restriction of c, d to range(fs) in A5 is imposed to avoid that the

worst- and best case preferences, f ∼ min f and f ∼ max f , are excluded.

1Sarin and Wakker (1998) uses the term sequential consistency for a recursiveness condition.
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Axiom A6 is a consequence of sequential consistency, and hence implicitly moti-

vated by that notion in the first place. The axiom expresses that if a set of sub-acts

are each neutral in the context separately, then also jointly. In TRA, A6 can be

motivated as a ban on tuning risk aversion between mutually exclusive events, as

explained in the example below.

Theorem 4.3 Let a preference ordering ≼ on A be given that satisfies axioms A1-5.

It has a unique update ≼1 determined by the fixed point update rule

(4.4) fs ∼s c ⇔ f c
s ∼ c with c ∈ range(fs) (s ∈ S, fs ∈ As),

and this update is regular. If, in addition, ≼ satisfies axiom A6, this update is

sequentially consistent, otherwise ≼ has no regular sequentially consistent update.

The fixed point update rule (4.4) determines c as the fixed point of the monotone

mapping c 7→ CE(f c
s ), hence the name. It is essentially the same as the rule in Pires

(2002), see Section 8.2.

The following proposition captures the main intuition of the implications for

TRA: updates must have the maximum tolerated aversion level in each state of S.

Proposition 4.4 The pair (CER, cceβ) is sequentially consistent if β is the maxi-

mum element of the set R1 := {b ∈ B | (a, b) ∈ R for some a ∈ A}, i.e., (i) β ≥ b

for all b ∈ R1 and (ii) β ∈ R1.

For the maximum tuning set (3.2) the given criterion is necessary as well, under

some appropriate regularity conditions, see Section 10.6 in the appendix.

Example 4.5 The example CEγ in (3.3) is defined as CERγ with tuning set Rγ =

{(a, b) | a, b ≥ 0, a+ b ≤ γ}. The corresponding preference ordering ≼γ has sequen-

tially consistent update ≼γ
1 represented by cceγ, which corresponds to the maximum

tolerated level of risk aversion in the sub-lottery.
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For an example without a sequentially consistent update, consider lotteries as in

the Allais example, but with some binary sub-lottery also in state s′, and let b(s) and

b(s′) denote the aversion levels in resp. s and s′. The tuning set R′ = {(a, b) | a, b ≥

0, a + b(s) + b(s′) ≤ γ} does not satisfy axiom A6. Notice that R′ involves the

addition of aversion levels spent in mutually exclusive events. A6 forbids such a

meaningless tuning of aversion levels.

Summarizing, CEγ in (3.3) accommodates the Allais preferences for γ > 2.4,

and has a unique update cceγ that satisfies sequential consistency (4.1). The most

delicate issue, that of dynamic choice consistency, is addressed in the next section.

5 Dynamic choice consistency

Although sequential consistency provides some basic form of dynamic consistency,

there is still a tough nut to crack related to dynamic choices. Like any weakening

of the Sure Thing Principle, it inherently leaves room for so-called dynamic incon-

sistencies: pairs of acts f, g can be found with f ≼1 g yet f ≻ g, as in the Allais

paradox. That the preference of f over g is reversed for sure after the first stage

seems hard to combine with a normative claim of a model.

The anomaly is perhaps felt most strongly in the following setting of a dynamic

choice problem. Suppose f and g only differ in one sub-act, in state s ∈ S say, with

f ≻ g yet fs ≺s gs, and one is offered the choice between f and g, with the option

to switch after the first stage if s obtains. So one would prefer f over g precisely

because of the difference in case s obtains, but actually then considers f worse!

We will not rationalize violations of the ‘stick-to-your-plan’ principle. Our point,

however, is, that this principle may not be properly reflected by the requirement

(5.1) f ≻ g ⇒ fs ≻s gs for some s ∈ S (f, g ∈ A).

Even though we may prefer to obtain gs rather than fs in a state s, changing plans is
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not about obtaining fs again, but about abandoning the initial plan. If f is chosen

initially, and then s obtains, the choice is in fact between doing nothing, or to replace

it by the alternative. So what matters is the comparison of the sub-act gs − fs with

0, rather than gs with fs.
2 We therefore propose the following alternative criterion

for Dynamic Choice Consistency (DCC):

(5.2) f ≻ g ⇒ 0 ≻s gs − fs for some s ∈ S (f, g ∈ A)

This argument does not rely on framing or endowment effects on preferences:

we assume that the ordering ≼s itself is unaffected by committing to a plan. The

chosen plan only sets the reference point in defining the to-be-compared acts, not

subjectively, but de facto.

A similar line of reasoning motivates the following axiom for the initial ordering.

(A7) (Static Choice Consistency) (SCC) f ≻ g ⇒ 0 ≻ g − f (f, g ∈ A).

The criterion requires that if one prefers to obtain f rather than g, it cannot be

that at the same time one has in mind that it would be attractive to exchange f

for g. The following proposition states that choice consistency is preserved under

sequentially consistent updating, and is guaranteed under the following axiom,

(A8) (Super-additivity) f ≽ c, g ≽ d ⇒ f + g ≽ c+ d (f, g ∈ A, c, d ∈ R).

A stronger result is obtained for the class of preferences satisfying

(A9) (c-Additivity) f ∼ c ⇔ f − c ∼ 0 (f ∈ A, c ∈ R).

Proposition 5.1 If ≼ satisfies A1-A6, and SCC (axiom A7), its sequentially con-

sistent update ≼1 satisfies DCC (5.2). Under axioms A1-4, SCC is implied by A8,

and if also A9 is satisfied, SCC is equivalent to A8.

