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Chapter 1

Introduction

In this thesis we examine the use of sequential auctions for the dynamic allo-
cation of transportation jobs. For all players, buyers and sellers, we develop
strategies and examine their performance both in terms of individual benefits
and with respect to the global logistical performance (resource utilization and
delivery reliability). Section 1.1 gives the motivation for this research. In Sec-
tion 1.2 we describe our research design, including the research objectives, the
research questions, and the research approach. We end this chapter with an
outline of the remaining part of this thesis (Section 1.3).

1.1 Research motivation

New intelligent and flexible approaches for transport planning and scheduling
are needed to deal with current trends in transport and logistics. Trends in ex-
ternal logistics include smaller transport batch sizes, shorter lead times, higher
delivery frequencies, and tighter time-windows for delivery as well as higher de-
livery reliability. Another important trend is the increased focus on real-time
decision making as a result of continuing developments in telecommunication
and information technologies. These technologies, such as Internet and Global
Positioning Systems (GPS), enhance the planning capability of freight carriers
and provide the necessary information to perform real-time decision making.
Furthermore, the possibilities of Internet trade of products in the business-to-
business area will increase the complexity of physical distribution in the near
future.

These trends require new operations research techniques enabling real-time
decision making. Real-time optimization techniques are required for a single
company optimizing its own logistical activities (intra-company) as well as for
the planning issues between different actors in a network (inter-company). In
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the area of freight transportation there are generally two types of companies:
shippers and carriers. Shippers are the owners of freight, such as manufacturers,
distributors, and retailers. Carriers are transportation companies that provide
the capacity (in our case vehicles) to transport this freight.

Shippers and carriers are continuously facing pressure to operate more effi-
ciently. Traditionally, shippers and carriers have focused their attention on con-
trolling and reducing their own costs to increase profitability (intra-company).
Recently, shippers and carriers have shifted their attention towards controlling
and reducing system-wide costs (inter-company) and sharing these costs sav-
ings to increase everyone’s profit (Ergun et al., 2007). A collaborative focus will
open new cost saving opportunities. For an overview of the potential benefits
of different forms of collaboration in Europe we refer to (Cruijssen, 2006).

Shippers and carriers can meet under a wide variety of relational structures.
These structures vary from vertical integration to spot markets (Figliozzi,
2004). Vertical integration takes place when the shipper uses a private fleet.
Here the shipper has direct control of operations of equipment and drivers. In
the spot market, we have a large number of shippers and carriers exchanging ad-
ditional loads and excessive capacity. According to Song and Regan (2003), this
is a type of competitive market force used by almost all shippers and carriers to
some extent. And over the past several years, these markets moved online. An
example of a European load matching site is Teleroute (www.teleroute.com),
that has more than 150,000 real-time daily freight offers, and over 60,000 users
per day. For a review of the practice of online logistics providers in the USA
we refer to (Song and Regan, 2001).

Situated between the extreme structures are the contractual agreement
structures, where stable and long term contractual agreements take place be-
tween shippers and carriers. These structures are becoming increasingly pop-
ular in the trucking industry. Many shippers have a core carrier program in
which they form partnerships with a few large carriers with the intent both to
reduce their carrier base and to maintain or increase the level of service pro-
vided (Song and Regan, 2003). In fact, many on-line marketplaces have shifted
their focus to more private collaborative networks (Song and Regan, 2001).
Instead of being open to any shipper and carrier, the private marketplace is a
platform with access for only a small group of companies, allowing shippers to
maintain long-term relationships with their transportation providers.

In this thesis we focus on real-time decision making in transportation prob-
lems where transportation requests arrive continuously over time. Decisions
involve the allocation of jobs to vehicles and the timing of these jobs. We focus
in particular on the use of sequential auctions to support the allocation decision.
Hereby we aim at the whole variety of relational structures between carriers
and shippers. Therefore, we make a distinction between open- and closed en-
vironments. In an open environment, we have many independent shippers and
carriers. Shippers request transportation services through an electronic auction
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and carriers bid on these jobs. In a closed environment, we have a limited set of
players over which we have some control. Examples of closed environments are
(1) factories that allocate internal transportation tasks to Automatic Guided
Vehicles (AGVs); (2) shippers that control their own fleet of vehicles; and (3)
private collaborative networks.

In this thesis we consider both open and closed environments where our
focus is as follows. In open environments, we focus on a single player, and take
the auction protocol and the behavior of other players as given; no strategic
behavior of the other players. As a consequence, we are only interested in
the profits of the individual player. We study the profitability of different
strategies for the individual player and compare this with the average profit
of the other players. In closed environments, our overall goal is to achieve an
efficient allocation, i.e., to maximize the utilization of transportation resources
and the quality of service. In this thesis we argue that also closed environments
can benefit from auction-based allocation mechanisms. Therefore, we model the
different players as agents within a so-called multi-agent system (MAS). The
auction mechanism is then used as a cooperation protocol between the agents.

Given this focus, our research is related to the following research areas: (1)
dynamic vehicle routing, (2) multi-agent systems, and (3) transportation pro-
curement auctions. Below we describe the motivation for our research within
each of these three research areas.

1.1.1 Dynamic vehicle routing problems

The technological advances in ICT have also affected the transportation and
logistics sector (see Regan and Golob, 1999; Golob and Regan, 2001). Along
with the increased focus on just-in-time logistics, the ability to effectively make
use of real-time information has become more and more important. These
trends are reflected in the scientific literature by the increased interest in so-
called dynamic vehicle routing problems (DVRP).

The vehicle routing problem (VRP) is usually concerned with the matching
of available vehicle capacity with transportation jobs and with the timing of
these jobs. A common objective is to do this at minimum costs while maintain-
ing a required level of service. For recent surveys on the VRP and its variants,
we refer to (Desaulniers et al., 2001; Toth and Vigo, 2002; Cordeau et al., 2007).
The majority of the VRP literature focuses on deterministic and static versions
in which all information is known at the moment the routes are planned. Also
stochastic and static versions of the vehicle routing problem (SVRP) have been
widely studied. Stochasticity can be found in travel times, load characteristics,
the number of jobs, and the location of jobs. In the dynamic vehicle routing
problems, new transportation jobs arrive dynamically when the vehicles have
already started executing their tours. This requires real-time replanning in
order to include the new jobs in the vehicle schedules.
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There are many applications that motivate the research on the DVRP. Ex-
amples include dynamic fleet management, vendor-managed distribution sys-
tems, courier services, rescue and repair services, emergency services, and taxi
cab services (see Ghiani et al., 2003). For overviews of literature on these
dynamic vehicle routing problems (DVRP) we refer to (Powell et al., 1995;
Psaraftis, 1995; Bertsimas and Simchi-Levi, 1996; Gendreau and Potvin, 1998).

In this thesis we consider a generalization of the vehicle routing problem,
namely the pickup and delivery problem with time-windows (PDPTW), where
transportation jobs are defined by a pickup location, a delivery location, and
time-window restrictions at the pickup location and/or the delivery location.
As stated by Cordeau et al. (2007), these demand-responsive freight transporta-
tion systems have become increasingly popular. The literature on the PDPTW
is not as extensive as that on the vehicle routing problem with time-windows
(VRPTW). For surveys of the PDPTW literature we refer to (Savelsbergh and
Sol, 1995; Desaulniers et al., 2001; Cordeau et al., 2007).

A variant of the PDPTW that has been frequently studied is the dial-a-ride
problem (DARP). Where the PDPTW is usually thought of as a model for
transporting goods, dial-a-ride problems are models for passenger transporta-
tion. Also the DARP has become increasingly popular due to the ageing of the
population and the trend toward the development of ambulatory health care
services (Cordeau et al., 2007). A recent survey dedicated to the DARP was
presented by (Cordeau and Laporte, 2007).

Although many papers have been devoted to dynamic vehicle routing prob-
lems and dynamic pickup and delivery problems, there are still some issues
that have not been addressed yet (Ghiani et al., 2003); especially with regard
to look-ahead policies that incorporate the future consequences of certain de-
cisions.

Gendreau and Potvin (1998) provide a survey of relevant work on dynamic
vehicle routing problems. They conclude that future research should focus
on using forecasted demands for the construction of routes. In another paper
(Gendreau et al., 1999), they suggest some important extensions of their ap-
proach to dynamic vehicle routing problems. They mention that it would be
interesting to integrate probabilistic knowledge about the future to improve
decision making at the current time. Ghiani et al. (2003) provide a review of
algorithms for dynamic vehicle routing problems and highlight some issues that
have not been addressed yet. They conclude that more research is required on
heuristics with some look-ahead capability. In (Yang et al., 2004) different on-
line strategies for assigning and reassigning trucks to transportation requests
are examined, as well as the value of advance information for such schemes.
They conclude that future research should concentrate on the search for poli-
cies that utilize the available information about future jobs more efficiently.
Giaglis et al. (2004) state that limited research has been devoted to the real-
time management of vehicles during the actual execution of the distribution
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schedule in order to respond to unforeseen events that often occur and may
deteriorate the effectiveness of the predefined and static routing decisions. In
a recent publication, Cordeau and Laporte (2007) provide an overview of the
scientific literature on the dial-a-ride problem (DARP). The DARP can be seen
as an application area of the pickup and delivery problem devoted to passengers
where more emphasis is put on controlling user inconvenience. Cordeau and
Laporte (2007) believe that this problem will gain importance in the coming
years, and conclude that more emphasis should now be put on the dynamic
version of the problem.

The common denominator in the proposed direction of research, as stated by
the references mentioned above, is that more research is required on look-ahead
policies for dynamic vehicle routing problems. In this thesis we contribute to
that. In particular, we develop look-ahead pricing and scheduling strategies for
the dynamic pickup and delivery problem of full truckload transportation with
time-window restrictions.

1.1.2 Multi-agent Systems

The increased use of information technology within and between companies
will also change their coordination mechanisms. Traditionally, operations re-
search (OR) based optimization methods are used to construct integral trans-
port schedules. However, one may wonder whether such centralized methods
are suitable for planning and control of stochastic and dynamic transporta-
tion networks. First, system-wide optimization algorithms may require a lot
of information in advance that simply may not be available. Second, these
algorithms can be sensitive to information updates: a minor modification in
information may have an impact on the schedules of many vehicles. Third, the
time required for the algorithm may not permit timely response to unexpected
events such as equipment failure and the arrival of rush jobs. Finally, flexible
transportation networks may consist of multiple independent organizational
units that are working in an autonomous, self-interested, and not necessarily
cooperative way. Therefore, these individual players may not be willing to share
sensitive information (like their cost structure, current vehicle locations, and
current schedule), with the result that centralized or hierarchical approaches
are no longer applicable.

An alternative that has been proposed in the computer science literature
is the multi-agent system (MAS). Such a system consists of a group of intel-
ligent and autonomous computational entities (agents) which coordinate their
capacities in order to achieve certain (local or global) goals (Wooldridge, 1999).
MAS, originally emerged as a sub-field of distributed artificial intelligence, has
turned out to be a promising solution for controlling complex networks, pro-
viding more flexibility, reliability, adaptability, and reconfigurability. However,
despite these benefits, it is unclear whether the system-wide performance is



6 Chapter 1. Introduction

comparable to the performance of more centralized or hierarchically organized
planning systems.

