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Abstract

We introduce the notion of Tuned Risk Aversion as a possible interpretation

of non-expected utility preferences. It refers to tuning patterns of risk (and

ambiguity) aversion to the composition of a lottery (or act) at hand, assuming

only an overall ‘budget’ for accumulated risk aversion over its sub-lotteries.

This makes the risk aversion level applied to a part intrinsically depending

on the whole, in a way that turns out to be in line with frequently observed

deviations from the Sure-Thing Principle. This is illustrated by applying the

concept to the Allais paradox and to the 50:51 example, related to ambiguity

aversion. We give a general justification for applying the method in contexts

where the law of one price does not hold, and derive unique updating from

a substitution axiom induced by a non-recursive form of consistency. In a
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third example, we propose a solution to a well-known puzzle on consistency

of decision making in the Ellsberg paradox.

Keywords: Allais paradox, Ellsberg paradox, ambiguity aversion, dynamic

consistency, Sure-Thing Principle, preference updating

1 Introduction

There is an abundance of evidence that risk attitudes towards a compound lottery, or

act, cannot be properly understood in terms of risk attitudes towards each of its sub-

lotteries separately, contrary to the implications of the von Neumann-Morgenstern

expected utility framework. Since the famous example of Allais, decades of empirical

and theoretical research have identified systematic aspects in human decision making

that clearly violate the Independence Axiom underlying expected utility. This has

resulted in several explanations why the risk attitude towards a sub-lottery may

depend on payoffs that are no longer relevant once the sub-lottery would realize,

in terms of psychological factors as regret, framing, and subjective perception of

small probabilities. These perspectives have led to various proposals for modeling

so-called non-expected utility preferences. We refer to Machina and Viscusi (2013)

for a recent overview on this topic. Despite agreement on the observed facts, there

is still some controversy whether these deviations should be interpreted as biases

of the human mind, comparable to optical illusions, or biases in the Independence

Axiom itself, rendering it as less rational than it seems to be at first sight. Our

approach supports the latter view, by pointing at a straightforward explanation in

terms of Tuned Risk Aversion (TRA), which is inspired by recent findings in research

on non-recursive valuation in the context of nonlinear pricing and risk measures in

finance, see Roorda and Schumacher (2013) (henceforth rs13) and the references

therein.
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The idea of TRA is best explained in the setting of a two-stage lottery, with

only three degrees of risk aversion considered per stage: low, medium, high. To all

the nine combinations possible we can associate an induced ‘overall’ degree of risk

aversion, applying to the lottery as a whole. Let us assume that a moderately risk

averse person considers the following three combinations as not too conservative

(a) medium in both stages, (b) first low, then high, and (c) the other way around.

Variants are possible, of course, but the point is that in general there are level curves

of overall risk aversion consisting of different patterns of distributing it. Tuned Risk

Aversion, in this simple context, amounts to applying all three possibilities in this

tuning set, and then selecting the one with minimum outcome. For example, if there

is only risk in the second stage, (b) will be chosen, while (c) is most effective if only

the first stage is risky. In this way risk aversion is tuned to the compound lottery

as a whole, by ‘spending’ it ‘economically’, where it hurts most.

Natural as it seems, this example immediately raises serious concerns about

consistency of the induced preferences, certainly for the experts in the field. Non-

expected utility itself is already debated critically, and there is an additional issue

concerning dynamic consistency. It seems that we allow for a discrepancy between

making conditional decisions in a certain state beforehand and when that state

actually materializes, so that recursiveness is lost.

We will carefully address these concerns. First we explain why TRA is indeed

incompatible with the law of one price, and we show that relaxing this law pulls

the sting out of the common ‘make book’ arguments against violations of the Sure-

Thing Principle. These considerations lead a revision of the notion of simple acts

as building blocks of compound acts. We then propose the notion of sequential

consistency, introduced in Roorda and Schumacher (2007), as a form of dynamic

consistency that fits the idea of TRA much better than the far more restrictive axiom

of recursiveness. We show that it is strong enough to induce unique updates of initial
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preferences, and formulate a substitution axiom (which we call c-Substitution) that

produces this update, if it exists. This axiom may be of independent interest.

TRA is illustrated by applications to three well-known paradoxes. Firstly, we

show that the observed violation of the independece axiom in the Allais paradox is

perfectly in line with TRA, in a way that largely confirms the well-known behavioral

explanations in terms of framing and regret. These stylized findings suggest that

TRA can be seen as a rational mechanism through which these phenomena have their

effect. The effect of combining standard exponential utility with TRA is depicted

in a Marschak-Machina triangle.

We then explore TRA in the so-called 50:51 example, introduced in Machina

(2009) in the context of ambiguity aversion, in Section 6. This example reveals some

limitations of Choquet Expected Utilities (CEU) preferences in capturing intuitive

tradeoffs between ambiguity and risk aversion, due to the so-called tail-separability

property inherent in CEU. In Baillon et al. (2011) it is shown that many alternative

approaches to non-expected utility suffer from this anomaly as well. We will show

that an elementary form of TRA added to CEU preferences already suffices to

overcome this problem.

In a third example, we discuss consistent decision making in the Ellsberg para-

dox, following the two-stage formulation in Hanany and Klibanoff (2007). The ana-

lysis confirms consistency of updating by c-Substitution, which in this case amounts

to Bayesian updating of preferences, if the absence of the law of one price is carefully

taken into account.

This paper is organized as follows. The formal definition of TRA is given after

the introduction, followed by a section devoted to the justification of the violation

of the Sure-Thing Principle that it involves. In Section 4 we describe sequential

consistency and the induced unique updating rule by c-Substitution. The three

subsequent sections contain the three applications, and conclusions follow in Section
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8. Regularity conditions and proofs are collected in an appendix.