2In a setting with monetary outcomes, we consider gs−fs as the most obvious way to represent

the choice to return fs for gs. Some alternatives are discussed in Section 8.
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For preference functions that do not satisfy SCC, weaker forms of choice con-

sistency can be considered that restrict attention to an externally given choice set

C ⊂ A. Suppose f ∗ is the unique optimal choice over C, i.e., f ∗ ∈ C and f ∗ ≻ g for

all other opportunities in C. We say that ≼ exhibits Static Plan Consistency (SPC)

with respect to C if for the optimal ‘plan’ f ∗ it holds that

(5.3) 0 ≻ g − f ∗ for all g ∈ C \ {f ∗}

If a choice set contains elements f, g that only differ in one sub-act, in state s ∈ S

say, this may be interpreted as a choice that can be postponed until the second

stage, in case s obtains. For given f ∈ C and s ∈ S, we call C(f, s) := {g ∈ C | gs′ =

fs′ for s
′ ̸= s} the conditional choice set in s under ‘initial plan’ f ; for f ̸∈ C, it is

the empty set. As criterion for Dynamic Plan Consistency (DPC), for given choice

set C with unique optimal plan f ∗, we take

(5.4) 0 ≻s gs − f ∗
s for all g ∈ C(f ∗, s) \ {f ∗} (s ∈ S),

which is implied by SPC under sequentially consistent updating, in the same way

as DCC by SCC.

We summarize the main implications for TRA in the following corollary.

Corollary 5.2 If CER, defined by (3.1), is super-additive (A8), in particular when

all single-stage ceq functions (cea for a ∈ A, cceb for b ∈ B) are super-additive, the

represented ordering ≼ satisfies SCC (A7), and DCC is guaranteed under sequen-

tially consistent updating. If CER exhibits SPC with respect to a choice set C, then

DPC w.r.t. C follows under sequentially consistent updating.

Example 5.3 We verify plan consistency under CEγ with γ = 3 (see Example 3.2)

for the choice set C = {a3, a4}. SPC (5.3) requires that h := a4−a3 ≺ 0, and indeed

CEγ(h) = −2.9 (it turns out that the minimum in (3.3) is achieved for a = 2.58 and
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b = 0.42 for h). DPC (5.4) is always implied by SPC for the sequentially consistent

update ≺s; a direct verification yields hs ∼s −3.97 = cceb(hs)(s) for b = 3.

Static and dynamic plan consistency also hold for choice set {a1, a2}, since a2 −

a1 = −h ≺ 0 and −hs ≺s 0 (CEγ(−h) = −0.02, and cce3(−hs)(s) = −0.20).

This example does not satisfy the stronger condition SCC (axiom A7) of choice

consistency with respect to any pair of acts. This follows from Proposition 5.1, and

the fact that CEγ satisfies axiom A9 but not A8. To see that it is quite possible to

achieve SCC, we construct another example with super-additive Allais preferences.

Let ce′a (a ≥ 0) correspond to tolerating scaling of probabilities up to a factor

1 + a,

(5.5) ce′a(g) = min{q1x1 + q2x2 |
pi

1 + a
≤ qi ≤ pi(1 + a)},

with g the binary lottery with probability pi on outcome xi, i = 1, 2; cce′b is defined

similarly. Consider ≼′ corresponding to tuning set R′ = {(a, b) | (1+ a)(1+ b) ≤ 9}.

As before, risk aversion is most efficient in the second stage for a2, and in the

first stage for a3, a4, so that the Allais preference ordering is maintained: a1 ∼′ 1,

a2 ∼′ 0.99, a3 ∼′ 5
90
, a4 ∼′ 1.1

90
.

Since ≼′ is super-additive, SCC is guaranteed, and DCC as well for the sequen-

tially consistent update ≼′
1 represented by cce′8. So this example not only avoids

dynamic choice inconsistency for the Allais lotteries, but for any choice set of acts

on {u, d, s′}: whenever f ≻′ g, then also g− f ≺′ 0 and gs− fs ≺′
s 0 for some s ∈ S.

No plan will be abandoned predictably under ≼′.

6 Certainty equivalents and recursion

We obtained uniqueness of updating, and forms of dynamic plan consistency after

a subtle modification of the standard definition. The question still remains how

to interpret an update, if the corresponding conditional ceqs no longer provide the

16



replacement values of sub-acts that are required in a backward recursive evaluation.

Moreover, if the initial ceq still can be interpreted as replacement value of entire

acts, do we then treat future time instants on the same footing as current time?

We start with addressing a principal difference between ceqs and replacement

values, independent of TRA. Consider an agent with preference ordering ≼ today,

update ≼1 tomorrow, and a given act f ∈ A with f ∼ c and fs ∼s cs for s ∈ S.

The replacement value ds for fs (under ≼) is defined as the value for which f ∼ f ′

with f ′ the act f with fs replaced by ds; it exists under our regularity assumptions,

axioms A1-4, and we assume it is unique. The Sure Thing Principle demands that

ds only depends on fs (consequentialism for replacement values), which would imply

that cs = ds under the fixed point update rule (4.4), so that recursiveness follows: c

must be a function of cs. We keep consequentialism, but only for ceqs: in the same

way as c only depends on f , and not on acts foregone today, cs only depends on

fs. The replacement value ds, however, should not be identified with cs, and it is

inherent in ≼ that ds may depend on the whole act f .

To clarify why, it is important to notice that preferences to obtain are different

from preferences to offer. If f ∼ c means that ‘to the agent, obtaining f is indifferent

to obtaining c’, as we will assume now, this generally differs from the value−c∗ ∼ −f

he then will assign to offering the same act f .3 Similarly, c∗s defined by −c∗s ∼s −fs

need not be the same as cs. So ≼, the ordering if it comes to obtaining, induces

another complete ordering ≼∗ for offering, defined by the reflection principle

(6.1) f ≼∗ g ⇔ −g ≼ −f.