In recent years, many papers on multi-agent systems for transportation
problems have appeared. Examples can be found in (Bürckert et al., 2000; Zhu
et al., 2000; Böcker et al., 2001; Thangiah et al., 2001; ’t Hoen and La Poutré,
2004; Kozlak et al., 2004). A common approach is to represent the resources
and/or tasks by goal-directed agents; for example, a job agent may focus on
on-time delivery against the lowest possible costs, and a resource agent may
strive for utilization and/or profit maximization.

A key characteristic of these multi-agent systems is that the plan for the
system as a whole is a composite of plans produced by multiple agents. These
agents have limited competence and knowledge of others. The task for the
designer of this distributed planning system is to define a computationally effi-
cient coordination mechanism. A growing number of researchers have explored
the use of market mechanisms as metaphors for constructing computationally
tractable solutions to difficult resource allocation problems. The allocation of
scarce resources is a topic that has long been studied in economics and it is
shown by several authors (see Clearwater, 1996) that market mechanisms can
result in good or optimal allocation of resources. This allocation is achieved in
a decentralized fashion: it emerges from the interaction of buyers and sellers.
Thus, economics can act as a valuable source of terminology, inspiration, and
metaphors for developing solutions for resource allocation problems.

Given this local control concept, the internal behavior of agents should be
described, reacting to events and stimuli in their environments. In particular,
each agent should price the resources on the supply side and all kinds of logistics
service effects on the demand side. Examples of these cost drivers are (1)
earliness / tardiness given the specified delivery time-windows; (2) availability
of capacity; and (3) probability that another (more profitable) job arrives that
requires capacity from the same resource at the same time. The latter aspect
refers to the intelligence in the pricing mechanism. Prices for transportation
do not have to depend solely on immediate rewards, but in some way the
expectations about future rewards have to be taken into account.

Although some results on multi-agent planning and scheduling are available
in the area of transportation, the level of intelligence (i.e., the ability to an-
ticipate future events) is still limited in many cases. An extensive survey of
existing research on agent-based approaches to transportation and traffic man-
agement can be found in (Davidsson et al., 2005). They conclude that some
problem areas are under-studied. In particular, they mention the comparison
of agent-based solutions to existing techniques. In this thesis we aim to pro-
vide such a comparison and we aim to develop methods for agents to anticipate
future events.
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1.1.3 Auctions

As mentioned in the beginning of this chapter, there is a growing interest in
collaborative logistics. But also the way contracts are negotiated is changing by
enabling demand and supply to be matched dynamically through online mar-
kets. Especially due to the development of Internet sites that match shippers’
demand for transportation with the transport capacity of carriers. Lin et al.
(2002) did a survey about the adoption and usage of Internet procurement tools
by shippers. They indicate that 60% of the shippers use Internet to procure
transportation services.

McAfee and McMillan (1987) define auctions as market institutions with an
explicit set of rules determining resource allocation and prices, based on bids
from the market participants. Auctions are known to be an efficient way to
allocate items among agents, both in terms of process and outcome (Sandholm,
2002). Moreover, they do it in a distributed and autonomy preserving way.

Usually, auctions are considered in the context whereby human bidders
compete with each other in order to purchase an item at the lowest possible
price from an auctioneer who wants to sell the item at the highest possible price.
However, the same principles can be used by software agents for the allocation
of transportation jobs. In this case, the auctioneer (e.g. a shipper) wants to
subcontract transportation jobs at the lowest possible prices and each bidder
(e.g. a carrier) wants to deliver the service at the highest possible payments.
This situation creates a reverse auction because the sellers (carriers) bid instead
of the buyers (shippers) and prices are bid down instead of up. Obviously,
models for normal auctions can be reversed and applied to reverse auctions.

There are many different types of auctions. Examples of widely applied
auction protocols, both in practice and in the scientific literature, are the
English auction, the Dutch auction, the first-price sealed-bid auction, and the
second-price sealed-bid (Vickrey) auction (see Vickrey, 1961). These auctions
are used for selling a single good. The problem of auctioning multiple goods
can be difficult; especially when the valuations of combinations of items dif-
fer, or when bidders have preferences over bundles, i.e., combinations of items.
This is often the case in transportation exchanges (see Sandholm, 1993; Sand-
holm, 1991; Sandholm, 1996). Auctions that are specifically designed to deal
with multiple goods are called combinatorial auctions. However, these auctions
involve many inherently difficult problems. As mentioned by Song and Regan
(2005), we face the bid construction problem where bidders have to compute
bids over different job combinations, and the winner determination problem
where jobs have to be allocated among a group of bidders. In addition, (1) it
may be unrealistic to bundle jobs which belong to different shippers and (2)
these procedures are not directly applicable in situations where jobs arrive at
different points in time.

In this thesis we focus on sequential auction procedures where the items
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are auctioned one at a time. The most common procurement process for
transportation services is similar to a simple sealed-bid auction (Song and Re-
gan, 2002). Here an auctioneer (shipper) announces the bidding item (contract
to serve a certain transportation job), a group of bidders (carriers) review this
item, and then each of them submits a price in a sealed envelope. The auction-
eer then reviews the bids and determines the winner.

Determining the winners in a sequential auction protocol is easy because
this can be done by picking the lowest bidder (in case of a reverse auction)
for each item separately. However, problems arise due to the introduction
of a new dimension, namely time. Consequence for the bidders is that, in
order to determine the valuation of an item, they need to guess what items
they will receive in later auctions. Obviously, this requires speculation on
what the competitors will bid in the future. Therefore, the bid price in a
sequential auction is affected by past auctions as well as by future auctions. To
be precise, a bid price is affected by (1) previous auctions because winning a job
has an impact on the available capacity; (2) previous auctions because we use
historical auction data to estimate the competitors’ bids in future auctions; and
(3) future auctions because the costs for a certain job depend on future jobs.
Consequence of the time aspect for the auctioneer is that it has the opportunity
to auction the same item repeatedly until it receives an appropriate bid. To
support the bid acceptance decision, shippers may use time-dependent reserve
prices. For an extensive literature survey on this topic we refer to (McAfee and
McMillan, 1987).

Clearly, both shippers and carriers, face dynamic pricing problems. Carriers
price their transportation resources (vehicles) dynamically, depending on their
location and time availability. Shippers evaluate bids for transportation jobs,
depending on the time restrictions of these jobs. These decisions are related
to revenue (or yield) management. Revenue Management is an economic tech-
nique to increase revenues, by accurately matching the available capacity (or
product/service availability) with the market prices, based on demand fore-
casting. There is a lot of literature on this topic with well-known applications
in air transport (see for an overview McGill and Van Ryzin, 1999; Talluri and
Van Ryzin, 2005).

In this thesis we use revenue management techniques with respect to ship-
pers’ decisions. Specifically, we use time-dependent reserve prices and decom-
mitment penalties to minimize the costs for transportation, thereby maximizing
the revenues. However, with respect to carriers’ decisions, there is an impor-
tant distinction between revenue management techniques and the bid pricing
strategies of the carriers as proposed in this thesis. To be precise, we decided
to focus merely on costs instead of revenues due to the following. First, we are
often dealing with a reverse second-price auction in which the lowest bidder
receives the item for the price of the second lowest bidder. As a consequence, a
bid of an individual bidder does not influence its expected revenue for this job,
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but only its winning probabilities. Second, Revenue Management is of espe-
cially high relevance in cases where the fixed costs are relatively high compared
to the variable costs. This situation for example occurs in the passenger airline
case, where capacity is regarded fixed because the route is fixed. If the aircraft
departs, the unsold seats cannot generate any revenue any more. To maximize
profits, the seats are sold at different prices, depending on the remaining time
until departure and the number of available seats. In our problem, the item
for sale is a pickup and delivery job for one vehicle. The costs for doing this
job are not fixed but depend on the vehicle schedule and job characteristics.
For more details on the use of Revenue Management in carriers’ bid pricing
decisions, we refer to Chapter 8, Section 8.2.2.

The difficulties with respect to time-dependent bid prices not only have an
immediate effect on the profitability of the shippers and carriers, but also on
the efficiency of the allocation of transportation jobs. In this thesis we address
both issues; specifically, by developing look-ahead strategies for bid pricing and
winner determination.

1.1.4 Contribution

In the logistics sector we see a growing interest in real-time decision making,
collaborative planning, and online markets. As mentioned before, this interest
is driven by (1) the developments in the ICT and the availability of real-time
information; (2) the increased focus on just-in-time logistics where customers
ask for fast and flexible fulfillment of their transportation requests; and (3) the
continuous pressure to operate more efficiently.

A prerequisite for efficient real-time control in transportation markets, is
the availability of reliable real-time information and the ability to respond fast
to the incoming information. Techniques that provide high quality solutions
within reasonable response time must be developed. A distributed approach
can be beneficial here. Therefore, we study the use of multi-agent systems -
and more specifically the use of sequential auctions - for real-time planning and
scheduling in transportation markets. Given this research focus, our research
is related to three research areas: dynamic vehicle routing, multi-agent sys-
tems, and transportation procurement auctions. Each of these areas is gaining
importance.

A large body of research has been devoted to each of these three research
areas. However, there are some issues that have not been addressed yet, or have
received too little attention. As mentioned before, more research is required
on look-ahead policies that incorporate the future consequences of certain de-
cisions; especially in market environments where players have to calculate and
evaluate bids in real-time. With respect to multi-agent systems, little is known
about the performance of agent-based transportation control compared to more
traditional control methods. Also, little is known about the impact of MAS
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design choices on the logistical performance. These design choices include (1)
the identification of agents; (2) the roles, responsibilities, and decision-making
capabilities of these agents; and (3) the way they interact. The objective of this
thesis is to fill these gaps. More specifically, our scientific contribution consists
of the following:

• We examine the performance of a multi-agent system for real-time schedul-
ing of full truckload transportation, and compare this performance with
that of more traditional approaches that are based on fast look-ahead
rules and OR algorithms.

• We show that current MAS methodologies lack a sufficient quantitative
basis to select a single "best" architecture, and show how simulation can
be used to support this selection process. To illustrate this approach we
apply it to a real world setting.

• We develop planning and scheduling policies which exploit probabilistic
knowledge about the future to improve current decision making. Here we
focus on the behavior of a single player and assume a stable behavior of
the other players. In that sense, we are looking at competitive procure-
ment auctions, where we optimize the decision making capabilities of a
single player and take the behavior of others as given.

— For the carriers we propose an opportunity valuation policy where
not only the direct costs of a job insertion are taken into account,
but also its impact on future opportunities. These opportunity costs
are used to support bid pricing decisions, scheduling decisions, and
waiting decisions (where to wait and for how long).