Placement in the literature and contribution

The setup in this paper is mathematically simple, in that state spaces are assumed

to be finite. Its scope is quite general, however, due to the fact that it does not refer

to probabilities, and hence no formal distinction has to be made between risk and

ambiguity at the outset. In other words, the setup applies to acts, including objec-

tive or subjective lotteries as special case. Moreover, we also abstract from specific

shapes of preference functions, and only assume that they are continuous, monotone,

and strictly monotone on constants. This makes it compatible with a wide variety

of non-expected utility frameworks, including Cumulative Prospect Theory (PT)

(Tversky and Kahneman, 1992; Wakker and Tversky, 1993), Rank-Dependent Util-

ity (RDU) (Quiggin, 1982), Maxmin and Choquet Expected Utility (MEU, CEU)

(Gilboa and Schmeidler, 1989; Schmeidler, 1989), Vector Expected Utility (VEU)

(Siniscalchi, 2009), Dynamic Variational Preferences (VP) (Maccheroni et al., 2006),

and Expected Uncertain Utility (EUU) (Gul and Pesendorfer, 2014).

The distinctive feature of TRA is that it combines non-recursiveness with a spe-

cific form of updating that does not rely on the Sure-Thing Principle. Relaxing

recursiveness makes it different from most models in MEU, VP, CEU, and RDU.

PT and VEU concentrate on behavioral aspects of updating, while we derive it

straightforwardly from a consistency property, without reference to probabilities.

This updating rule is compared to notions in Gilboa and Schmeidler (1993); Sinis-

calchi (2009); Gumen and Savochkin (2013); Maccheroni et al. (2006) in Section 3,

and to Hanany and Klibanoff (2007) in Section 7. To our knowledge, the proposed

update rule has not been used before in the literature on non-expected utility.1

1It is closely related to the conditionally consistent updating rule in (Roorda and Schumacher,

2007, Def. 3.1) and the refinement update introduced in rs13, but extends their scope to preference
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Also the refined notion of sub-acts, as elementary building blocks of compound

acts, is new.2 The idea to keep track of more than one conditional utility level per

state is also present in VEU and EUU, but used differently. Further comparison at

this point is an interesting point of future research.

Perhaps the main contribution does not lie in the ideas themselves, which are

elementary, but rather in their justification. By three classical examples we show

that several paradoxes resolve if absence of the law of one price is carefully taken into

account. This may give rise to reconsider the degree of rationality of well-observed

aspects of human judgment and decision making, and influence directions of future

research in this field.

Some potential applications of TRA that fall outside the scope of this paper

concern prudence, hyperbolic discounting, and incomplete preferences; their link

with TRA is briefly indicated in Section 8. Concerning the empirical aspect, we view

the estimation of the shape of non-rectangular tuning sets as an interesting topic for

experiments. The fact that dynamic preferences may still be parameterized by just

one parameter under TRA may enhance the formulation and testing of hypotheses.

2 Definition of TRA

The definition of TRA applies to compound acts, for which we use the following

notation. We assume a finite state space S = {s1, . . . , sn} for the first stage acts.

The act with consequence, or outcome, xi in state si is denoted as (x1, s1; . . . ;xn, sn),

functions that not necessarily satisfy the axiom of translation invariance (which is, together with

monotonicity, the defining property of so-called monetary risk measures, see Föllmer and Schied

(2011)).

2A similar idea is mentioned in Roorda and Schumacher (2014), as a topic of future research

on convex risk measures.
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or, in vector notation, as (x, s). A simple act3 has x ∈ Rn, a compound act has xi

consisting of another act, called a (second stage) sub-act, on some finite state space

Si.
4 The set of all compound acts on S is denoted as A, that of simple acts on S

as Asimple. The sub-act of f ∈ A in state s ∈ S is denoted as fs, which may be a

simple or compound act.

An act with the same consequence c ∈ R in all states is called a sure thing, or

the constant (act) c, or a sure amount c. We use the same notation for sure things

on different state spaces.

We take our starting point in given (ordinal) preference functions, parameterized

by a risk aversion parameter, for the simple acts in the first stage, and for the second

stage acts in each state of S. We call c ∈ R a certainty equivalent (in the weak sense,

as we explain later on) of an act f under preference function V , if f is indifferent

to the sure amount c under V . To ensure existence and uniqueness, we assume that

all given preference functions are monotone, continuous, and strictly monotone on

sure things c ∈ R.5

Under Tuned Risk Aversion we will compare the outcomes of several preference

functions, relating to different patterns of risk aversion. Therefore it is convenient

to replace the ordinal preference functions by the induced certainty equivalence

functions, which represent exactly the same preference ordering, but at the same

time have intrinsically defined units, because they are normalized on constants.

So we will assume that the following certainty equivalent functions are given

3This should not be confused with the use of the adjective ‘simple’ to indicate that an act has

finite range, as e.g. in Gilboa and Schmeidler (1993).

4Probabilistic or deterministic dependencies between states are not incorporated at the outset;

they may be incorporated by specifying a joint distribution on all subsets of states in ∪i=1,...,nSi.

5An a priori restriction of outcomes to a subinterval X ⊂ R can be handled without diffi-

culty. Incorporation of state-dependent restrictions for outcomes of second stage acts seems less

straightforward.
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• cea : Asimple → R for a ∈ A, with A ⊂ R denoting a range of risk aversion

levels over the first stage.

• cceb : A → Rn, with cceb(f)(s) the certainty equivalent of fs in state s ∈ S

for b ∈ B ⊂ Rn, with B specifying given ranges of risk aversion levels for the

second stage in each state. The vector cceb(f) is identified with a simple act.

TRA is defined as taking the worst outcome over different patterns of risk (and/or

ambiguity) aversion over the stages.

Definition 2.1 Tuned Risk Aversion, specified by a non-empty set R ⊂ A ×

B, corresponds to the preference ordering represented by the certainty equivalent

function on compound acts given by

(2.1) CER(f) = inf
(a,b)∈R

cea(cceb(f)).

Some remarks are in order here. As we explained in the introduction, the crux

of TRA is that R, which we call the tuning set, need not be rectangular, but may

reflect mutual restrictions between a and b. In that respect it is more general than

the recursive utility approach, as described in Epstein and Schneider (2003). In

Section 4 we describe the notion of sequential consistency, a form of so-called weak

time consistency, which allows for non-rectangular tuning sets.