On the one hand, this ‘twin preference’ fully derives from ≼, and inherits many of its

3We may assume that c∗ ≥ c, on the same grounds as for SCC (axiom A7). It may be

illuminating to assume c-Additivity (axiom A9) and think of c and c∗ as the agent’s bid- and ask

price for f . In Section 8 we briefly indicate the connection with willingness to pay / accept, and

describe some alternatives to the definition of c∗ that avoid the use of −f .
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features. In particular, each of the axioms A1-6 and A9 holds for ≼ if and only if it

holds for ≼∗, so that the reflection principle commutes with sequential updating. On

the other hand, ≼ is concave if and only if ≼∗ is convex, so ≼∗ ̸=≼ is the rule rather

than the exception. Now the difference between cs and ds is that the one corresponds

to obtaining tomorrow, the other to obtaining today. Considerations underlying the

indifference that defines ds, between obtaining f and f ′ today, naturally involve a

comparison between possessing the sub-acts fs or ds already in case s will obtain, not

only between obtaining them again tomorrow. So cs is generally not the only aspect

of fs that determines ds; other aspects, such as c∗s, may play a role as well. But

then neither ds need to be a function of cs, let alone to coincide with cs, nor c need

to be a function of (cs)s∈S. Once this has been recognized, there is no compelling

reason anymore to subject replacement values to consequentialism as a normative

postulate.

For TRA the picture becomes more concrete. To evaluate CER(f) backward

recursively, it suffices to store the ‘extended act’ fB := (cceb(f))b∈B, with conse-

quences in each state s ∈ S consisting of ‘profiles’ b(s) 7→ cceb(f)(s). So under

TRA, a compound act reduces to a first stage act with profiles representing sub-

acts. On the profile in s, the ceq cs of fs corresponds to the maximum tolerated

level for b(s) in R, cf. Proposition 4.4, while the location of replacement value ds

on the profile depends on f . As illustrated below, it is located to the left of, or

at, the point corresponding the level of risk aversion applied to evaluate CER: if

CER(f) = cea∗(cceb∗(f)), then cceb∗(f)(s) ≤ ds.

To complete the recursion, and also to verify that initial time is treated at the

same footing as future moments, initial profiles fΓ
0 : γ′ 7→ CEγ′(f) can be defined

for γ′ ∈ Γ, with Γ denoting a range of overall risk aversion levels, and CEγ = CER

for some γ ∈ Γ. TRA then constitutes a backward recursion in terms of entire

profiles, fB 7→ fΓ
0 , as illustrated below. This, eventually, resembles the ‘elementary’
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recursion step in multi-stage TRA.

Example 6.1 In the example with CEγ (3.3), the Allais lotteries can be reduced to

single stage extended lotteries, with the sub-lottery in s represented by the profile

(6.2) b 7→ −1

b
log(10

11
e−bx1 + 1

11
e−bx2), b ∈ [0, γ],

with x1, x2 the consequences in u, d, cf. (3.4); again for b = 0 the limiting value

10
11
x1+

1
11
x2 is taken. The profile in state s′ is, of course, the constant function equal

to the consequence in that state. The function

γ′ 7→ CEγ′(ai), γ′ ∈ [0, γ]

can be interpreted as the current profile for act ai in Figure 1, as it might have been

considered in the past before the current state obtained. Negative aversion levels

for b and γ′ are not used in this example, but could be defined by the reflection

principle (6.1).

This joint recursion in entire profiles cannot be reduced to point-wise recursion

per aversion level. Replacement values range over the entire profile of the sub-lottery,

in dependency of its context. For example, with γ = 3, as before, the same sub-

lottery in a2 and a3 has replacement value 0.84 in a2 and 4.55 in a3, corresponding

to resp. b = 2.86 and b = 0 (the applied aversion levels b in TRA were resp. 3 and

0, cf. Example 3.2).

So different aspects are considered in different contexts. The Allais paradox has

been designed to reveal that precisely this is a very natural thing to do. As we tried

to argue in this leading example, it is not irrational either.
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0

Figure 2: The four acts in the 50:51 example.

7 Tuning Risk and Ambiguity Aversion:

the 50 : 51 example.

In Machina (2009) the so-called 50:51 example has been introduced, as an illustra-

tion of limitations in the Choquet Expected Utility (CEU) approach, introduced in

Schmeidler (1989), to model the tradeoff between ambiguity and risk aversion. We

take our starting point in the formulation of this example in Baillon et al. (2011),

depicted in Figure 2.

CEU implies that f1 is preferred to f2 if and only if f3 is preferred to f4. In

Baillon et al. (2011) it is shown that the forward implication is induced in most

other classes of ambiguity-averse preferences as well. The paradox is that the in-

formational advantage of f1 with respect to f2 is much stronger than that of f3

compared to f4, and hence it is natural allow for preferences ≼ with f1 ≻ f2 and

f3 ≺ f4. We will show that TRA admits such a preference.

To keep things as simple as possible, we consider a preference function that is

the minimum of two CEU functions. For ambiguity aversion, we consider cek for

k ∈ N defined by

(7.1) cek(g) = pk+1x1 + (1− pk+1)x2

with g the binary act with highest outcome x1 with probability p and other out-

come x2 ≤ x1; ccek is defined similarly. This is the so-called MINVAR(k + 1) dis-
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tortion measure, which has been proposed in Madan and Cherny (2010), together

with several variants, as intuitive valuation measures in the context of bid-ask price

modeling. The intuition is that the expected value is considered of the minimum

outcome in k + 1 independent trials.

We take the uniform distribution as reference measure for the sub-acts, and

choose k = 1. So the ambiguity penalty for the sub-acts amounts to a quarter of the

spread of outcomes. There is no ambiguity in the first stage, so we take expected

values of the outcome for both sub-acts, and define

(7.2) Uamb =
50

101

E1 + 3E2

4
+

51

101

E3 + 3E4

4
.