— For the shippers we propose two policies: a dynamic threshold policy
and a decommitment policy. The idea of the dynamic threshold
policy is that shippers postpone commitments for which they expect
to make a better commitment in the future. So if a shipper has
plenty of time to auction a certain job, it will not agree with a
relatively high bid. When the time for dispatch gets closer, the price
it is willing to accept will rise. The idea of the decommitment policy
is that the shipper allows a carrier to decommit from an agreement
against a certain penalty. These penalties are chosen such, that
whenever a carrier decommits a job, they cover the expected extra
costs of the shipper for finding a new carrier.

Both policies use the potential provided by probabilistically known future
events. We evaluate these policies by comparing the performance of the
individual agent that exploits the look-ahead policies to the performance
of agents that are using a myopic policy.
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• We aim at a wider applicability than competitive procurement auctions,
in particular we aim at closed environments, i.e., allocation to a closed
group of trusted carriers or auction procedures that are commonly used
in multi-agent systems for resource allocation. Therefore, we combine
carriers’ and shippers’ look-ahead policies and evaluate their performance
in terms of system-wide logistical costs in closed environments.

Besides the scientific contribution, there is also a social aspect of this re-
search. The main social challenge is to develop real-time control methods which
have a positive effect on the sustainability, reliability, and profitability within
the logistics sector. Methods should focus on efficient use of resources so that
high delivery reliability can be achieved against low costs and low energy con-
sumption.

This research is supported by the BSIK project Transumo, which stands
for TRANsition SUstainable MObility. More specifically, this research is part
of the Transumo project Diploma which stands for DIstributed PLanning Of
freight transport networks using Multi-Agent technology. This project focuses
on the development of multi-agent systems for real-time transportation plan-
ning with multiple actors, where dynamic pricing is used as an instrument for
maximization of revenues and resource utilization.

The objective of Transumo is to strengthen the competitiveness of the Dutch
transport sector (’Profit’), and to preserve and improve spatial and ecological
(’Planet’) and social (’People’) aspects of mobility. Transportation is an impor-
tant task in modern society. Astronomical amounts of money are spent daily on
fuel, equipment, and maintenance. In 2000 in the Netherlands, almost 50 bil-
lion Euro (12.4% of the Gross National Product) was spent on logistical costs,
of which 21.1 billion Euro was for transport costs (Van der Broek-Serlé, 2005).
Furthermore, transportation accounts for a large part of the greenhouse gas
(GHG) emissions in the world. In the European Union, transport now ac-
counts for 21% of total GHG emissions (excluding international aviation and
maritime transport), and road transportation is by far (93% share) the largest
transport emission source (European Environment Agency, 2007).

In this thesis we develop intelligent transportation planning methods which
minimize the fleet sizes and empty moves (profits and planet), and increase the
flexibility and reliability of transport (profits and people). Given the charac-
teristics of the logistics sector (see above), a small increase in performance can
lead to huge improvements, both in terms of costs and GHG emissions. We
believe that our approach - theoretical as it may seem - is a first step towards
a better practice and provides general insights that can be used in many real
life situations.
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1.2 Research design

In this section we successively describe our research problems and objectives,
the scope of this research, and our research questions and approach.

1.2.1 Research problems and objectives

In the previous sections we have mentioned our focus on using sequential auc-
tions for the allocation of transportation tasks. Independent of the kind of
environment (open or closed), these auctions always involve multiple players.
On the one hand we have the entity requesting transportation service and on
the other hand the entity with available capacity to serve this request. In the
closed environment, these players are agents within a multi-agent system. In
the open environment, these players are shippers and carriers. Below - to unify
the terminology - we speak in terms of shippers and carriers.

Essentially, our problem consists of a market with shippers and carriers.
Shippers receive transportation requests triggered by an external source. These
transportation requests arrive continuously over time and have different charac-
teristics which affect the price (arrival time, origin, destination, time-windows,
etc.). To procure transportation, the shippers independently start a reverse
auction for each job, one at a time. Carriers bid on these jobs and shippers
select carriers based on these bids. This approach raises a few questions:

1. MAS: better than centralized planning?

The principle of multi-agent systems is elegant and has clear advantages
from an ICT point of view. However, it is still unclear whether the
system-wide performance will be similar or even better than the perfor-
mance of more centralized and hierarchically organized planning systems.
It is even not guaranteed whether and when a multi-agent system will
show a stable behavior. That is, will jobs be transported, will resources be
properly utilized, and will prices remain within reasonable bounds in the
absence of a coordination mechanism.

2. MAS: how to design?

In building a multi-agent system we face many design decisions. To men-
tion a few, we have to decide about (1) which resources and/or tasks
are represented by an agent, (2) the roles and responsibilities of these
agents, (3) the way they make decisions, and (4) the way they interact.
It is important to provide some insight into the effect of different design
alternatives on the logistical performance.

3. Auctions: appropriate for the dynamic allocation of transportation jobs?

Auctions are often considered as appropriate means for dynamic job al-
location in distributed environments. However, when multiple jobs are
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auctioned at different points in time, such an allocation would be less ap-
propriate if we do not take into account the future consequences of an
allocation. Especially when jobs are complementary (e.g. transportation
jobs that can be served sequentially by the same vehicle) or substitutable
(e.g. transportation jobs that are available at the same time) a certain
allocation may become unfavorable when new jobs appear. Therefore par-
ticipants of the auction have to take into account the future consequences
of a certain allocation.

In this research we aim to solve the problems mentioned above, which leads
us to the following research objective:

To analyze in which way and to what degree multi-agent sys-
tems can be used for real-time operational planning and control of
transportation networks. Further, to develop strategies for players
in sequential transportation procurement auctions, and to analyze
their performance in terms of both the individual benefits for the
players and the system-wide logistical costs.

Our initial focus is on closed environments. In these environments, trans-
portation requests arrive continuously over time and have to be allocated to a
fixed set of vehicles. To model this environment we use a multi-agent system
(MAS) where agents meet at a virtual marketplace. Next, we extend these
results to open environments where multiple independent shippers and carriers
meet at a marketplace. There is a major difference between these two kinds of
environments. In the closed environment, we develop strategies for all players
in the system and evaluate their impact on the global logistical performance.
In the open environment, we develop strategies for a single player and evaluate
the profitability of this player compared to other players.

1.2.2 Demarcation

To keep the research project manageable, some choices have been made with
respect to the research focus:

• We consider a vehicle routing problem where jobs are characterized by
a pickup location, a delivery location, and time-window restrictions. We
only consider full truckload, which means that vehicles travel from origin
to destination without any intermediate stops because there is no option
for consolidation.

• We are not dealing with the design of an optimal auction mechanism.
The design of an auction requires the precise specification of a set of rules.
These rules determine an auction model, the system by which bidding is
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conducted, how information is revealed, how communication is structured
between buyers and sellers, and how allocations and payments are settled.
In this thesis, we choose an existing standard auction mechanism (e.g.
first- and second price sealed-bid auctions).

• We do not consider strategic reasoning of players on strategies of other
players. Agents take prices as given and do not attempt to compute the
impact of their bid on the behavior of other agents. Instead, the dominant
strategy of bidders is assumed to be bidding the true valuation (marginal
cost bidding). We believe that a proper methodology to calculate the
true marginal costs is a required first step before incorporating more
game theoretical aspects.

1.2.3 Research questions

To reach our objective, we define a number of research questions that we have
to answer. These questions also define a logical sequence of research activities.
For each question, we indicate the chapter in which the specific question will
be answered.

1. How does the performance of a multi-agent system compare to traditional
OR-based systems in terms of (1) effectiveness, i.e., the ability to handle
jobs according to specified targets, such as delivery time windows; (2)
efficiency in terms of the utilization of resources and logistic costs; and
(3) robustness against fluctuations in demand in terms of variation in
system effectiveness and efficiency?

Before elaborating on the design of a multi-agent system and the decision
making capabilities of the players, it is essential to gain insight into the
potential benefits of such an approach. Therefore, we make a comparison
in Chapter 3 between an agent-based control system and more traditional
centralized heuristics.

We use a case study on a proposed underground transportation system
at Amsterdam Airport Schiphol, the Netherlands. We refer to this appli-
cation as the OLS case, which is the Dutch abbreviation for underground
logistic system. This case study is a logical first test case because (1) the
problem is similar to ours, (2) some traditional planning methods have
been developed for this case, and (3) a simulation test environment for
this case is available at the University of Twente. We use this simulation
environment to compare our agent-based control system with two hier-
archical look-ahead heuristics that had been developed for the OLS case.
Next, we simulate and compare the different control methods in a more
general transportation network.

2. How should a multi-agent system for material sourcing and scheduling of
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physical distribution be designed in terms of tasks, competences, respon-
sibilities, and goal-directed behavior?

After gaining insight into the performance of a multi-agent system, we
elaborate on specific design choices we face in building an agent system.
Designs may vary in the roles and responsibilities assigned to the agents,
the level of intelligence of the agents (forecasting and learning behavior),
and the interaction protocols selected. Current MAS methodologies lack
a mechanism to evaluate such design-choices and provide only limited
support to the designer in selecting the preferred design for implementa-
tion. Therefore, we extend current MAS methodologies by multi-agent
discrete event simulations. To demonstrate and test this approach, we
apply it to a real life project: the design and development of a multi-agent
system for the manufacturing of biscuits at the industrial bakery Merba
in the Netherlands.

3. How can we use information on historic job patterns and auction data
to improve the pricing and scheduling of vehicles participating in trans-
portation procurement auctions?

In Chapters 3 and 4, we propose a multi-agent system where vehicle
agents are responsible for their own routing and scheduling decisions.
The assignment of jobs to vehicles is done using a sequential auction
procedure. Therefore, a proper pricing mechanism is needed to optimize
the system-wide performance. In Chapter 5 we propose a pricing and
scheduling strategy for vehicle agents where not only the direct costs
of a job insertion are taken into account, but also its impact on future
opportunities. We use simulation to evaluate the proposed approach.

4. How can we use information on historic auction data to improve the
auctioning strategy of shippers to procure their transportation services?

To improve the allocation of jobs through sequential transportation pro-
curement auctions, we focus on strategies for the participants. In Chapter
5 we focus on profit maximizing strategies for the carriers and their ve-
hicles. In Chapter 6 we focus on the shipper for which we propose two
options: delaying and breaking commitments. Both policies use the po-
tential provided by probabilistically known future events. The benefits
of both strategies are evaluated with simulation.

5. What is the impact of the different pricing and scheduling strategies for
carriers and shippers on the system-wide logistical performance?

In Chapters 5 and 6, we propose strategies for carriers and shippers in
sequential transportation procurement auctions. We evaluate the strate-
gies separately, i.e., by studying the performance of a strategy for a single
player while assuming naive strategies for the other players. In Chapter
7 we focus on all players by enabling them to use the proposed look-
ahead strategies of Chapters 5 and 6. We use simulation (1) to provide
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insight into the possible problems that occur when we apply the look-
ahead strategies to all players; (2) to compare the performance of the
individual look-ahead strategies with the performance of myopic policies;
and (3) to study the interrelation of the different strategies (i.e., are they
complementary or substitutable).