For lotteries, an obvious choice is to let a = 0 and b = 0 correspond to tak-

ing (conditional) expectations. A standard way to mirror positive to negative lev-

els in nonlinear pricing is by setting ce−a(f) = − cea(−f), see e.g. Cherny and

Madan (2010); negative levels then pertain to selling rather than buying f , and

risk/ambiguity neutrality for acts then means that ce0(f) = − ce0(−f).

In the examples we will always have that the infimum that defines CER is a

minimum, so that for all compound acts an optimally tuned pattern of risk aversion

exists.
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The notion of an overall level of risk aversion can be formalized by specifying a

parameterized family of nested sets (Rγ)γ∈Γ with Γ ⊂ R, and we can write CEγ for

CERγ . The definition can then be applied recursively in the obvious way. We come

back to this issue in the next section.

We have assumed a single risk aversion parameter for each stage, resp. a ∈ A, b ∈

B, but we could also incorporate different types of risk aversion in each stage, leading

to higher dimensional sets A and B. In fact, the example in Section 6 suggests an

extension in this direction.

To streamline the exposition, we collect some technicalities and proofs in the

appendix. This includes the standard properties of certainty equivalence functions,

labeled (p1-3) in Section 9.1, three regularity conditions (r1-3) which guarantee

that the infimum in (2.1) is a minimum, a sensitivity condition (r4) for cea, and

conditions on the risk aversion parameterization, labeled (p4) and (r5).

3 Consistency issues

Before we describe the notion of consistency that we impose in TRA, we make the

general point that there need not be a trace of irrationality in violations of the

Sure-Thing Principle. This is crucial for the appreciation of all other results.

For the sake of the argument, we will consider an agent with an initial cer-

tainty equivalence function CE : A → R, today at t = 0, and conditional certainty

equivalence function cce : A → Rn tomorrow, at t = 1.

To avoid confusion in terminology, we first have to disentangle two interpreta-

tions of the certainty equivalent of a sub-act: the weak one, as replacement value

of outcomes within the sublottery, and a strong one, pertaining to the replacement

of the sub-act itself in the compound act. Notice that cce relates to the weak in-

terpretation, and that the Sure-Thing Principle requires that the initial preference
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CE validates the strong interpretation for cce as well.

Although there may be valid psychological considerations to explain discrepan-

cies between making conditional decisions in a certain state beforehand (according

to CE) and when that state actually realizes (according to cce), our justification of

TRA is not relying on this. Instead, we will consider a professional agent whose

imagination is strong enough to anticipate regret, and who takes the model serious

enough to stick to his plan, at least as a thought experiment. Hence, we will not

allow for any other certainty equivalent in the strong sense than given by the vector

function cce. The crucial question is: does it exist?

If it does, this in fact implies that the agent is willing to exchange sub-acts fs

for cce(f)(s) and vice versa. The hidden assumption is that the agent’s preferences

obey the law of one price: the amount c given for obtaining an act, is the same as

the amount asked in return for the act.6 This may be a perfectly valid assumption

in e.g. a context of a frictionless market. We hardly see any room for TRA if the

law of one price holds.

However, this law is an idealization, and even highly competitive markets may

exhibit considerable bid-ask spreads, due to market frictions and unhedgeable un-

certainty. The very existence of bid-ask spreads is apparently not a matter of ir-

rationality. This implies that two preference orderings coexist, CEbid and CEask,

which may be strongly related, e.g. by the rule CEask(f) = −CEbid(−f), but do

not coincide. Let us assume that CE and cce relate to ask prices.

The Sure-Thing Principle now turns its sterner face: it implies that the ask price

6The term ‘law of one price’ as we use it here is most appropriate in a market context. Assuming

that sure things c trade for c, hence assuming outcomes in monetary units and ignoring risk-free

discounting, it amounts to the assumption that for all acts f there exists price c ∈ R such that

both f − c and c − f are market opportunities, i.e., indifferent to 0. A term that would better

reflect our general setting, not restricted to a market context, would be ‘the law of one type of

preference’, but this is a little long-winded.
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of today only depends on conditional ask prices of tomorrow, regardless the spread

that will prevail at that day. In other words, recursion in ask and bid prices should

be fully separated.

A seemingly strong argument for this separation is that otherwise always a pair

of acts f, g can be found with CE(f) < CE(g) yet cce(f)(s) ≥ cce(g)(s) in all states

s ∈ S. However, as we have shown in (rs13, Example 3.9), such a twist is perfectly

explained as an effect of f having lower conditional bid prices than g. Bid and

ask prices may be jointly recursive, so that at t = 0 a sub-act must be represented

by two figures, and market frictions effectively invalidate the standard ‘make book’

arguments against it.

Summarizing our point, it is obvious that two different complete preference or-

derings may coexist in a rational way, and the Sure-Thing Principle overlooks that

they can be intertwined without causing anomalies.

The subtle aspect is that, because t = 0 has been a future moment in the past,

the initial preference itself is partial and complete at the same time: complete in

the technical sense of orderings, but partial, in the sense that also other types of

initial preferences matter. Even more subtle, in our example the one ordering can

be derived from the other, by the rule given above, so that CE is still complete as a

model specification of initial preferences. Combined with uniqueness of updates, as

we address in the next section, it would even implicitly determine cce. So, despite

its incompleteness as decision criterion, CE may fully specify all modeling aspects

of interest.