The second CEU, reflecting risk aversion, is again obtained from exponential utility

u(x) = 1−e−βx. The stepwise application of (3.4), with the same parameter in both

periods, is equivalent to applying this utility once to four outcomes, so we take

(7.3) U r = − 1

β
log(

50

101

e−βE1 + e−βE2

2
+

51

101

e−βE3 + e−βE4

2
).

These are both certainty equivalence functions, and we take their minimum

outcome as final preference function V . It turns out that the values of f1 and f2 are

equal for for β = 0.02365. We choose β = 0.015 so that f1 is preferred over f2. The

corresponding values of the acts are given by

f1 f2 f3 f4

Uamb 151 126.25 125.25 100.5

U r 133.5 134.0 75.4 75.6

V 133.5 126.25 75.4 75.6

It follows that indeed f1 ≻ f2 and f3 ≺ f4, as desired.

V can be expressed as CER for some tuning set R, somewhat ad hoc, as follows.

Define ce0 and cce0 corresponding to expected values, define cce2 corresponding to

k = 2, β = 0, cce1 corresponding to β = 0.015, k = 0, ce1 to β = 0.015, k = 0.
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Then V corresponds to R = {(0, 2), (1, 1)}. We could add a third pattern (2, 0) to

increase the symmetry, to tolerate ambiguity aversion in the first stage, which then

should be modeled so that it is without effect when probabilities are objective.

A more intuitive approach would involve two levels of aversion per period, one

for risk, and one for ambiguity. A tuning set then consists of tolerated quadruples

(a, a′; b, b′) with a, b degrees of risk aversion(as quantified by β in the example), and

a′, b′ degrees of ambiguity aversion (as quantified by k).

We remark that TRA is certainly not the only way to cope with the 50:51 puzzle.

We just showed that adding just one bit of TRA to CEU, nothing more, is enough,

indicating that TRA extends scope of CEU in a relevant direction. We refer to

Dillenberger and Segal (2015) for an alternative solution to this puzzle in terms of

recursive preference functions, see also Section 8.3.

8 Related literature and extensions

In the literature on non-expected utility, a central role is played by so-called horse-

roulette acts, having sub-acts modeled as lotteries with unambiguous (subjective or

objective) probabilities, and a first stage with ambiguity. Therefore, we first relate

our setup to some well-known approaches of this type that come close to TRA, and

address a few modifications of our setup that facilitate the comparison. We then

address the strong link with Pires’ rule and Full Bayesian updating, and conclude

this section with further discussion of related literature.

8.1 Comparison with MEU and recursive multiple priors

The class of Maxmin Expected Utility (MEU) prefence functions has been intro-

duced in Gilboa and Schmeidler (1989). In our setting, with outcomes in R, they
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take the form

(8.1) CE = ce(cce(·)) with cce(f) = u−1(E1 u ◦ f) and ce = min
µ∈Q0

u−1Eµ u ◦ (·)

with u : R → R a static utility function on outcomes, applied point-wise to outcomes

of f in the expression u ◦ f , E1 an expectation operator conditional on S (under a

second stage reference probability measure on Ss in each s ∈ S), and Q0 a collection

of probability measures on S.4

Axioms A1-4 are satisfied (by ce, cce, CE) if u is strictly increasing and contin-

uous. Axiom A5 is satisfied if for all s ∈ S, the set {µ(s)}µ∈Q0 is bounded away

from 0. In line with Epstein and Schneider (2003), also sets of probability measures

can be considered in the second stage, so that cce(·)(s) is of the same form as ce

in each s ∈ S, with sets Qs possibly depending on s. This results in the ‘multiple

prior’ expression

(8.2) CE(f) = min{u−1Eµ′
u ◦ f |µ′ ∈ Q},

with Q satisfying two forms of rectangularity: (i) it is of the form Q0 ×QS and (ii)

QS is the rectangular product of (Qs)s∈S. The extension provided by TRA is that

the first form of rectangularity is relaxed: if QS is the set of conditionals compatible

with a risk-neutral µ0 on S, then µ′ on S that represent positive risk aversion may be

combined only with strict subsets of QS due to tuning restrictions. The fixed point

update still corresponds to QS, as in the rectangular case (Proposition 4.4), but

the corresponding conditional ceqs are no longer replacement values of the sub-acts

(Section 6). Axiom 6 requires that the second form of rectangularity is maintained,

4Formally, second stage lotteries are identified with probability distributions over a common

outcome range X in each s ∈ S. Assuming X ⊂ R, these distributions can be mapped, approxi-

mately, onto sub-acts in As by taking Ss = S′ sufficiently large, and endowing S′ with, e.g., the

uniform distribution.
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so that the fixed point update rule indeed produces a sequentially consistent update

(Theorem 4.3).5

To obtain super-additive preferences (axiom A8) in (8.2), so that SCC is guar-

anteed (axiom A7), it is sufficient to choose a super-additive static utility function

u. This essentially only leaves room for u of the form u(x) = λ+x for x ≥ 0,

u(x) = λ−x for x ≤ 0, with λ− ≥ λ+ > 0. This is quite restrictive, but in fact

u(x) = x is not uncommon in a monetary context. By taking λ− > λ+ it still allows

for a simple form of loss aversion, one of the distinctive features of (Cumulative)

Prospect Theory (Tversky and Kahneman, 1992; Wakker and Tversky, 1993).

Notice that the utility function u in the above does not interact with the dy-

namics. To simplify formulas, we may specify acts in utility units (utils), and define

f ′ = u ◦ f , i.e., f ′(s̄) = u(f(s̄)) for all s̄ ∈ S̄, and represent ≼ on A as ≼′ on the set

A′ of all acts specified in utils, cf. also Gumen and Savochkin (2013). This is purely

a matter of representation, but it may be noted that it does not make a difference

whether axioms A1-6 are applied to ≼, or directly to ≼′. In TRA, tuning of risk

aversion can then be specified on A′, where possible aversion in the transformation

of units by u is isolated from tuning aversion over stages.