Clearly, simulation plays an important role in this research. Simulation has
its own advantages and disadvantages (see Law and Kelton, 2000). First, most
complex, real-world systems with stochastic elements cannot be described ac-
curately by a mathematical model that can be evaluated analytically. In this
research, complexity can be found in stochastic job arrivals and in the inter-
action of many players (with possibly different behavior). Second, alternative
designs can be compared via simulation to see which one meets the specified re-
quirements. In this research we compare many alternative multi-agent systems
and different levels of intelligence for players in sequential auctions.

A major disadvantage of simulation is that it produces estimates of a model’s
true characteristics for a particular set of input parameters. An analytical
model, if appropriate, can produce the exact values of the true characteris-
tics of that model for a variety of sets of input parameters. However, solving
an analytical model for stochastic and dynamic planning problems can be dif-
ficult. Especially when there are multiple independent players involved who
have the ability to learn about their environment and about the behavior of
other players.

1.3 Thesis outline

The outline of this thesis is as follows. We start in Chapter 2 with the de-
scription of our basic model and our simulation framework. In Chapter 3 we
provide a comparison between agent-based control and more traditional cen-
tralized heuristics. The design choices we face in building a multi-agent system
are described in Chapter 4.

After Chapters 3 and 4, we know something about the design and potential
of multi-agent systems. However, the decision making capabilities of the differ-
ent agents are still relatively simple. In the next two chapters, we improve the
decision making capabilities by exploiting probabilistic knowledge about the
future to improve decision making at the current time. Here we consider open
environments, i.e., we focus on the behavior of a single player and assume a
stable behavior of the other players. In Chapter 5 we develop opportunity val-
uation policies for carriers and their vehicles. In Chapter 6 we develop dynamic
threshold policies for shippers.

We combine the strategies for shippers and carriers in Chapter 7. Here we
return to the closed environment where we aim at the reduction of system-wide
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Figure 1.1: Thesis structure

logistical costs. We end the thesis with conclusions and suggestions for further
research in Chapter 8. A schematic representation of the structure of this thesis
can be found in Figure 1.1.
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Chapter 2

Model description and
simulation framework

In this chapter we introduce our model of the transportation problem and
the simulation framework. Throughout this thesis, we use slightly modified
versions of this model and simulation framework. These modifications are such
that they suit the specific goals of the corresponding chapters. Therefore, we
introduce the specific model in each chapter. In that sense, each chapter is self
contained.

2.1 Model of the transportation market

In the next subsections we subsequently describe the system dynamics, the geo-
graphic area, the characteristics of the different players, the job characteristics,
and the time and costs involved in our transportation problem.

2.1.1 System dynamics

The transportation network consists of independent carriers and shippers. Ship-
pers are the beneficial owners of freight, for example, manufacturers, distrib-
utors, and retailers. Carriers are transportation companies, that provide the
capacity (in our case vehicles) to transport freight. Every carrier is responsible
for a set of vehicles and every shipper is responsible for a set of loads. We
introduce the following sets:
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S = set of shippers, with s the index of a shipper, s ∈ S
J = set of jobs, with ϕ the index of a job, ϕ ∈ J
Js = set of jobs from shipper s, Js ⊂ J
C = set of carriers, with c the index of a carrier, c ∈ C
V = set of vehicles, with v the index of a vehicle, v ∈ V
Vc = set of vehicles from carrier c, Vc ⊂ V

The system dynamics is driven by the incoming jobs that are not known
beforehand. Each job arrives at a shipper who then has a request for transporta-
tion. A job consists of a unit load (full truckload) which has to be transported
in a geographical area (see Section 2.1.2). The job characteristics are described
in Section 2.1.4.

The matching of jobs with open vehicle capacity leads to contracts between
carriers and shippers. Execution of these contracts requires scheduling of the
vehicles while taking the contract terms into account. Vehicle scheduling has
its impact on the future availability of open capacity of vehicles and on the
system dynamics and hence on the profitability of the companies. A general
impression of the situation is given in Figure 2.1.

Supply:
Open capacity

of vehicles

Auction:
Matching vehicle
capacity with jobs

Demand:
Incoming external

jobs

Contracts Vehicle
scheduling

CarriersMarketShippers

Figure 2.1: Demand driven online job assignment

The network decisions concern the assignment of jobs to vehicles, the plan-
ning of jobs in the operative schedule, and the assignment of prices to the
delivered services. These decisions are taken in a decentralized manner by the
different players in the network.

An important aspect in practice is that not all information is necessarily
open to all parties. Due to the multiple independent shippers and carriers, we
have to deal with incomplete information. Cost information for the carriers
and shippers is private. Also, carriers may have incomplete information about
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the network, such as information about other carriers, shippers, travel times
etc. However, carriers and shippers have the opportunity to derive information
about other players from historical auction data.

2.1.2 Geographic area

We consider two types of transportation networks: node networks and continu-
ous networks. The node network is a directed graph (N ,A), i.e., it consists of
a set of nodes N and a set of arcs A connecting these nodes. In the continuous
networks, transportation takes place in the Euclidian space. The origin and
destination coordinates of a job are drawn randomly from the transportation
area, and vehicles travel in a straight line from the origin coordinate towards
the destination coordinate.

In the node networks we can control the flow between the nodes by adjust-
ing the likelihood of being an origin or destination for all nodes. Also, for the
continuous networks we consider unbalanced cases where some subsets of the
transportation area are more popular than others. We indicate these subsets by
regions. Of course, the continuous networks can also be regarded as node net-
works with an infinite number of nodes with their corresponding arcs. Working
with regions in these networks can be regarded as a form of aggregation.

Because jobs arrive real-time, carriers and vehicles do not know their ori-
gins and destinations in advance. Therefore, the geographical demand pattern
creates a significant amount of uncertainty for carrier decisions, such as the
pricing and timing of jobs, and the routing decisions.

2.1.3 Players

Our transportation network consists of carriers and shippers. The objective
of every carrier is to maximize its profits while maintaining a required level
of delivery reliability. A carrier is characterized by its vehicles, its decision
making capabilities, desired delivery reliability, safety margins which have to
be used by its vehicles, travel prices, and other cost factors. All vehicles have
capacity of a single load (full truckload). Further characteristics of vehicles are
their decision making capabilities, speed, costs, current location, and schedule.

The objective of every shipper is to minimize its costs and tardiness of jobs.
Shippers are characterized by their decision making capabilities and jobs. These
jobs have characteristics as mentioned in Section 2.1.4. In addition, a shipper
may have reserve prices for these jobs and possibly decommitment penalties
(see Chapter 6).

Throughout this thesis, we consider a homogeneous fleet of vehicles. Also
the characteristics of all the carriers are the same, and the same holds for the
shippers. The single source of differentiation between players is the way in
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which they make decisions. Given the agent-based concept, where each vehicle
makes its own decisions based on its own characteristics and historic data, our
approach can easily be generalized.

2.1.4 Jobs

Jobs to transport unit loads (full truckloads) arrive one-by-one according to
some stochastic arrival process.

In each chapter, jobs are defined by an announcement time, an origin, a
destination, and time-window constraints. The announcement time of a job
is the time at which the job gets known by the shipper. The origins and
destinations are either nodes or coordinates (see Section 2.1.2). The time-
window constraints represent the time sensitivity of jobs and limit the flexibility
of carriers and vehicles to schedule the job. These time-window restrictions
differ per chapter. In Chapter 3 we have an earliest pickup time and a latest
delivery time. In Chapter 4 we have an earliest delivery time, a best delivery
time, and a latest delivery time. In Chapters 5 till 7, we only use a latest
pickup time. Although the time-windows differ, they can easily be translated
into each other, or additional time-window restrictions can be imposed. The
jobs in Chapter 4 are slightly different from the rest of the thesis because each
job is in fact divided into two separate jobs with their own characteristics.

The earliest pickup and delivery times are always hard restrictions. So
when a vehicle arrives too early, it has to wait. The latest pickup and delivery
times are always soft restrictions; carriers and vehicles are allowed to change
the scheduled pickup and delivery times. Tardiness with respect to these times
is penalized. In Chapter 5 we also consider a variant in which carriers have
to agree upon a specific pickup time in advance. This agreed pickup time can
be after the latest pickup time (in which case penalties are incurred), but the
pickup time can not be changed later on.

Additional job characteristics are the handling time, the time-window length,
and the contract attributes. The handling time consists of a loaded travel time
between the origin and destination of a job plus the time for loading and unload-
ing. The time-window length can be derived from the time-window restrictions
mentioned above. The contract attributes describe the delivery conditions such
as an agreed pickup time, and penalty costs for tardiness.

Throughout this thesis, we assume that an external job in process cannot
be interrupted (no preemption). That is, a vehicle may not temporarily drop
a load in order to handle a more profitable load and return later.
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2.1.5 Time and costs

We distinguish the following times that result from an assignment of a vehicle
to a transportation job: (1) empty travel time to reposition the vehicle to the
origin of the job; (2) a handling time consisting of loading, transporting the
load to its destination, and unloading; and (3) possibly an empty travel time
to reposition the vehicle. We assume that all times are uniquely defined by the
origin and/or destination.

Throughout this thesis, we use costs of 1 per unit travel time. The loaded
travel times consist of travel times and the time needed for loading and un-
loading. Soft time-window restrictions are penalized with cp(t), where t is the
tardiness with respect to the time-window.

In Chapter 3 the empty travel times and handling times are unknown and
should be learned before using them in planning procedures. In Chapter 4 these
times are given, but waiting times have to be learned. In the other chapters,
we assume all times are deterministic and given.

2.2 Simulation framework

To study the implications of alternative designs and operating policies for ship-
pers and carriers, we use simulation. Simulation enables us to explore and
systematically test changes in the parameter settings for a wide spectrum of
scenarios. In addition, simulation can be used to answer questions regard-
ing systems that are far too large or complex to admit closed-form solutions
to analytical models. As a consequence, system evaluation using simulation
would require fewer simplifications than analytical models, which in turn has
a positive effect on the validity of our findings.

We use discrete-event simulation to compare different pricing and schedul-
ing strategies under different market settings. The basic idea of this type of
simulation is that the system variables can change at only a countable number
of points in time. To provide a correct comparison and significant outcomes,
we perform multiple replications of each simulation run. Here we have to make
a distinction between terminating simulations and steady state simulations. In
Chapter 4 we have a terminating simulation in the sense that there is a natural
event, namely the end of a work week, which terminates the simulation. As
a consequence, we perform multiple replications of a work week. In all other
chapters, we consider steady state simulations which means that we are inter-
ested in the steady state behavior. For these simulations we use a replication /
deletion approach (Law and Kelton, 2000). Here we perform multiple runs of
each experiment. Each run has a unique set of random number streams and a
warm-up period in which we do not store the performance data. The length of
each run and the number of runs are chosen such that, for our key performance
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indicators, the relative width of the confidence interval compared to the mean
is below a predefined adjusted relative error (see Law and Kelton, 2000). In the
successive five chapters, we determine these experimental settings separately
for each simulation experiment.