Extended simple acts as building blocks in TRA

We conclude this section by translating these observations to an alternative formu-

lation of TRA, that brings back the idea of recursion. From (2.1) it is obvious what

the relevant features of a sub-act fs in state s ∈ S are under TRA: the outcomes

11



of cceb(f) in s for for the entire range of risk aversion levels b that occur in R. So

under TRA, the standard substitution axiom should be weakened accordingly, by

only requiring that preferences do not change if a sub-act is replaced by another one

that is equivalent in this strong sense. This gives rise to a different view on what

the elementary building blocks of compound acts are. If the interface of sub-act fs

in state s ∈ S with the compound act f is the entire mapping f̃s : b 7→ cceb(f)(s),

this means that f can be viewed as a simple act on S only with an extended

specification of consequences per state, consisting of the entire mapping f̃s, rather

than one number. So an extended simple act takes the form (x̃, s), with extended

specification x̃ = (xb)b∈B. The substitution axiom described above now amounts

to reduction of compound lotteries f to extended simple acts f̃ , as intermediate

outcome in evaluating TRA backward recursively. In a multi-stage recursion, the

single-step valuations become conditional mappings from extended simple acts to

extended outcomes for a range of risk aversion levels. Let γ denote the parameter

of overall risk aversion, specified by a nested series of tuning sets RΓ = (Rγ)γ∈Γ, cf.

Section 2. With slight abuse of notation, we can apply CEγ to f̃ in the obvious way,

and define CEΓ := (CEγ)γ∈Γ. Dynamic certainty equivalence functions for TRA can

be seen as recursively composed of this type of building blocks in each state.

4 Sequential consistency and unique updating

We have argued in the introduction that recursiveness is too restrictive for TRA.

So, assuming that initial and conditional preferences are specified by resp. CE and

cce, as before, we do not impose the rule

(4.1) CE(f) = CE(cce(f)).

Inspired by rs13, we propose to replace this by the much weaker condition of se-

quential consistency, which requires that CE(f) is in the range of cce(f). By this
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we mean that for all f ∈ A,

(4.2) CE(f) ∈ [min cce(f),max cce(f)],

with the boundaries of the interval resp. the minimum and maximum element of

the vector cce(f). In other words, certainty equivalents (in the weak sense) do not

increase or decrease for sure. Notice that this makes sense for bid- and ask prices,

even if their dynamics are intertwined, and that in this way straightforward arbitrage

opportunities are ruled out.7 The following characterization further underlines the

strong intuition of this concept.8

Proposition 4.1 Sequential consistency (4.2) is equivalent to the condition

(4.3) cce(f) = c ⇒ CE(f) = c.

In a forward looking perspective, cce is called a sequentially consistent update

of CE if the condition above holds true. Following the line of reasoning in rs13, we

derive uniqueness of sequentially consistent updates in TRA, under some mild regu-

larity conditions, and formulate a substitution axiom, which we call c-Substitution,

that provides the update if it exists. The unique update extends the refinement

update described in rs13 to value functions that are not necessarily translation in-

variant.

We use the following notation. For a given tuning set R, define the vector βR as

the point-wise supremum of second-stage levels that occur in R, i.e.,

(4.4) βR := supR1 ∈ Rn with R1 := {b ∈ B | (a, b) ∈ R for some a ∈ A}.

7Absence of arbitrage opportunities by dynamic strategies is easily obtained in a context of a

market with frictions and possibly perfectly liquid hedging opportunities, cf. rs13, Section 5.

8A similar characterization is given in rs13, restricted to c = 0. For so-called monetary valua-

tions, which satisfy the axiom of translation invariance, V (f + c) = V (f) + c, the criterion (4.3)

then follows.
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The regularity conditions in the theorem below are described in Section 9.1.

Theorem 4.2 The pair (CER, cceβ) is sequentially consistent if β is the maximum

element of R1 defined in (4.4), i.e., (i) β = βR and (ii) βR ∈ R1.

Under the regularity conditions (r1-5), cceβR
is the unique candidate for a se-

quentially consistent update of CER, and it has this property if and only if (ii) holds

for R the maximal tuning set representing CER, which is given by (9.2).

The unique candidate, cceβR
, is characterized by the following axiom.

Axiom 4.3 (c-Substitution) If a subact g in state s ∈ S has conditional certainty

equivalent c, then c is also the certainty equivalent of the compound act gc ∈ A

consisting of the subact g in s and the sure amount c in every other state of S.

Formulated more compactly, in terms of a certainty equivalence function CE :

A → R, and a conditional certainty equivalence function cce : A → Rn, the axiom

requires that for all f ∈ A, s ∈ S,

(4.5) cce(f)(s) = c ⇔ CE(f c
s ) = c,

with f c
s defined as gc in the definition, with g = fs.

In other words, certainty equivalents in the weak sense must have the strong

interpretation as well in the very specific ‘neutral’ context of all other sub-acts

being sure things with the same value, so that all risk aversion will be tuned to the

second stage.

Theorem 4.4 Under assumptions (r1-5), the c-Substitution axiom defines a unique

update for CER, which coincides with cceβR
.

So the c-Substitution axiom constitutes a universal principle for updating prefer-

ences, implied by sequential consistency (4.2) under suitable regularity conditions.

This principle hence also applies to recursive preferences (4.1) as a special case.
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It may be illuminating to compare this rule to Bayesian updating. In line with

Gilboa and Schmeidler (1993), define for h ∈ A the (single state) h-Bayesian update

for f ∈ A in s ∈ S by

cce(f)(s) ≤ cce(g)(s) ⇔ CE(fh
s ) ≤ CE(ghs ),

withfh
s the result of pasting fs in h, cf. also (Siniscalchi, 2009, Section 4.1). Conse-

quentialism, or the Sure-Thing Principle, would require independency of h, cf. (Gu-

men and Savochkin, 2013, Thm. 1). For instance, the Bayes update rule (Maccheroni

et al., 2006, (6)) applies to recursive Variational Preferences, which essentially boils

down to stepwise Bayesian updating.9 In the paper Gilboa and Schmeidler (1993),

the case with h the maximum possible value of outcomes is emphasized. We take

h the constant act c that is the fixed point of the monotone mapping c 7→ CE(f c
s ).

Therefore, we propose to call it fixed-point updating.

Summarizing, sequential consistency implies a very specific form of ‘inconse-

quentialism’ that amounts to h-Bayesian updating in each state s ∈ S, with h the

fixed-point sure thing. According to Theorem 4.2, if these can be combined in one

conditional update for all s ∈ S jointly, it is the sequentially consistent one, other-

wise sequential updates fail to exist. This existence condition may be interpreted

as absence of tuning restrictions among mutually exclusive events, which in fact

means that essential violations of consequentialism are avoided. We refer to Roorda

and Schumacher (2007, Examples 5.3-4) for elementary examples illustrating when

sequentially consistent updates do not exist.