Pursuing this idea somewhat further, some aspects of our framework may be

generalized, as follows. Outcomes are often restricted to finite intervals, for instance

in case the domain of u is bounded. Then expressions like −f , g−f cannot be used,

and our definitions of DCC, SCC, and ≼∗ require adjustment. From our viewpoint,

stick to your plan still has to consider the opposite of obtaining an act, somehow.

Instead of comparing gs − fs with 0, as in our definition of DCC, we may consider

5Maccheroni et al. (2006) characterizes recursiveness for the broader class of Variational Pref-

erences. The analogous result in the risk measure literature is Föllmer and Penner (2006, Thm.

4.5), on recursive convex risk measures. In RS15 sequential consistency is characterized for this

class.

24



the choice between 0 and u ◦ gs−u ◦ fs, which is g′s− f ′
s in the notation above. This

leads to alternative definitions DCC′ and SCC′, in which the effect of replacement

is measured in utils per state, rather than monetarily. These variants always hold

for (8.2), as axiom A8 holds true in utils. Likewise, the reflection principle (6.1) for

≼∗ may be formulated in terms of transformed acts in A′.

To conclude the subsection, we indicate how DCC and SCC may be adjusted

without explicit reference to a static utility function u. The objects of choice are in

fact pairs of acts (f in, f out) ∈ A2, meaning to obtain f in and to return, deliver, or

take a short position in f out. Starting point is now a preference ordering ≼2 on such

pairs. We saw two examples to obtain it from ≼ on A: by identifying (f in, f out)

with f in − f out, or with u ◦ f in − u ◦ f out, but there are many other possibilities.

Following our line of reasoning for SCC, we may generalize this to the condition

(f, 0) ≻2 (g, 0) ⇒ (g, f) ≺2 (0, 0).

8.2 Related literature on updating

The fixed point update rule (4.4) is essentially the same as the notion of condi-

tional ceq consistency in Eichberger et al. (2007), building on Pires (2002, Axiom

9), which is the forward implication in (4.4). In Pires (2002) the scope of the update

rule is restricted to the Gilboa-Schmeidler framework. This includes the dynamic

monotonicity axiom in (Gilboa and Schmeidler, 1989, Axiom 4), which is the con-

dition (5.1) that we deliberately relax. Pires’ rule closely relates to the Generalized

Bayesian Rule in Walley (1991) and the Full Bayesian Updating Rule in Jaffray

(1994). Our intended contribution is not so much an adjustment of these concepts,

but an extension of their normative scope.

We have developed the rule without reference to additive or non-additive proba-

bilities, only assuming axioms A1-5 and sequential consistency. This notion provides

a further underpinning of the fixed point update rule, and leads to an additional re-
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quirement (axiom A6) to ensure that the rule indeed produces a consistent update.6

A more detailed comparison leads to the following observations. We may assume

the same space for sub-acts in each s ∈ S, i.e., that As is independent of s, and

assume that cceb(s) is independent of s, in order to satisfy the axiom of state in-

dependency imposed in Pires (2002); Eichberger et al. (2007), following Gilboa and

Schmeidler (1989). Obviously, ≼s satisfies the axiom of consequentialism.

We have restricted the attention to updates of the form ≼s, but the other setups

also consider ≼E for subsets E ⊂ S, exactly as (4.4), but with s replaced by E. In

particular ≼S is ≼. This satisfies a compatibility property, called commutativity in

Gilboa and Schmeidler (1989), which requires that ≼s can also be obtained as the

update of ≼E with s ∈ E.7 The uniqueness and existence conditions in Theorem

4.3 generalize to ≼E in the obvious way.

For an extensive comparison of (4.4) with so-called f -Bayesian updating rules in

(Gilboa and Schmeidler, 1993), we refer to Eichberger et al. (2010), in addition to

the aforementioned references. This f -Bayesian update, for given f ∈ A, is defined

by g ≼E,f h ⇔ gfE ≼ hf
E, whereas the rule (4.4), extended to events E ⊂ S, can be

expressed as

gE ≼E hE ⇔ gcE ≼ c ≼ hc
E for some c ∈ range(gE, hE).

This may be viewed as a flexible form of f -Bayesian updating, in which the reference

act f is taken a constant c that depends on the conditional acts that are compared.

6The notion of sequential consistency has been developed in an independent line of research on

monetary valuations, which satisfy axiom A9 (they are also known asmonetary risk measures under

a different sign convention), see RS13; RS15. The refinement update described in these references

corresponds to the fixed point update, but it is only applicable under A9, and no interpretation in

terms of fixed points is given.

7Compatibility is addressed in (RS13, Prop. 4.6) and (RS15, Prop. 6.7) in more advanced

settings.
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The famous Ellsberg paradox has led to some alternative approaches to updating,

in order to cope with dynamic consistency problems in the context of ambiguity,

when the standard formalization (5.1) is adopted. The solution proposed in Hanany

and Klibanoff (2007) is to adjust the update rule, by ruling out priors that cause

a dynamic inconsistency. On the other hand, one may solve a violation of (5.1) by

keeping the updated preference ≼s, and substitute the optimal conditional choice

foreseen in s into f and g before comparing these acts at t = 0, according to

the principle of ‘consistent planning’, as proposed in Siniscalchi (2009). We have

argued, however, that under the new definition of dynamic consistency the anomalies

may simply disappear. In particular, the preference in the example in Hanany and

Klibanoff (2007), which is essentially the same as the example in Siniscalchi (2009,

Section 2) satisfies all axioms A1-9 (it is of the form (8.2) with u(x) = x), and hence

SCC and DCC are both guaranteed for any pairs of acts in the Ellsberg paradox,

so that there is no need to adjust acts or update rules from our perspective.