The auction events are assumed to take place in real time. However, compu-
tation times or delays are not taken into account in the simulation experiments.
We do this because we otherwise would have to perform a real-time simulation
(the simulation time is distinctly different from the CPU time). For an actual
implementation in practice it is only important that the system changes are
small during the computation times. In our simulation experiments, the com-
putation times are really short compared to, for example, the time between
successive job arrivals and the travel times. In addition, computation is dis-
tributed among multiple players. Also, the computationally intensive methods
(see Chapter 5) can run offline, i.e., the values can be calculated before they
are actually needed.

Each of the following 5 chapters requires a specific simulation model. How-
ever, most of these models fit into one general simulation framework which we
describe below. Only Chapter 4 differs from the rest because here more differ-
ent players are involved. Below we describe our general simulation framework,
and at the end of this section we describe in what manner the model of Chapter
4 differs.

Our general simulation framework consists of six entities: (1) the trans-
portation network, (2) an auction marketplace, (3) shippers, (4) jobs, (5) car-
riers, and (6) vehicles. All these entities are objects in an object-model. The
objects are implemented in the object-oriented simulation package eM-Plant.
The relation between the entities is depicted in an entity relationship diagram
(ERD), see Figure 2.2.

We divide our simulation framework into four parts. First, the demand
side, which consists of all shippers with their jobs. Second, the supply side,
which consists of all carriers with their vehicles. Third, the market place where
supply and demand are matched using an auction mechanism. Fourth, the
simulation environment where the actual simulation takes place. A schematic
representation of our simulation framework can be found in Figure 2.3. Here
the decision modules of the different players are depicted as dashed rectangles
and the local information of these players as cylinders.

Below, we describe the main features of each part.

• Demand for transportation
Throughout this thesis, decisions at the demand side are mainly made by
the shippers. Only in Chapter 3 decisions are also made at the job level.
In this case, the bid evaluation module has moved from the shipper to
the job.
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Figure 2.2: Entity relationship diagram

Information at the demand side contains all characteristics of the jobs
that are not delivered yet. The learning data consists of all past jobs with
their corresponding bid prices. Decisions at the demand side involve bid
evaluation, trading contracts (see Chapter 3), and calculation of threshold
values (see Chapters 3 and 6).

• Supply of transport capacity
Both, carriers and vehicles, are able to learn data on travel times, han-
dling times, waiting times, job characteristics, and bid prices. In this
thesis we consider a decentralized control structure where the main deci-
sions are made by the vehicles themselves. As a consequence, the vehicles
should have access to all kind of learning data. However, in some cases,
the carrier observes more information than a single vehicle. Therefore,
carriers also learn data and share this with their vehicles. Information for
the carriers and vehicles are the job characteristics, schedules, and cost
settings.

Decisions for the carriers involve the selection of one of their vehicles for
a certain job. Decisions for the vehicles involve scheduling, routing, bid
pricing, and opportunity costs calculation (see Chapter 5).

• Marketplace
In the marketplace, an auction starts each time a shipper offers a new
job. The characteristics of jobs that are not allocated to a vehicle yet, are
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Figure 2.3: Simulation framework

stored at the marketplace. Carriers submit bids on jobs to the market-
place and the best bid for a certain job is submitted to the corresponding
shipper.

• Simulation environment
Here the actual simulation of the transportation network takes place. As
information we have all the experimental settings, information about the
state of the system, and the performance data. The events are generated
here as well. These events consist of physical actions of the vehicles
(movements, loading, unloading etc.) and the generation of new jobs.

As mentioned before, the simulation model of Chapter 4 is slightly different.
Here the supply side only consists of Automatic Guided Vehicles (AGVs), and
the demand side consists of production lines. In addition, a third part is added
to the marketplace, which consists of resources which have to be visited by the
AGVs.

2.2.1 Experimental factors

Given the fact that all jobs have to be transported, the main cost components
are costs for repositioning of vehicles, and costs for tardiness. These costs
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are mainly affected by the time-windows of jobs, the job arrival intensity, and
the amount of unbalance in the network. In general, the more shipments can
be accommodated, the lesser the deadheading (or average empty travel dis-
tance). The fewer shipments arrive, or the shorter the time-windows are, the
more deadheading. Throughout this thesis, we use the following experimental
factors:

• Job characteristics:

— Arrival rate (average time between jobs)
— Change in arrival rate during the day
— Time-window length
— Look-ahead (time between the announcement time and the earliest
pickup time)

— Contract (fixed, flexible)

• Network structure:

— Number of nodes/regions
— Distances
— Degree of balance of the network (origin and destination probabili-
ties for different nodes/regions)

— Handling times
— Variation in travel and handling times

• Companies:

— Number of companies
— Number of vehicles
— Market structure (open, closed, virtual)
— Market share of a company

• Control:

— Decision structure (agent architecture)
— Scheduling policies (Append, Insert, TSP, LocalControl, SerialSchedul-
ing)

— Exchange of jobs between vehicles (Trade)
— Dynamic threshold policies (Linear, Quadratic, based on a dynamic
programming recursion)

— Opportunity valuation policies (EndValues and GapValues in com-
bination with various approximations)

— Decommitment policies
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2.2.2 Performance indicators

Relevant criteria deal with costs, service levels, and sustainability. We measure
the criteria as averages over an entire simulation run, for the system as a whole
as well as per individual player (e.g. vehicles, cariers, and shippers). We use
the following key performance measures:

• Service measures:

— Service level: percentage of jobs that are completed before the due
time

— Stability of the service level: the standard deviation in service level

• Sustainability measures:

— Percentage of driving loaded, i.e., the percentage of the total distance
that is not traveled empty, being an indicator for energy waste and
loss of vehicle capacity

• Combined measures of service and sustainability:

— Total costs: costs for driving loaded and driving empty plus penalties
on tardiness

— Net costs: costs for driving empty plus penalties on tardiness

— Relative additional costs: the ratio of the net costs and the costs
for driving loaded, i.e., (total costs - costs driving loaded) / costs
driving loaded

— Relative net costs of using one method compared to another

• Other performance measures:

— Profits of vehicles and carriers, given by the income for all trans-
portation jobs, minus the total costs for these jobs.

— Relative profit of one player compared to other players

— Computation time

— Number of messages sent between the agents

As stated earlier, the model presented in this chapter contains many simpli-
fications of a real transportation market; yet it provides the necessary features
that capture the most important stochastic elements of the problem: the allo-
cation and scheduling of jobs that arrive in real time.

In the next five chapters, we focus on different parts of the transporta-
tion market. In Chapters 3 and 4, we focus on the structure of the market
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itself. To be more precise, we study the design and potential of multi-agent
systems for transport planning. Here agents represent different players and/or
resources, and an auction is used as a cooperation protocol between the agents.
In Chapter 5 we focus on the supply side; specifically, on look-ahead pricing
and scheduling strategies for the vehicles. In Chapter 6 we focus on the demand
side; specifically, on look-ahead bid price evaluation strategies for the shippers.
In Chapter 7 we study a closed market setting where both carriers and shippers
are using opportunistic and selfish look-ahead strategies.
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Chapter 3

MAS: a comparison

In this chapter1 we consider the real-time scheduling of full truckload trans-
portation jobs with time-windows that arrive during schedule execution. Be-
cause a fast scheduling method is required, look-ahead heuristics are tradition-
ally used to solve these kinds of problems. As an alternative, we introduce
an agent-based approach where intelligent vehicle agents schedule their own
routes. They interact with job agents, who strive for minimum transportation
costs, using a Vickrey auction for each incoming job. This approach offers sev-
eral advantages: it is fast, requires relatively little information, and facilitates
easy schedule adjustments in reaction to information updates. We compare the
agent-based approach to more traditional hierarchical heuristics in an extensive
simulation experiment. We find that a properly designed multi-agent system
performs as well as or even better than the traditional methods. Particularly,
the multi-agent approach yields less empty miles and a more stable service
level.

3.1 Introduction

For operational planning and control of many transportation networks it is
important to deal with uncertainties like transportation times (e.g. due to
congestion), arrival of rush jobs during schedule execution, and modifications
of the job characteristics. In combination with sometimes tight restrictions (e.g.
time-windows) this leads to the need for a flexible, stable, and robust planning
and control system. It should be flexible in the sense that schedule adjustments
in reaction to information updates should be easy. It should be stable in the

1This chapter is based on the paper: M.R.K. Mes, M.C. van der Heijden, and A. van
Harten (2007). Comparison of agent-based scheduling to look-ahead heuristics for real-time
transportation problems, European Journal of Operational Research 181(1): 59—75.



32 Chapter 3. MAS: a comparison

sense that minor information updates (e.g. the arrival of a single rush job)
should have impact on a small part of the schedule only. It should be robust in
the sense that the overall network performance (e.g. transportation costs and
on-time delivery performance) should remain acceptable under a large number
of scenarios for unexpected events like rush jobs.

Traditionally, operations research (OR) based global optimization methods
are used to construct integral transport schedules. However, one may wonder
whether such methods are most suitable for planning and control of stochastic
and dynamic transportation networks. First, most optimization algorithms re-
quire a lot of information in advance. Second, global optimization algorithms
can be sensitive to information updates: a minor modification in information
may have impact on the schedules of many vehicles. Third, the time required
for the algorithm may not permit timely response to unexpected events such
as equipment failure and the arrival of rush jobs. Finally, flexible transporta-
tion networks may consist of multiple independent organizational units that
are working in an autonomous, self-interested and not necessarily cooperative
way. Therefore, these individual players may not be willing to share all their
information (like their cost structure, current vehicle locations, and current
schedule), so that traditional centralized or hierarchical approaches are not
applicable anymore.

An alternative that has been proposed within the computer science litera-
ture is the multi-agent system (MAS). Such a system consists of independent
intelligent control units linked to physical or functional entities (e.g. vehicles
and transportation jobs). It seems to be a promising solution for controlling
complex networks, providing more flexibility, reliability, adaptability, and re-
configurability. Agents act autonomously by pursuing their own interest and
interact with each other, for example, using information exchange and negotia-
tion mechanisms. In a transportation network, each job and each resource can
have its own goal-directed agent. For example, a job agent may focus on on-
time delivery against the lowest possible costs, and a resource agent may strive
for utilization and/or profit maximization. A key issue is how to configure
agents such that their self-interested behavior yields a near-optimal solution
for the network as a whole. One option is to use a market mechanism like an
auction. An overall goal for the network performance can be to balance the
total tardiness and the total relevant costs.