9The analogous result in the risk measure literature is (Föllmer and Penner, 2006, Thm. 4.5),

on recursive convex risk measures. In a current working paper (Roorda and Schumacher, 2014) we

describe the update rules induced by sequential consistency for this class.
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Figure 1: The four lotteries related to the Allais paradox (payoffs in $million).

5 Tuned Risk Aversion and the Allais paradox

We apply TRA to the lotteries of the Allais paradox, see Figure 1. It has been

well documented that many subjects prefer a1 over a2, and a3 over a4, contrary to

the Certainty-Independence Axiom that states that preferences should not switch if

only c is changed from 0 to 1 while the sublottery is kept the same.

To become concrete, we consider an agent with preference orderings of sublotter-

ies based on exponential utility, u(x) = −e−βx, for some β > 0. The corresponding

(weak) certainty equivalent (ceq) of the sublottery g = (u, p; d, 1− p) is then given

by

(5.1) cceβ(g) := − 1

β
log(pe−βu + (1− p)e−βd).

Under the expected utility framework, the ceq has also the stronger interpreta-

tion that the agent is indifferent to replacing g, as sublottery of a compound lottery,

by cceβ(g). It immediately follows that the agent’s preference for a1 and a4 over

resp. a2 and a3 depends on whether cceβ(g) < 1 for g the sublottery in a1 and a4;

this is the case when β > 2.4.

Under TRA this strong interpretation of certainty equivalents no longer holds.

Let us, to avoid the introduction of additional parameters, assume that the agent

applies the same utility function to each stage separately. However, applying this

level of risk aversion in both stages consecutively, is considered as too conservative.
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Following TRA in its simplest form, the agent considers to limit the sum of levels

of risk aversion, by using the criterion

(5.2) CEβ(f) = min{ceβ0(cceβ1(f)) | β0, β1 ≥ 0, β0 + β1 = β}.

Notice that this is sequentially consistent, and that the update is given by cceβ.
10

We already saw that we should choose β > 2.4 in order to induce that a1 is

preferred over a2. It turns out that for the other lotteries, a3 and a4, risk aversion

is then most effective in the first stage, i.e., the minimum in (5.2) for the other two

lotteries is achieved for β0 = β. Consequently, for the second stage expected values

are considered, and hence a3 is preferred over a4 for β ≥ 2.4.

Does this really solve the paradox? Nothing has been solved if one still tacitly

assumes the law of one price. After all, the Allais paradox has been designed to

reveal that different values of the sublottery at t = 1 play a role in decision making

at t = 0. Rather than viewing this as inconsistent, we follow the opposite direction,

and conclude that the sublottery should be represented in terms of more than one

value, if c is not yet known. Moreover, then also at t = 0, CEβ(f) cannot have

been the only relevant value at t = −1 for the agent. So, even though it is formally

correct to write f ∼ CEβ(f), and convention dictates to articulate this as ‘to the

agent, f is indifferent to the amount CEβ(f)’, one should immediately add a phrase

like ‘if it comes to buying’, ‘if it comes to selling’, or ‘from a certain perspective’, to

avoid the symmetric interpretation suggested by the law of one price.

In this way the Allais paradox can be interpreted as a rational effect of TRA:

in a2, all risk aversion is attracted to the sublottery, because there it has the most

effect. For the same reason, albeit somewhat less pronounced, in the lotteries a3

10Notice that CEβ induces ceβ over the first period, i.e., for lotteries without risk in the second

stage, so both stages are treated alike in CEβ . The crux of TRA is hence not explicit time

dependency, but the fact that short term properties do not dictate long term features.

17



and a4 conservatism is focused on the initial stage, so that the risk in the sublottery

is penalized less heavily.

We would like to avoid the impression that this should be seen as an interpreta-

tion that is alternative, or even opposite to the classical behavioral explanations in

terms of framing and regret. On the contrary, it is very much in line with it. The

different framing (c = 1 vs. c = 0) is precisely the reason for the different patterns

of risk aversion between the first and second pair of lotteries, and the fact that a

full loss is more painful in a2 as compared to a3, nicely goes along with the fact that

under TRA one is indeed more relaxed about that risk in the latter lottery. From

this perspective, TRA may be seen as a mechanism through which these psycholog-

ical factors have their effect. Our analysis seems to indicate that they have a more

rational justification than generally believed, although we do not exclude that e.g.,

strong framing can lead to less efficient tuning of risk aversion.

To conclude this section, we depict the effect of TRA in the so-called Marschak-

Machina triangle, introduced in Marschak (1950), for the TRA preference (5.2) with

β = 3, see Figure 2. Notice the fanning out effect in the lower region, inducing the

outcome of preference orderings as described. We remark that the counter-intuitive

North-West direction of curves in the upper region can be avoided if one minimizes

over all three possible definitions of sublotteries in the Allais paradox.

6 Tuning Risk and Ambiguity Aversion:

the 50 : 51 example.

In Machina (2009) the so-called 50:51 example has been introduced, as an illustration

of limitations in the CEU approach, introduced in Schmeidler (1989), to model the

tradeoff between ambiguity and risk aversion. We take our starting point in the

formulation of this example in Baillon et al. (2011), depicted in Figure 3.
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Figure 2: The Marschak-Machina triangle with level curves of the TRA preference

(5.2) with β = 3 for the Allais lotteries. At the horizontal axis is the probability p1 on

outcome 0, on the vertical probability p3 on outcome 5. The remaining probability

p2 = 1 − p1 − p3 is assigned to outcome 1. The lotteries of Figure 1 correspond to

the following locations: a1 : (0, 0), a2 : (0.01, 0.1), a3 : (0.9, 0.1), a4 : (0.89, 0).
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Figure 3: The four acts in the 50:51 example.
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CEU implies that f1 is preferred to f2 if and only if f3 is preferred to f4. In

Baillon et al. (2011) it is shown that the forward implication is induced in most

other classes of ambiguity-averse preferences as well. The paradox is that the in-

formational advantage of f1 with respect to f2 is much stronger than that of f3

compared to f4, and hence it is natural allow for preferences ≺ with f1 ≻ f2 and

f3 ≺ f4. We will show that TRA admits such a preference.