8.3 Other topics in related literature

There are several other links with existing literature that we now briefly address.

Segal (1987) considers a recursive framework with two-stage lotteries, in which a

probability measure obtains in the first stage that sets the odds for a set of outcomes

in the second. As mentioned in Section 7, this has been succesfully applied to the

50:51 example in Dillenberger and Segal (2015). Translated to our setting, each

s ∈ S is related to a probability measure Qs on a finite set of outcomes x1, . . . , xk

and sub-acts fs are then the corresponding lottery under Qs. Assuming a given

probability measure Q on S, Segal’s approach is to replace each sub-lottery by its

ceq under a given preference function V , and then evaluate the resulting first stage
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lottery by (another, or possibly the same) preference function.8 A possible extension

from the perspective of TRA is to allow for a range of preference functions Vb for the

sub-lotteries, replace these in each s by their entire profiles b 7→ Vb(·), and evaluate

according to min(a,b)∈R V ′
a(Vb(·)) for a tuning set R.

An interesting result in this context has been obtained in Cerreia-Vioglio et al.

(2015), providing an axiomatic characterization of so-called ‘cautious expected util-

ity’, in a static setting with monetary prizes. This corresponds to considering the

worst expected utility of lotteries over a set of utility functions u on final outcomes.

Our dynamic framework offers a setting to incorporate this class of preferences in

Segal’s approach, in the way just indicated.

Our discussion of twin preferences ≼,≼∗ was aimed at indicating limitations

to the role of ceqs as replacement value. Obviously, they relate to the concepts of

willingness to pay (WTP) and to accept (WTA), and to bid-ask price modelling. The

vast literature on this subject involves many aspects that are far beyond our scope,

such as a discussion of the Coase theorem, market efficiency and liquidity, elicitation

methods, auctions. Incorporating insights from these fields may require the inclusion

of wealth effects in our setting in the first place. A point of consideration arising from

our analysis is that the frequently observed ‘WTP-WTA bias’ (see e.g. Machina

and Viscusi (2013, Chapter 4)) may be rationalized to a larger extent than the

name suggests. In this context it may be relevant to observe that the class of

so-called α-MEU preferences corresponds to taking convex combinations CEα :=

αCE+(1− α) CE∗, with CE∗ representing ≼∗ in (6.1). CEα satisfies axiom A1-6 if

CE does, and for α = 1/2, the ‘mid-price’ preference function is reflection symmetric:

8Reduction of compound lotteries, i.e., identification with the one-stage lottery obtained by

first determining the initial probabilities on outcomes xi is deliberately rejected. Our definition of

compound acts as mappings S̄ → R (here with S̄ = S × (S′)n, S′ = Ss for all s ∈ S, consisting of

k elements) respects this, because the staging structure is not lost in S̄.
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(CE
1
2 )∗ = CE

1
2 . In eliciting ceqs of subjects by choice lists it is important to realize

whether one is after the ceqs corresponding to α = 0, 1
2
or 1. A subject that is

fully consistent in adopting CE (from which all CEα derive) will possibly give three

different answers to three different questions. We also have argued that CEα(f) may

depend on profiles (cceα
′
(f))α′∈[0,1], rather than on its update cceα(f) alone.

The idea to keep track of more than one conditional utility level per state is

also present in Vector Expected Utility (VEU) (Siniscalchi, 2009) and Expected

Uncertain Utility (EUU) (Gul and Pesendorfer, 2014), but used differently.

Several of the aforementioned frameworks emphasize behavioral aspects of up-

dating, in particular VEU and Prospect Theory, while we derived it straightfor-

wardly from a consistency property, without reference to probabilities. However,

our approach should not be seen as an interpretation that is alternative, or even

opposite to the classical behavioral explanations in terms of framing, regret, endow-

ment, and perception of small probabilities. On the contrary, it is very much in line

with it. The different framing in the Allais lotteries (c = 1 vs. c = 0 in Figure 1) is

precisely the reason for the different patterns of risk aversion between the first and

second pair of lotteries, and the fact that a full loss is more painful in a2 as compared

to a3, nicely goes along with the fact that under TRA one is indeed more relaxed

about that risk in the latter lottery. The gap between CE and CE∗ may be given

the interpretation of endowment, inherent in the preference ordering represented

by CE. Tuning restrictions give room for strong emphasis on small (conditional)

probabilities, as in the certainty effect, without letting it accumulate to excessive

aversion over multiple stages. From this perspective, TRA may be seen as mech-

anism through which some aspects of these psychological factors have their effect.

Our analysis seems to indicate that they have a more rational justification than

generally believed, although we do not exclude that e.g., strong framing can lead to

less efficient tuning of risk aversion. A proper treatment of behavioral aspects would
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require a richer setting than we provided, in particular involving wealth effects and

consumption. It is to be expected that further analysis of the empirical findings in

this area will lead to refinements, extensions and adjustments of our framework.

9 Conclusions

We have introduced tuning of risk and/or ambiguity aversion (TRA) as a natural

aspect of decision making under uncertainty, and described an axiomatic context in

which it has a normative interpretation. Sequential consistency replaces recursive-

ness as a more flexible principle adjusted to TRA. It induces fixed point updating

(also known as Pires’ rule) as general updating principle that yields the unique

candidate for a consistent update. This principle seems to capture the syntax of

updating without reference to semantic information in probabilities. Instead, it

only refers to the existence of a sure context in which the one sub-act stands out

positively, the other negatively under a given initial preference. The key to further

rationalization of TRA is an adjusted definition of dynamic consistency, resolving

the conflict with consequentialism inherent in violations of the Sure-Thing Principle

admitted under TRA. The final picture arising from our analysis is that of com-

pound acts as composed of single-stage acts with consequences consisting of profiles

rather than just one value. That this increased complexity need not come with

extra model parameters, may enhance the formulation and testing of hypotheses in

empirical research.