The principle of multi-agent systems is elegant and has clear advantages
from an ICT point of view. However, it is unclear whether the system-wide
performance will be similar to or even better than the performance of more
centralized or hierarchically organized planning systems. It is even not guar-
anteed whether and when a multi-agent system will show a stable behavior.
That is, will all jobs be transported, will resources properly be utilized, and
will prices remain within reasonable bounds in the absence of a coordination
mechanism?
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Although many papers have appeared on multi-agents systems, also applied
to logistics, literature on the performance comparison between traditional OR-
based systems and multi-agents systems is scarce. In this chapter we aim to
make such a comparison for a transportation network where transportation
jobs (for full truckloads) with varying soft time-windows arrive during sched-
ule execution and should be scheduled in real time. That is, a job should be
assigned to a vehicle and a feasible start time should be determined. Because
a fast response is required, we use local dispatch rules and serial scheduling as
benchmarks, see (Van der Heijden, Ebben, Gademan and Van Harten, 2002)
and (Ebben et al., 2005) for an extension of the serial scheduling method under
capacity constraints. For the multi-agent system, we develop an auction mech-
anism with several pricing variants. To compare the agent-based approach with
the two more traditional approaches, we use discrete event simulation for an
extensive numerical experiment. As overall network performance criteria we
focus on the average on-time delivery percentage as service measure, variation
in the on-time delivery percentage as robustness measure and the empty mile
percentage as efficiency measure. We also use total costs (transportation costs,
penalty costs) to measures a combination of service and efficiency.

The remainder of this chapter is structured as follows. In the next section,
we give an overview of related literature and we explain our scientific contri-
bution. In Section 3.3 we present our model and in Section 3.4 we discuss our
choice for a particular agent-based planning concept. Next, we discuss several
options for agent bidding and bid evaluation in Section 3.5. In Section 3.6 we
briefly present the two more traditional planning approaches that we use as
benchmarks in a simulation study. We describe the experimental settings in
Section 3.7 and provide the numerical results from this study in Section 3.8.
We end this Chapter in Section 3.9 with conclusions.

3.2 Literature

3.2.1 Transport planning

Our problem of assigning jobs to vehicles in a transportation network is well-
known in the area of vehicle routing problems (VRP) as a real-time multi-
vehicle pickup and delivery problem with time-windows. Such problems arise
a.o. in the transportation of elderly and/or disabled persons, shared taxi ser-
vices, certain courier services and so on. We consider a variant with full truck-
loads, stochastic arrival of jobs, and stochastic handling- and travel times where
even the probability distributions are not known in advance.

The VRP and its variants have been studied extensively; see (Laporte, 1992)
and (Toth and Vigo, 2002) for a survey. It is well-known that most variants
of the VRP problem are NP-hard, so that it is virtually impossible to find
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an optimal solution within a short time. Most work focuses on static and
deterministic problems where all information is known when the schedule has
to be generated, see for example (Desrosiers et al., 1995). When the input data
(travel times, demands) are stochastic and depend on time, the planning result
is not a set of routes but rather a policy that prescribes how the routes should
evolve as a function of those inputs that evolve in real-time (Psaraftis, 1988).
Such policies have been studied in several papers, see for example (Psaraftis,
1988) and (Gendreau and Potvin, 1998). The most common approach to handle
these problems is to solve a model using the data that are known at a certain
point in time, and to reoptimize as new data become available. Because a fast
response is required, it is common to use relatively simple heuristics or parallel
computation methods, see (Ghiani et al., 2003) for an overview.

The dynamic assignment problem, as discussed in (Godfrey and Powell,
2002), also shows some similarities. Here resources (e.g. vehicles) are dynam-
ically assigned to tasks that arrive during schedule execution. Key differences
are (1) each individual vehicle schedule contains only one job at a time; (2)
the price of a job is exogenous and the only issue is whether to accept this
job and if so, to assign a vehicle to this job; and (3) only the most profitable
jobs are accepted. Powell and Carvalho (1998) use so-called Logistics Queuing
Networks (LQN) to decompose the large and complex scheduling problem by
a series of very small problems. In this way, many real world details can be
included in the model that cannot be dealt with using traditional approaches.
Still this is a centralized planning approach in contrast to the decentralized
agent-based approach that we consider in this chapter.

Closely related work can also be found in (Regan et al., 1995; Regan et al.,
1996; Regan et al., 1998) who investigate the dynamic assignment of vehicles
to loads for real-time truckload pickup and delivery problems. They provide
relatively simple and fast local rules. Yang et al. (2004) extend this work to
a formal optimization-based approach for the same problem class. They use
simulation to compare this approach with the previously developed heuristics.
Mahmassani et al. (2000) present a hybrid approach combining fast heuris-
tics for initial assignment with the optimization-based approach for the off-line
problem of reassigning and sequencing accepted loads. Kim, Mahmasanni and
Jaillet (2002) develop several approaches for routing and scheduling in oversat-
urated demand situations.

3.2.2 Agent-based logistic planning

According to (Wooldridge and Jennings, 1995), an agent is a hardware or soft-
ware based computer system with key properties autonomy, social ability, re-
activity, and pro-activeness. A multi-agent system (MAS) is a group of agents
that interact with each other to solve a complex problem. One way to achieve
this interaction between agents is by using a market mechanism where resource
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agents compete for jobs by dynamic pricing of these jobs. In this chapter we
will use a market-based control mechanism for the allocation of vehicles to
transportation jobs.

In the last years, research on multi-agent systems also has boosted in the
logistics and operations research community. Particularly, several papers have
appeared in the area of manufacturing scheduling and control. For example
(Cardon et al., 2000) who use genetic algorithms to solve job-shop scheduling
problems, and derived schedule improvements by agent negotiations. There are
also some applications in material handling and inventory management (Kim,
Graves, Heragu and St. Onge, 2002) and supply chain management (Ertogral
and Wu, 2000). Only Dewan and Joshi (2000) compare their agent approach
with an exact solution found by CPLEX. They conclude that centralized mod-
els are an unattractive choice compared to decentralized models because of
computational inefficiency and degradation in the quality of the solution with
increasing problem size.

Also, several papers on agent-based transport planning and scheduling have
been published. In the area of railroad scheduling, Böcker et al. (2001) present
a multi-agent approach for real-time coupling and sharing of train wagons. In
(Zhu et al., 2000) a multi-agent solution for air cargo assignment is consid-
ered. Although this paper contains an interesting agent-based application, it
does not provide detailed information on the design of a multi-agent system
itself in terms of goals, behavior, pricing strategies etc. An interesting contri-
bution comes from Fischer et al. (1996) who developed a simulation testbed
for multi-agent transport planning, called MARS. They describe the informa-
tion architecture and decision structure for quite generic transport planning
systems, and test their model on the traditional vehicle routing problem with
time-windows where all jobs are known in advance.

In (’t Hoen and La Poutré, 2004) a multi-agent system is presented for
real-time vehicle routing problems with consolidation in a multi-company set-
ting. Cargo is assigned to vehicles using a Vickrey auction. They study a
decommitment strategy where trucks have the option to break an agreement in
favor of a better deal if another truck from the same company can handle the
cargo. They conclude that significant increases in profit can be achieved when
the agents can decommit and postpone the transportation of a load to a more
suitable time. The main distinctions with our model are that they consider (1)
a Less-Than-Truckload (LTL) problem and (2) a next day delivery situation
where the prices for loads are independent on the time at which the load is
auctioned.

Another interesting contribution comes from Figliozzi et al. (2003), who
present a framework for the study of carriers’ strategies in an auction market-
place for dynamic full truckload vehicle routing problems with time-windows.
They also use a Vickrey auction and a simple heuristic for generating bids,
namely the additional costs of serving a shipment by appending it to the end
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of the vehicle schedule. They focus on profit allocation rather than on the effi-
ciency of assignment decisions. In (Figliozzi et al., 2004) they study the impact
of different assignment strategies on the travel costs under various demand con-
ditions. They consider four fleet assignment methods that are related to the
agent-based approaches considered in this chapter. We explain the differences
compared to our research in the next section.

3.2.3 Contribution to the literature

Although some results on multi-agent planning and scheduling are available
in the area of transportation, the level of intelligence is still limited in many
cases. Also, many papers deal with the design of an agent architecture rather
than analyzing the relation between agent behavior and the overall network
performance. Especially little is known about the performance of agent-based
transportation control compared with more traditional control methods. The
scientific contribution of this chapter is related to the following new issues for
agent-based transport scheduling:

• A combination of soft time-windows and incomplete information (sto-
chastic demand and random handling times).

• A study of the impact of additional intelligence of agents (both vehicle
agents and shipper agents) on the overall system performance.

• A comparison of our multi-agent system to more traditional approaches
for real-time transport planning based on fast look-ahead rules and OR
algorithms (serial scheduling).

• An analysis of performance robustness, measured by the standard devia-
tion of the daily service levels.

• An analysis of the impact of job characteristics (such as tightness of the
time-window) on the overall costs.

3.3 Model, assumptions, terminology, and no-
tation

The key issue in our research is to match available transportation capacity with
jobs that arrive during schedule execution. The matching of available vehicle
capacity with incoming jobs can be done using OR-based heuristics or using
an agent-based approach. We make the following model assumptions:

• All transport jobs have a size of one full truckload (FTL).
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• Vehicles are location aware and carriers are aware of the next node to be
visited by their vehicles.

• No jobs may be rejected, even if it is clear that a job cannot be delivered
in time.

• The total transportation capacity is sufficient to handle all jobs in the
long run.

• A job in process cannot be interrupted (no preemption), i.e., a vehicle
may not temporarily drop a load in order to handle a more profitable job
and return later on.

• Communication between shippers, carriers, and vehicles is possible any
time.

In the next sections we describe our transportation problem in more detail.

3.3.1 Transportation network and demand

We consider a transportation network that is inspired by a case for an au-
tomated transportation network using AGVs (Automatic Guided Vehicles) as
described in (Van der Heijden, Van Harten, Ebben, Saanen, Valentin and Ver-
braeck, 2002). The network consists of a set of nodes and a set of arcs con-
necting these nodes. In the case study, the arcs represent underground tubes
through which the AGVs drive between nodes (terminals). Each node has a
number of docks for loading and unloading cargo. As a consequence, vehicles
may face significant waiting times at the nodes. For more details we refer to
Section 3.7.1.

Jobs to transport unit loads between these nodes arrive one-by-one accord-
ing to some unknown stochastic arrival process. Jobs are characterized by the
following parameters: the origin node i, the destination node j, the earliest
pickup time r at the origin, the latest delivery time d (due time) at the desti-
nation, and the time a at which the job becomes known in the network a ≤ r.
The earliest pickup time is a hard restriction and the due time is a soft re-
striction. The time to handle a job from node i to node j (waiting for loading,
loading, driving from node i to node j, waiting for unloading, and unloading) is
a random variable and denoted by τfij . Variation in handling times may arise
from traffic congestion, variation in loading and unloading times, and waiting
times at the nodes. We do not consider limitations in loading and unloading
capacity at the docks explicitly, but include it as a stochastic effect in the
transport handling times. The time to drive empty from node i to node j is
a random variable τ eij . The handling times of jobs and travel times of empty
vehicles are unknown and should be learned from historic data.
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3.3.2 Cost structure and performance measurement

To evaluate the system performance, we use the following key performance
indicators:

• Service level, i.e., the percentage of jobs that are completed before the
due time.