To keep things as simple as possible, we consider a preference function that is

the minumum of two CEU functions. For ambiguity aversion, we use the MINVAR

criterion, introduced in Cherny and Madan (2010) in the context of bid-ask price

modeling. For simple, binary acts g = (u, p; d, (1− p)), with d ≤ u, this amounts to

(6.1) Vk(g) = pku+ (1− pk)d.

We choose this form because of its strong intuition, its precise functional form is

not essential. For k an integer, the intuition is that the expected value is considered

of the minimum outcome in k independent trials. We take uniform distribution as

reference measure for the sub-acts, and choose k = 2. So the ambiguity penalty for

the sub-acts amounts to a quarter of the spread of outcomes. There is no ambiguity

in the first stage, so we take expected values of the outcome for both sub-acts, and

define

(6.2) Uamb =
50

101

E1 + 3E2

4
+

51

101

E3 + 3E4

4
.

The second CEU, reflecting risk aversion, is again obtained from exponential utility

u(x) = −e−βx. The stepwise application of (5.1), with the same parameter in both

periods, is equivalent to applying this utility once to four outcomes, so we take

(6.3) U r = − 1

β
log(

50

101

e−βE1 + e−βE2

2
+

51

101

e−βE3 + e−βE4

2
).

These are both certainty equivalence functions, and we take their minimum

outcome as final preference function V . It turns out that the values of f1 and f2 are
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equal for for β = 0.02365. We choose β = 0.015 so that f1 is preferred over f2. The

corresponding values of the acts are given by

f1 f2 f3 f4

Uamb 151 126.25 125.25 100.5

U r 133.5 134.0 75.4 75.6

V 133.5 126.25 75.4 75.6

It follows that indeed f1 ≻ f2 and f3 ≺ f4, as desired.

We remark that TRA is certainly not the only way to cope with the 50:51 puzzle.

We just showed that adding just one bit of TRA to CEU, nothing more, is enough,

indicating that TRA extends scope of CEU in a relevant direction. We refer to

Dillenberger and Segal (2012) for an alternative solution to this puzzle in terms of

recursive preference functions.

7 Consistent decision making in the Ellsberg para-

dox

We emphasized the interpretation of a budget of risk aversion in TRA, reflected by

mutual restrictions between a and b in the tuning set R. The syntax of Definition

2.1 may also be applied in a context in which such restrictions are based on different

considerations. For instance, if a ∈ A and b ∈ B correspond to the number of balls

of a certain color one supposes to be present in one and the same ambiguous urn,

it is a matter of consistency to impose a = b in R. We apply this idea to the two-

stage formulation of the Ellsberg paradox in Hanany and Klibanoff (2007), which is

essentially the same as the example in (Siniscalchi, 2009, Section 2)

In our notation, this can be represented as follows. Take S = {s, s′}, Ss = {B,R}

and Ss′ = {Y } as outcome space for resp. the first stage, the sub-act in s, and the

(trivial) sub-act in s′. Here B/R/Y stands for drawing a black / red / yellow
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ball from an urn, in which 40 of the 120 balls are known to be blue, and the

remaining 80 are red or yellow, in unknown proportion (note that the symbol B has

been redefined). To streamline the exposition, we let (fB, fR, fY ) ∈ R3 denote the

compound act f ∈ A with subact fs = (fB, B; fR, R) in state s and act fY in state

s′ leading to Y .

Following Hanany and Klibanoff (2007), we consider the MEU preference func-

tion

CE : (fB, fR, fY ) 7→ min{1/3fB + afR + (2/3− a)fY | a ∈ [1/4, 5/12]},

which corresponds to taking the worst expected value under the assumption that the

proportion of red balls (parameter a) is not lower than 1/3− 1/12, and not higher

than 1/3+1/12. Notice that CE is translation invariant, i.e., it satisfies CE(f+c) =

CE(f) + c; in fact it belongs to the class of coherent risk measures, introduced

in Artzner et al. (2007). Formulated in term of a tuning set, we can take R =

{(a, b) | a, b ∈ [1/4, 5/12], a = b}, cea taking expected value with probability 1/3+ a

assigned to s, and cceb taking expected value, conditioned on s, with probability

1/(1 + 3a) for B. Then indeed CER = CE. Note that the tuning restriction, a = b,

now is a matter of intrinsic consistency.

Consider now the following four acts: f = (1, 0, 0), g = (0, 1, 0), f ′ = (1, 0, 1),

g′ = (0, 1, 1). Then CE(f) = 1/3 > 1/4 = CE(g), while CE(f ′) = 7/12 < 2/3 =

CE(g′); notice that in both pairs, the ambiguity premium is 1/12.

We will argue that there is no compelling argument to deviate from the update

rule induced by c-Substitution. Illustrating the rule directly, this requires that

cce(fs) = c with c the solution of CE(1, 0, c) = c, which yields c = 4/9. Similarly,

cce(gs) must be equal to 3/7. This coincides with Bayesian updating.

In Hanany and Klibanoff (2007) it is argued that this constitutes a dynamic

inconsistency in terms of decision making. On the one hand, the preference of g′

over f ′ reflects that at t = 0, one prefers to bet on outcome R rather than B, even
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if this decision can be postponed to t = 1. However, at t = 1, this preference is

predictably revised, because f ′
s = fs is preferred over g′s = gs. As we have indicated

in the introduction, we also consider this as truly inconsistent (that is, in the scope of

this paper, not as a general claim); we hence do not follow the so-called consistent

planning argument in Siniscalchi (2009). The solution proposed in Hanany and

Klibanoff (2007) is to adjust the update rule by ruling out priors that cause the

inconsistency.