For future research, we would like to mention some important themes in non-

expected utility that have not been addressed so far. Incomplete preferences can

be defined, in the spirit of Aumann (1962) and Dubra et al. (2004), by combining

a family of preferences in one overall preference, defined by the rule that an act

f is ‘overall’-preferred to g only when f is preferred to g under each preference in
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the given family. An obvious idea in our setting is to consider incomplete orderings

defined by the condition CEγ(f) ≤ CEγ(g) for a set of aversion levels γ. Inspiration

for research in this direction can be derived from the results in Ok et al. (2012) on

partial completeness.

Another possible application is prudence, see Eeckhoudt and Schlesinger (2006).

Prudence seems inherent in TRA, in fact also if rectangular tuning sets are used for

the two-stage lottery in the definition of prudence. Non-rectangular sets, however,

possibly play a role in characterizing higher-order concepts related to the sign of

the k-th derivative of utility functions for k > 3, such as as temperance (k = 4) and

edginess (k=5).

Finally, TRA may contribute to the analysis of non-recursive time preferences,

in particular hyperbolic discounting (Phelps and Pollak (1968); Laibson (1997), see

also Joosten (2014) for a recent application). One may first determine levels of risk

aversion per stage that induce appropriate short term discount rates for a reference

set of acts. In TRA, tuning restrictions can then be imposed for lighter than re-

cursive discounting over multiple steps. The results on compound risk measures in

(RS13, Section 6), and the description of all convex risk measures with prescribed

stepwise properties in (RS15, Section 7) may serve as starting points for implement-

ing this idea. More generally, sequential consistency and the induced fixed point

update rule may provide a rational basis for giving long term consequences an ap-

propriate weight in decision making, in a way that is substantially different from

the mechanically derived implications of local properties in a recursive approach.

10 Appendix

10.1 Lemma on continuity of CER

Lemma 10.1 CER defined in (3.1) is continuous on A if
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(r1) A×B is compact,

(r2) the mapping (f, a) 7→ cea(f) is continuous on A1 × A, and

(r3) the mapping (f, b) 7→ cceb(f) is continuous on A×B.

Then CER(f) = CER̄(f) = min(a,b)∈R̄ cea(cceb(f)), with R̄ the closure of R.

Proof We start with the second claim. Conditions (r2-3) imply that

(10.1) the mapping (a, b, f) 7→ cea(cceb(f)) is continuous.

Due to (r1), R is bounded, and hence R̄ is compact. So CER(f) = CER̄(f) is the

minimum of a continuous function over a compact domain, and by the Weierstrass

Theorem it follows that the infimum is a minimum. The second claim of the lemma

now follows.

For the first claim, we have to prove that if fn → f , then CER(fn) → CER(f).

In view of the claim just proved, we can write yn := CER(fn) = cea∗n(cceb∗n(fn))

and y := CER(f) = cea∗(cceb∗(f)) for risk aversion levels in R̄. Then yn ≤

cea∗(cceb∗(fn)) =: zn, and hence lim sup yn ≤ lim zn = y, where the last equality

follows from (10.1). It remains to show that lim inf yn ≥ y, or, equivalently, each

limit point v of a converging subsequence (yn)n∈I⊂R satisfies v ≥ y. Indeed, because

R̄ is compact, such a subsequence must contain a sub-subsequence (yn)n∈J with

J ⊂ I, also converging to v of course, for which (an, bn)n∈J → (a′, b′) ∈ R̄, and hence

(an, bn, fn) → (a′, b′, f). From (10.1) it then follows that v = cea′(cceb′(f)) ≥ y. �

10.2 The Allais lotteries in a probability triangle

For the intuition, we depict the effect of TRA in a probability triangle, also known

as a Marschak-Machina triangle, introduced in Marschak (1950), for the TRA pref-

erence (3.3) with γ = 3, see Figure 3. The fanning out effect in the lower region
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Figure 3: The probability triangle with level curves of the TRA preference (3.3) with

γ = 3 for the Allais lotteries. At the horizontal axis is the probability p1 on outcome 0,

on the vertical probability p3 on outcome 5. The remaining probability p2 = 1 − p1 − p3

is assigned to outcome 1. The lotteries of Figure 1 correspond to the following locations:

a1 : (0, 0), a2 : (0.01, 0.1), a3 : (0.9, 0.1), a4 : (0.89, 0).

causes the outcome of preference orderings described in Example 3.2. We remark

that the counter-intuitive North-West direction of curves in the upper region can be

avoided if one minimizes over all three possible definitions of binary sublotteries in

the Allais paradox.

10.3 Proof of Lemma4.2

Necessity of the criterion (4.2) is obvious. To derive its sufficiency, consider f with

c ≼1 f ≼1 d. Then there exist g, h ≥ 0 so that c ∼1 f−g and f +h ∼1 d (continuity

of ≼1 is essential here). By (4.2), then c ∼ f − g and f + h ∼ d, and (4.1) follows

from monotonicity of ≼.
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10.4 Proof of Thm. 4.3

We first prove that (4.4) defines a unique update ≼1. Consider, for given fs ∈ As,

the mapping ρ : c 7→ CE(f c
s ) on the domain range(fs) =: [l, r]. By P1-3 for CE,

cf. Section 2, ρ is continuous, ρ(l) ≥ l and ρ(r) ≤ r. So ρ has a fixed point c′ on

this domain, i.e., there exists c′ satisfying the right-hand side (rhs) of (4.4). Axiom

A5 guarantees that such c′ is unique, and hence that ≼s is uniquely determined by

(4.4). This means that ≼1 is indeed unambiguously defined by (4.4).