• Stability of the service level, measured by the standard deviation in ser-
vice level per simulation period.

• Percentage of driving loaded, i.e., the percentage of the total distance
that is not traveled empty, being an indicator for energy waste and loss
of vehicle capacity.

• Relative additional costs, defined as the ratio of the costs for driving
empty and penalties and the costs for driving loaded; or (total costs -
costs driving loaded) / costs driving loaded.

The relevant cost factors for vehicles are (1) travel costs cr (t) as a function
of the total travel- and handling time t, both for driving loaded and driving
empty and (2) penalty costs cp(t) as function of the tardiness t. In the agent-
based approaches, vehicles also use waiting costs cw (t) as a function of the
waiting time t, to penalize loss of vehicle capacity. We assume that the fixed
costs are identical for all vehicles, so that they are not relevant for scheduling
decisions.

3.3.3 Schedules

The transport schedule consists of a set of schedules per vehicle. Each vehicle
has a list of jobs and a schedule to execute these jobs.

Formally, we define a vehicle schedule as a sequence of actions of the fol-
lowing types: (1) move loaded along arc (i, j), (2) move empty along arc (i, j),
and (3) wait at node j until time t. If a job has been delivered at node i and
the next job in the schedule has to be loaded at j later on, the vehicle moves
immediately empty to j and waits over there. At any point in time, the first job
in a vehicle schedule is in execution and cannot be interrupted. A schedule will
always end with the third option at some node with t =∞. Given a set of K
jobs, the number of job sequences equals K!. Given a certain job sequence, the
timing of the jobs and the corresponding empty moves should be determined.

Vehicle schedules are updated upon (1) completion of the first action in a
schedule and (2) matching a new external load with available vehicle capacity.
Depending on the control method, also periodical replanning is possible.
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3.4 Agent-based planning concepts

In our agent-based planning concept, we assign vehicles to jobs using a market-
like negotiation protocol that implicitly coordinates the agents’ decisions. The
definition of such an agent-based planning concept depends on three key choices:
(1) which agents to distinguish with their tasks and goals, (2) which products
(services) to trade, and (3) which market mechanism (auction) to define. We
address these three issues below. The goal-directed behavior of each agent will
be discussed in Section 3.5.

3.4.1 Agent types

To assign jobs to vehicles, we choose for an elementary structure with one
agent per vehicle and one agent per job. Further, we use a shipper agent to
collect and analyze auction and processing time data of all its vehicles, and
to distribute the results to its vehicles when needed. In this way, the vehicle
agents have access to more information than their own history only. The same
applies to the shipper agents for all the jobs issued by the shipper. Hence, our
multi-agent structure consists of four agent types, see Figure 3.1.

Carrier agent

Vehicle agent

Vehicle agent

Carrier agent

Vehicle agent

Vehicle agent

Shipper agent

Job agent

Job agent

Shipper agent

Job agent

Job agent

Market

Figure 3.1: Agent structure for transportation networks

A vehicle agent has the goal to maximize its profit by deploying its capacity.
A job agent has the goal to arrange transportation of the corresponding load
before the due time at minimal costs. In a basic structure, all vehicle agents
and job agents meet on the marketplace where they negotiate to assign jobs to
vehicles. Each vehicle agent maintains its own schedule. Hence, the solution
to the global scheduling problem emerges from the local scheduling and pricing
decisions of the vehicle agents. In this way, one complex overall plan is replaced
by many smaller and simpler plans.

The introduction of hierarchy may improve the coordination between agents.
We can define hierarchy both at the job level and at the resource level. At the
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job level, a shipper agent can be responsible for a set of jobs. A possible task
is to reallocate the transport capacity that has been acquired such that their
jobs are handled before the due times at lowest costs. For example, they may
switch a job that has been scheduled but that has not been started yet with a
rush job on a similar trajectory. To this end, they have full information on all
jobs under their control and all transport capacity that has been acquired for
these jobs. At the resource level, a carrier agent can be responsible for a subset
of vehicles. If they know the positions and local schedules of all their vehicles,
they can reassign vehicles to jobs to improve the profit of the fleet.

Although a hierarchical concept is interesting, we start with a fully decen-
tralized concept. It is interesting to examine whether such a simple agent-based
concept can already meet the performance of traditional OR based planning
methods. However, we will use carrier agents and shipper agents to collect
relevant information and to distribute it to the vehicle agents and job agents.
In Sections 3.5.1 and 3.5.2, we present two extensions that require some form
of hierarchical coordination.

3.4.2 Product definition

To create a marketplace, we need a product definition. We distinguish the
following options:

• Transportation of a job from location i to location j, to be loaded not
earlier than the release time r and to be delivered before the due time d.

• Transport capacity of a unit load that is available at node i at time t1
to be used during a time period T . The advantage compared to the first
option is that it provides the flexibility to reserve capacity for future jobs
with some arbitrary destination. However, bidding is harder because not
much can be said about the expected vehicle location at time t1 + T .

• Transport capacity of N vehicle loads that can be used in some time inter-
val [t1, t2]. Such a bulk trade may be advantageous for fleet management
as a whole, but it is not suitable for a decentralized planning concept.

• Transport capacity of a unit load from node A to node B that has to be
picked up at time t1 and that has to be delivered at time t2. Although
this definition fits well with the job definition, it hampers flexibility for
dynamic reallocation of capacity when additional (rush) jobs arrive.

We choose for the first option, because it offers both simplicity for bidding
and flexibility for schedule alteration; particularly if the due time of jobs may
be violated at some penalty costs as described in Section 3.3.2.
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3.4.3 Auctioning mechanism

Several auction mechanisms have been proposed for distributed scheduling, see
e.g. (Wellman et al., 2001). Some common auction types are:

• Bargaining, this is a one-on-one negotiation protocol where all trading
partners contact each other individually.

• Sealed-bid auctions where every bidder submits his bid only once and
the best bid is selected; special cases are the first-price sealed-bid auction
where exactly the price offered is paid, and the Vickrey auction in which
the bidder receives the price of the one but best offer (second-price sealed-
bid).

• Open outcry auctions consist of multiple bidding rounds where all bids
are known to each bidder. Variants are the English auction, where bidders
sequentially either raise their bids or withdraw in each round until a single
bidder is left; and the Dutch auction, where the price is reduced step by
step starting from a high level until some bidder accepts the price.

In this chapter we select the Vickrey auction as mechanism because (1) it
requires a single bidding round and (2) under some mild conditions the optimal
bid is the net cost price of the bidder, who will make profit from the margin
between the two best bids, cf. (Vickrey, 1961). Therefore, it provides a natural
mechanism for acceptable profits. An advantage of this simple bid price is that
it enables us to concentrate on the transportation control variables themselves
rather than on learning and rationality issues of the agents. A drawback is that
the profits may reduce to (almost) zero if the number of competitors becomes
large.

We implement the market mechanism as follows. Each time a job ϕ arrives,
the corresponding job agent starts an auction by asking all vehicles to bid.
Each vehicle agent v ∈ V creates a single bid, consisting of a bid price b (v, ϕ),
an expected departure time, and an expected arrival time. Next, the job agent
evaluates all bids and sends a grant or reject message to the vehicle agents. We
allow the job agent to reject all bids if it expects to receive a better bid later
on (see next section).

3.5 Bid calculation and evaluation

3.5.1 Bid calculation by vehicle agents

Let us denote the current schedule of vehicle v by Ψv. The acceptance of an
additional job will lead to a new vehicle schedule, for which we may consider
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several alternatives Ψnv , where n is the index of the vehicle schedule alterna-
tive. For example, we may insert the new job at various positions in the current
schedule or we may reshuffle the entire schedule to find a new optimum. Be-
cause we use a Vickrey auction, the bid price of vehicle v equals the minimum
additional costs over all alternative schedules n. As mentioned in Section 3.3.2,
the additional costs for vehicle v to service job ϕ, are given by the additional
costs needed to move the load, plus the change in the total penalty costs for
tardiness, plus the change the expected costs for waiting. The additional costs
are therefore given by:

b (v, ϕ) = min
n

¡
cr
¡
∆Tn

vϕ

¢
+ cp

¡
∆Dn

vϕ

¢
+ cw

¡
∆Wn

vϕ

¢¢
(3.1)

where

∆Tn
vϕ = expected additional travel- and handling time required for vehicle

v in schedule alternative n to transport the job ϕ;

∆Dn
vϕ = expected additional tardiness required for vehicle v in schedule

alternative n to transport job ϕ;

∆Wn
vϕ = expected additional waiting time required for vehicle v in schedule

alternative n to transport job ϕ.

Note that the additional waiting time may be negative if the new job can
be inserted in a gap in the current vehicle schedule. Further note that we
cannot simply include the difference in total tardiness in the bid price, because
the penalty costs are not necessarily a linear function of the tardiness. It is
obvious that a bid depends on the internal job scheduling of the vehicle agent.
We consider three variants for internal vehicle scheduling.

The simplest method (called AgentAppend) is to add a new job to the end
of the current schedule. So we have a single schedule alternative (n = 1). Then
the change in penalty costs can only be due to tardiness for job ϕ because the
expected arrival times of the jobs in the current schedule are not affected. The
additional travel time ∆T 1vϕ equals the handling time of job ϕ plus the time
needed to move the vehicle empty from the end location of schedule Ψv to the
start location of job ϕ.

A second option is to insert the new job at any position in the existing
schedule Ψv without altering the order of execution for the other jobs. We
refer to this option as AgentInsert. Hence, the number of schedule alternatives
equals the number of jobs in the current schedule, because the first job is in
execution. For bid calculation we have to consider the cost components for the
new job plus all jobs from the current schedule that will be served later on.

A third option is to construct a completely new schedule except for the job
currently in execution. As this means solving a Traveling Salesman Problem
(TSP), we refer to this method as AgentTSP. We use a depth-first, branch
and bound algorithm, where we use an upper bound found with AgentInsert
to test the lower bound for the remaining branch. This requires not too much
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computation time because the number of jobs in a vehicle schedule is usually
small (say less than ten) and AgentInsert provides a reasonable upper bound.
Otherwise, we have to rely upon well-known fast heuristics for the TSP, such
as tabu search, cf. (Gendreau et al., 1994).

Because of the dynamic nature of the problem it is not guaranteed that the
initial assignment of a job to a vehicle remains optimal as new jobs arrive and
travel time realizations become known. Therefore, we introduce an option to
exchange jobs between vehicles that we call Trade. Whenever a vehicle - after
unloading at a certain terminal i - has to travel empty to terminal j, its agent
searches for another vehicle agent within the same fleet that has a job from i
to j that has been released but that has not been started yet. Then the job
that yields the highest savings (if positive) will be transferred to the vehicle to
avoid empty traveling.