However, it is not the update rule that is to blame here, or to be adjusted, the

pitfall is again ignoring the fact that the law of one price is lost. Let us assume

that the decision maker (DM), confronted with the choice between f ′ and g′, indeed

chooses to afford g′, in line with the preference function CE. Then, at t = 1, if s

realizes, the DM has the option to exchange the bet on R for one on B; in state s′ no

further choices have to be made. Now this is a choice between (i) replacing the bet

on R by one on B, or (ii) do nothing; (i) corresponds to buying in state s the subact

h = (1, B;−1;R), which according to the updated preference has value −1/9. So

the DM will stick to the bet on R, and already knows this at t = 0. Comparing the

bid prices of both bets is is not the issue. Notice that also in case the DM would

have started with f ′, the option to switch would not have been exercised. Frictions

help to ‘stick to your plan’. This friction effect could shed new light on the topic of

timing indifference, as studied in e.g. Strzalecki (2013).

This illustrates once more that despite the fact that preference functions induce

a full ordering, this ordering still may be partial in the sense that it reflects just one

aspect of valuation.
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8 Concluding remarks

We have introduced TRA as a natural aspect of decision making under uncertainty

that can be rationally justified if the law of one price does not hold. In our frame-

work, sequential consistency replaces recursiveness as a more flexible principle ad-

justed to TRA, which induces c-Substitution as general updating rule for preferences

on acts. This rule derives a preference ordering on sub-acts from an initial preference

function, under a specific choice for the context of sub-acts, intrinsically defined by

a fixed point condition, thus coping with the violations of the Sure-Thing Principle

admitted under TRA.

TRA has interesting links with several important themes in non-expected utility

that are out of the scope of this paper. Incomplete preferences can be defined, in

the spirit of Aumann (1962) and Dubra et al. (2004), by combining a family of

preferences in one overall preference, defined by the rule that an act f is ‘overall’-

preferred to g only when f is preferred to g under each preference in the given

family. For instance, one may compare both bid and ask prices, and deem f and

g incomparable if f is more attractive to buy, but at the same time more easily

sold than g. More generally, incomplete orderings may be defined by the condition

CEγ(f) ≤ CEγ(g) for all γ ∈ Γ, cf. Section 3. Inspiration for research in this

direction may be derived from the results in Ok et al. (2012) on partial completeness.

Another possible application is prudence, see Eeckhoudt and Schlesinger (2006).

Prudence seems inherent in TRA, in fact also if rectangular tuning sets are used for

the two-stage lottery in the definition of prudence. Non-rectangular sets, however,

may play a role in characterizing higher-order concepts related to the sign of the

k-th derivative of utility functions for k > 3, such as as temperance (k = 4) and

edginess (k=5).

Finally we indicate how TRA may support the analysis of non-recursive time

preferences, in particular hyperbolic discounting (Phelps and Pollak (1968); Laib-
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son (1997), see also Joosten (2014) for a recent application). Assuming a regular

time axis, one may first determine maximum levels of risk aversion for each pe-

riod separately that induce an appropriate discount rate for a reference set of acts

over each time step resembling a given level of risk. The corresponding rectangular

tuning set would induce then exponential discounting. In TRA, restrictions can

be imposed for lighter discounting over multiple steps, and in particular hyperbolic

discount rates can be obtained. The results on compound risk measures in (rs13,

Section 6), and the description of all convex risk measures with prescribed stepwise

properties in (Roorda and Schumacher, 2014, Section 7) may provide useful starting

points for implementing this idea.

More generally, sequential consistency and the induced fixed-point update rule

may provide a rational basis for giving long term consequences an appropriate weight

in decision making, in a way that may be substantially different from the mechani-

cally derived implications of local properties in a recursive approach.

9 Appendix

9.1 Regularity conditions

We first list the standard properties of the certainty equivalence functions cea and

cceb with a ∈ A and b ∈ B that are assumed throughout the paper.

(p1) cea and cceb are monotone and continuous in outcomes of acts

(p2) cea and cceb are normalized on constants, i.e., cea(c) = c, cceb(c) = c

(p3) cea and cceb are non-increasing in resp. a and b.

Without loss of generality we may assume that the parameterizations are injective,

(p4) cea ̸= cea′ for a ̸= a′ and cceb ̸= cceb′ for b ̸= b′,
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since violations of (p4) can be eliminated by an obvious adjustment of the parame-

terization. Properties (p1-4) are standing assumptions in TRA.

The following three regularity conditions guarantee that the infimum defining

CER is a minimum.

(r1) A = [amin, amax] with amin < amax, B = [bmin, bmax] with bmin � bmax.

(r2) the mapping (f, a) 7→ cea(f) is continuous on Asimple × A

(r3) the mapping (f, b) 7→ cceb(f) is continuous on A×B

Lemma 9.1 Under assumptions (r1-3), CER is continuous on A, and

CER(f) = CER̄(f) = min
(a,b)∈R̄

cea(cceb(f)),

with R̄ the closure of R.

Proof We start with the second claim. It is easily verified that under the assump-

tions (r1-3),

(9.1) the mapping (a, b, f) 7→ cea(cceb(f)) is continuous.

Due to (r1), R is bounded, and hence R̄ is compact. So CER(f) is the minimum of

a continuous function over a compact domain, and by the Weierstrass Theorem it

follows that the infimum is a minimum. The first equality in the lemma also follows

from (9.1).

For the first claim, we have to prove that if fn → f , then CER(fn) → CER(f).

In view of the first result, we can write hn := CER(fn) = cea∗n(cceb∗n(f)) and m :=

CER(f) = cea∗(cceb∗(f)) for risk aversion levels in R̄. Then hn ≤ cea∗(cceb∗(fn)) =:

h′
n, and hence lim suphn ≤ limh′

n = m, where the last equality follows from (9.1).