Regularity of ≼s now directly follows from regularity of ≼. In particular, ≼s is

continuous, because for a series fs,k → fs in As, with ck the unique solution of the

rhs of (4.4) for fs,k, any converging subseries (ck)k∈I⊂N → c′ yields CE(f c′
s ) = c′, by

continuity of CE; so c′ must be the unique solution of the rhs in (4.4), and hence

the full series ck is converging to c′.

Next we show that ≼1 defined by (4.4) is sequentially consistent if ≼ satisfies

axiom A6, by deriving criterion (4.2). Let be given f ∈ A with f ∼1 c. Then (4.4)

implies that for all s ∈ S, f c
s ∼ c with c ∈ range(fs), and by axiom A6 f ∼ c, so

that (4.2) follows.

It remains to show that if ≼ has a regular sequentially consistent update ≼1,

then ≼ must satisfy A6. Let an act f ∈ A be given with f c
s ∼ c and c ∈ range(fs)

for all s ∈ S. We have to prove that f ∼ c. Consider an s ∈ S. As ≼1 is regular,

there exists c′ ∈ range(fs) such that fs ∼s c
′, and hence f c′

s ∼1 c
′. But then f c′

s ∼ c′

due to (4.2), while also f c
s ∼ c by assumption, and axiom A5 implies that c′ = c.

Since s ∈ S was arbitrary, fs ∼s c for all s ∈ S, and, by (4.2), indeed f ∼ c.

10.5 Proof of Prop. 4.4

We derive (4.3). Consider f ∈ A with f ∼s c for all s ∈ S, i.e., with cceβ(f) ≡

c. Condition (i) in the theorem implies that CER(f) ≥ inf(a,b)∈R cea(cceβ(f)) =
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inf(a,b)∈R cea(c) = c. From condition (ii) it follows that there exists a ∈ A with

(a, β) ∈ R, and hence CER(f) ≤ cea(cceβ(f)) = cea(c) = c. So equality must hold,

and (4.3) follows.

10.6 Extension of Prop. 4.4

In addition to the regularity conditions (r1-3) in Lemma 10.1 we consider the fol-

lowing sensitivity properties.

(r4) cea(c
d
s) = d ⇒ c = d (a ∈ A, c, d ∈ R, s ∈ S).

(r5) There exist c ∈ R, f ∈ A such that cceb(f) ≡ c and cceb′(f) 	 c for all b′ � b

(b ∈ B).

Lemma 10.2 Under the regularity conditions (r1-5), CER has a regular sequen-

tially consistent update if and only if Rmax
1 has a maximal element β, namely cceβ.

Proof From Lemma 10.1 it follows that, under (r1-3), CER is continuous, that Rmax

defined in (3.2) is a compact set, and that CER = CERmax = min(a,b)∈Rmax cea(cceb(·)).

Let amax denote the maximum value of a that occurs in Rmax, and let β ∈ Rn de-

note the least upper bound of Rmax
1 (which is its maximum element if and only if

β ∈ Rmax
1 ).

To see that (r4) now implies axiom A5, consider f ∈ A with f c
s ∼ c, i.e.,

CE(f c
s ) = c = cea∗(cceb∗(f

c
s )) for some (a∗, b∗) ∈ Rmax. Condition (r4) implies that

cceb∗(f)(s) = c, that cceb(f)(s) ≤ c for all b ∈ Rmax
1 , and hence that cceβ(f)(s) = c.

Axiom A5 now follows: for d > c, CE(fd
s ) ≤ cea∗(cceb∗(f

d
s )) = cea∗(c

d
s) < d, by (r4),

and for d < c, CE(fd
s ) ≥ ceamax(cceβ(f

d
s )) = ceamax(c

d
s) > d, again by (r4).

So we derived that under (r1-4), ≼ represented by CER satisfies axioms A1-5,

and hence Theorem 4.3 is applicable. This implies that cceβ, which is indeed the

outcome of the fixed point update rule (4.4), is the only candidate for a regular

35



sequentially consistent update, and it is such an update if and only if ≼ satisfies

axiom A6. If β ∈ Rmax
1 , axiom A6 holds, as we in fact already know from Proposition

4.4. It remains to deduce that β ∈ Rmax
1 from A6, or, more directly, from sequential

consistency. From (r5) with b = β, it follows that there exist c ∈ R, f ∈ A with

cceβ(f) ≡ c and cceb′(f) 	 c for all b′ ∈ Rmax
1 \ {β}. The sequential consistency

criterion (4.3) implies that CER(f) = c, and hence cea∗(cceb∗(f)) = c for some

(a∗, b∗) ∈ Rmax. From (r4) it follows that cceb∗(f) ≡ c, and the inequality derived

from (r5) implies that b∗ = β, so indeed β ∈ Rmax
1 . �

10.7 Proof of Prop. 5.1

Under axiom A1-6, the sequentially consistent update ≼1 of ≼ exists. DCC is

equivalent to the implication g − f ≽1 0 ⇒ g ≽ f . Indeed, g − f ≽1 0 ⇒ g − f ≽

0 ⇒ g ≽ f , where the first implication follows from sequential consistency, and the

second one from A7.

For the second claim, note that under axioms A1-4, ≼ is representable by a

ceq function CE. To derive that A8 implies A7, consider f, g ∈ A with f ≻ g.

Then CE(f) > CE(g) = CE(f + (g − f)) ≥ CE(f) + CE(g − f) by axiom A8, so

CE(g − f) < 0, and A7 follows (that continuity of CE is not needed here justifies

the first claim of Corollary 5.2). For the last claim, first observe that axiom A7

is equivalent to the implication CE(g − f) ≥ 0 ⇒ CE(g) ≥ CE(f). Under axiom

A9, g − f − CE(g − f) ∼ 0 for any pair f, g ∈ A, and hence, by the implication

just mentioned, CE(g) ≥ CE(f + CE(g − f)). With h := g − f , it follows that

CE(f + h) ≥ CE(f) + CE(h) for all f, h ∈ A, which is axiom A8.
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