On the other hand, m′ := lim inf hn ≥ m, which can be seen as follows. Let (hn)n∈I

be a converging subsequence, to cluster point k say. Because R̄ is compact, there
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must be a sub-subsequence (hn)n∈J with J ⊂ I, also converging to k of course,

for which (an, bn)n∈J → (a′, b′), and hence (an, bn, fn) → (a′, b′, f). From (9.1) it

then follows that k = cea′(cceb′(f)), so k ≥ m. Because m′ is the infimum of all

clusterpoints k, also m′ ≥ m. �

Under (r1), the maximal tuning set representing CER exists, and is given by

(9.2) Rmax = {(a, b) ∈ A×B | cea(cceb(f)) ≥ CER(f) for all f ∈ A}.

It follows from the previous lemma that this is a closed set under (r1-3).

For some results we assume the following sensitivity property of cea, for f ∈ A

bounded by a constant d:

(r4) f � d ⇒ cea(f) < d and f 	 d ⇒ cea(f) > d.

A slightly stricter version of (p4) for second stage acts is needed in the theorems.

(r5) For all pairs of vectors b′ ≤ b, with b′(s) < b(s), and all c ∈ R, there exist

f ∈ A such that cceb(f)(s) = c < cceb′(f)(s).

9.2 Proof of Prop. 4.1

It is clear that the implication in (4.3) is a consequence of (4.2). It remains to

show that if (4.2) is violated, (4.3) cannot hold true. So assume that for some f ,

CE(f) < min cce(f) =: m (the proof for CE(f) > max cce(f) is entirely analogous).

Then there must exist g ∈ A, with g ≥ 0, such that cce(f − g)(s) = m for all s ∈ S

(this follows easily from the standing assumptions (p1-2) for cce, cf. Section 9.1).

On the other hand, CE(f − g) ≤ CE(f) < m, contradicting (4.3).

9.3 Proof of Thm. 4.2

We prove the first claim using (4.3). So consider f ∈ A with cceβ(f) = c. Condition

(i) in the theorem implies that CER(f) ≥ inf(a,b)∈R cea(cceβ(f)) = inf(a,b)∈R cea(c) =
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c. From condition (ii) it follows that there exists a ∈ A with (a, β) ∈ R, and hence

CER(f) ≤ cea(cceβ)(f) = cea(c) = c. So equality must hold, and (4.3) follows.

For the claim on uniqueness, consider a function cce : A → Rn that is normalized

on constants, and assume cce ̸= cceβR
. So there exist f ∈ A and s ∈ S such that

c := cce(f)(s) ̸= cceβR
(f)(s) =: c′.

Define the act f c
s as the sure thing c on S with in s the act c replaced by fs. Observe

that cce(f c
s ) = c, in all states in S, because cce is normalized on constants.

If c′ < c, then cceb(f
c
s ) � c for some b ∈ B, and hence CER(f

c
s ) ≤ ceamin

(cceb(f
c
s )) <

c, where the strict inequality is due to (r4) (see (r1) above for the notation amin).

So (4.3) is violated for f c
s . Similarly, for the case c < c′, we show that CER(f

c
s ) > c.

Clearly

(9.3) CER(f
c
s ) ≥ inf

(a,b)∈R
cea( inf

b′∈R1

cceb′(f
c
s )),

with R1 the set defined by (4.4). Let g ∈ Rn denote the inner (point-wise) infimum.

Then g 	 c, and (r4) implies that CER(f
c
s ) > c. So also if c < c′, (4.3) does not

hold, and hence c′ = c. This proves that cceβR
is indeed the only candidate for a

sequentially consistent update of CER.

For the last claim, notice that under (r1) the maximal tuning set Rmax is in-

deed given by (9.2), and that Rmax is closed under (r1-3). It follows that Rmax
1 =

{b | (amin, b) ∈ Rmax}, and that for all s ∈ S, βRmax(s) = max{b(s) | (amin, b) ∈

Rmax}. Obviously βRmax ≥ βR, and we show that equality must hold. Indeed, if

v := βRmax(s) = βR(s) + δ for some s ∈ S and δ > 0, then, due to (p4), there would

exists a sub-act fs in s with cceβR
(f)(s) =: c > ccev(f)(s), so that CER(f

c
s ) = c,

while, by (r4) for ceamin
, ceamin

(ccev(f
c
s )) < c; a contradiction with (9.2), as v = b(s)

for some (amin, b) ∈ Rmax.

So βR = βRmax , and it follows from the first claim that cceβR
is a sequentially

consistent update if Rmax
1 satisfies condition (ii).
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It remains to derive the reverse implication: if cceβR
is sequentially consistent,

then βR ∈ Rmax
1 . If βR = bmin, the claim is trivial. Otherwise, the subset S ′ :=

{s ∈ S | βR(s) − δ ∈ B} in non-empty for sufficiently small δ > 0. According

to (r5), we can choose c ∈ R, and find f ∈ L such that cceβR
(f) = c, while

cceb′(f)(s) > c whenever b′(s) ≤ βR(s)− δ. Now if cceβR
is a sequentially consistent

update, CER(f) = c, and hence cea∗(cceb∗(f)) = c for some (a∗, b∗) ∈ Rmax. In view

of (r4) for cea∗ , it must hold that cceb∗(f) = c, and hence b∗(s) ≥ βR(s) − δ for

all s ∈ S. As δ can be chosen arbitrarily small, and Rmax
1 is closed, it follows that

βR ∈ Rmax
1 .

9.4 Proof of Thm. 4.4

First show that cceβR
satisfies the c-Substitution axiom. To derive the forward im-

plication in (4.5), take f ∈ A, s ∈ S, and let c = cceβR
(f)(s). Then CER(f

c
s ) ≤

ceamin
(cceβR

(f c
s )) = ceamin

(c) = c. The reverse inequality is obvious from the defini-

tion of βR, so CER(f
c
s ) = c. For the backward implication in (4.5), which immedi-

ately implies uniqueness of updates, assume CER(f
c
s ) = c. From Lemma 9.1, generalize

aspects to

CE, cce

(9.4) CER(f
c
s ) = cea∗(cceb∗(f

c
s )) for some (a∗, b∗) ∈ R.

By definition of βR, b
∗(s) ≤ βR(s), so cceb∗(f)(s) ≥ c, and equality follows from

(r4). So cceβR
indeed satisfies the c-Substitution axiom.
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