3.5.2 Bid evaluation by job agents

The job agents have to evaluate all bids; determine for each bid whether to
accept or to reject it. We consider two variants for job agent behavior. In the
first variant, the job agent simply accepts the best bid received from all vehicle
agents. In the second variant, the job agent rejects all bids if they are all
higher than a certain threshold. The idea behind this is that the job agent may
expect to receive a better bid when reauctioning at a later point in time. After
all, prices fluctuate over time due to changes in the available transportation
capacity and in the vehicle schedules. So if the best bid is relatively high
(which can be learned from history) and there is still quite some time until the
latest pickup time of the job at its origin, it may be better to wait for a more
attractive price. As the deadline for dispatch comes nearer, the job agent may
increase the threshold to get transportation.

We assume fixed periods between reauctioning of a job that has not been
assigned to a vehicle yet. We call this variant DynamicThreshold. The decision
of the job agent is to set an initial threshold price for the first auction round
and to determine the threshold prices for all further auction rounds. The fixed
time between auction rounds for the same job is a parameter of the job agent.
To determine the thresholds, the job agents need insight into the cost and
handling times for their routes. We assume, as mentioned in Section 3.4.1,
that the vehicle agents receive this information from their shipper, who keeps
track of all travel times and bid prices.

The bid acceptance under DynamicThreshold works as follows. For the
timing between successive auctions for the same job, we take a fixed periodR. It
is logical to relate the threshold price to the maximum number of auction rounds
N before the job has to be transported. We have that N = b(d− t− a)/Rc+1
with d the due date, a the first announcement time of the job and t the expected
handling time as obtained from the shipper agent. Without loss of generality,
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we assume that R is such that always N ≥ 2 (if not, the DynamicThreshold
variant coincides with the first variant discussed in this section in which the
lowest bid is always accepted).

The threshold prices can be based on expectations of the outcomes of fu-
ture auctions. In this case, the threshold price for a certain round equals the
expected price a shipper could receive in one of the next auction rounds, given
a certain threshold policy. This policy is quite difficult to model because the
expected price will increase in the successive auction rounds and bids in sub-
sequent auction rounds are possibly correlated. We develop such a dynamic
threshold policy in Chapter 6. Here we propose a much simpler strategy.

The threshold price αN for the last auction round is always infinite, i.e., any
offer is accepted in order to force the job to be served. The first threshold price
α1 equals a certain minimum price Pmin and the threshold price for the second
last auction round αN−1 equals a maximum price Pmax. These values Pmin

and Pmax can be based on historical data provided by the shipper agent. We
consider two pricing strategies: linear and quadratic. For the linear strategy,
the threshold price αn in round n is given by:

αn = Pmin +

µ
Pmax − Pmin

N − 2

¶
(n− 1) for n = 1, ..., N − 1 (3.2)

For the quadratic pricing strategy we define:

αn = Pmin +

µ
Pmax − Pmin
(N − 2)2

¶
(n− 1)2 for n = 1, ...,N − 1 (3.3)

We examine the impact of DynamicThreshold in Section 3.8.

3.6 Traditional OR based heuristics as bench-
mark

Traditionally, heuristics from operations research are used for real-time schedul-
ing in transport networks. We will use two of the methods from (Van der Hei-
jden, Ebben, Gademan and Van Harten, 2002) as benchmark for our agent
system, because the focus in that paper is on a similar problem as we consider
here.

Both methods that we consider are hierarchical methods. At the top level,
vehicles are distributed amongst nodes based on actual and expected jobs,
without detailed job assignment. At the node level, vehicles are assigned to
jobs, where only the vehicles can be used that are assigned to that node by
the top level. The advantage of such an approach is that a complex schedule is
decomposed into two simpler decisions. One of these decisions, assignment of
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vehicles to jobs, should be done in real time. The other decision, distribution
of vehicles amongst nodes, should be done frequently, but not necessarily real-
time, because it is a higher-level decision without immediate consequences.
We will use two methods that fit within this hierarchical framework, namely
hierarchical coordination and integrated planning.

Under hierarchical coordination, the top level distributes vehicles using a
simple priority rule, based on a central job list and a central overview of all
vehicle positions and current activities. First, we calculate the latest departure
time for each job as the due time minus an offset for the expected handling
time (loading, transportation, unloading) and the variation in the handling
time. Thereafter, we sort the job list in increasing order of latest departure
times. We process the list sequentially. To each job, we assign the vehicle that
can be available at the earliest point in time. If a vehicle is waiting at or driving
to a different node, the top level issues an empty vehicle repositioning job with
corresponding latest dispatch time to that node.

At the node level, we have a list of jobs to be dispatched (with latest depar-
ture time) and a list of empty vehicle dispatch jobs (with latest dispatch time).
Every time a vehicle becomes available at the node, we choose the highest
priority job from both lists. For efficiency reasons, we try to combine empty
dispatch jobs with load dispatch jobs if possible. For example, if it is most
urgent to dispatch a job from node A to node B, we look in the job list of node
A whether there is a (lower priority) load dispatch job from A to B, and if
so, the vehicle takes this load on its trip. Hence, the node level operates inde-
pendently of the top level, but within the conditions set by the top level (see
Van der Heijden, Ebben, Gademan and Van Harten, 2002). In the remainder
of this chapter, we refer to this method by LocalControl.

In the integrated planning approach, we construct a better planning to
distribute vehicles over nodes. To this end, we use serial scheduling (Ebben
et al., 2005), where different priority rules are being used to create a sequence of
jobs, which are virtually assigned to vehicles. At the node level, we still decide
on the assignment of jobs to vehicles. However, to maintain the structure of the
vehicle distribution planning from the top level, the node level has to handle
all jobs in a sequence that has been prescribed by the top level. In that sense,
we move responsibility from the node level to the top level, hoping to receive
a better performance in terms of fill rate and distance traveled empty. In the
remainder of this chapter, we refer to this method by SerialScheduling.

The aim of a hierarchical control concept as described above is to construct
a more flexible and fast schedule compared to a fully centralized concept. The
difference between centralized, hierarchical, and heterarchical (agent based)
control structures is illustrated in Figure 3.2.

Of course, a hierarchical control concept has some advantages compared to
purely central control. It requires less data exchange and is capable of reacting
quicker to unexpected events because of the allocation of tasks and responsi-
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Figure 3.2: Control structures

bilities to two hierarchical levels. However, this hierarchical decomposition of
control does not take into account the different roles of various independent
stakeholders that negotiate on their mutual services and corresponding prices.
Besides, a key difference with the agent approach is that under the hierarchical
planning, all job and vehicle information should be centrally available and that
a central vehicle distribution plan is constructed.

3.7 Experimental settings

In this section we discuss the experimental design. We successively describe
the network characteristics (3.7.1), the fixed parameters settings (3.7.2), and
the experimental factors (3.7.3).

3.7.1 Network characteristics

To test the proposed multi-agent concepts and to compare them with other con-
trol methods, we first use a network setting inspired by a case study on a pro-
posed underground transportation system near Amsterdam Airport Schiphol,
the Netherlands (Van der Heijden, Van Harten, Ebben, Saanen, Valentin and
Verbraeck, 2002). We refer to this application as the OLS case, which is the
Dutch abbreviation for underground logistic system. In this system, Automatic
Guided Vehicles (AGVs) carry cargo between terminals that are connected by
tubes. One of the proposed network layouts for the OLS-case, consists of a
connection of the airport with the world’s largest flower auction market in
Aalsmeer (VBA) and a planned rail terminal near the Zwanenburg landing
strip (RTZ). At Aalsmeer there is 1 terminal, at Schiphol Airport there are
8 terminals and there is 1 rail terminal. Besides, there is a central parking
area where AGVs can wait if there are temporarily no jobs, because the park-
ing space at (underground) terminals is limited. Each terminal has an internal
track structure and consists of 4 docks where AGVs can be loaded or unloaded.
The terminals are connected by tubes as illustrated by Figure 3.3.
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Figure 3.3: OLS network structure

Figure 3.3 shows the distances in meters between terminals, crossings, and
the central parking. The times to drive through or along a terminal are sig-
nificant, as a terminal may have a length up to 200 meters and AGVs drive
slower within terminals for safety reasons (see next section). When an AGV
enters a terminal to pickup or to deliver a job, it is assigned to a specific dock
within the terminal. The distance from the terminal entrance to the dock may
vary between 100 and 400 meters, so the dock assignment causes a part of the
variation in the handling times of jobs.

Because this is a quite specific setting, we also consider a second network
structure consisting of 20 nodes that are uniformly placed in a square region of
10x10 km. All nodes are mutually connected and the distances between these
nodes are Euclidean. A central parking area is located in the centre of the
square area.

One way to deal with random networks is to generate a few (2-3) random
network structures and perform some replications for each scenario. This pro-
vides insight into the performance of a few configurations only. Because we are
interested in the average performance of the control methods over a range of
random network structures, we choose another option. That is, we start each
replication with the creation of a new network, i.e., repositioning the location
of all nodes. Of course, the required number of replications will increase, but
we will also get a better idea of the average performance of the various control
methods.

Jobs arrive according to a (non)stationary Poison process (cf. Section 3.7.3).
Travel times between terminal entrances are deterministic and known in ad-
vance because they only depend on the distance and speed of vehicles. Although
the distances are deterministic, the handling times show variation due to the
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following:

• Variations in loading and unloading times.

• Waiting times at the terminals due to limitations on the number of AGVs
on terminals.

• Waiting times at the terminals due to limitations in dock capacity.

• Dock-dependent distances on terminals.

Therefore, we treat the handling times as random variables. The mean and
standard deviation of the handling times are dynamically being updated using
a standard exponential smoothing procedure (see Silver et al., 1998). In case
of agent-based control we use the shipper agent to keep track of all handling
times and the corresponding estimates are available to all vehicles under its
control.

To provide an indication of the stochasticity, we found the following values in
the OLS network settings. The expected handling times range from 5 minutes
(T1 to T2) with standard deviation of 40 seconds, to 25 minutes (VBA to T6)
with a standard deviation of 90 seconds. Although these deviations are not
very large, they are significant in the handling times.

3.7.2 Fixed parameter settings

The vehicles have a speed of 6 m/s outside the terminals and 2 m/s inside the
terminals. The maximum number of AGVs allowed at a terminal is limited to
5.

For the travel cost function we take cr (t) = t and for the penalty cost
function cp(t) = 10t, where t is expressed in minutes. The penalty costs are such
that in case of agent-based control a job agent will almost always prefer an AGV
that delivers the job with minimum tardiness. The agent-based approaches
also use waiting costs cw (t) in their bid prices. We set these costs equal to
the historical average profit per time unit. This information is collected and
distributed by the carrier agent.

We set the parameters of DynamicThreshold as follows. Pmin is equal to
the mean price for a specific route, Pmax to the maximum price paid so far for
this route, and the fixed time interval R between the auction rounds is set to
5 minutes, which equals the minimum handling time in the OLS network. The
replanning period for the two hierarchical methods is set to 4 minutes.
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3.7.3 Experimental factors

In this section we discuss the factors that we will vary in our simulation exper-
iments, for both the OLS network case and the random networks.

OLS network

Table 3.1 shows the experimental factors and their settings for the OLS net-
work.

Factor Values
Demand structure Stable, Dynamic, Highly Dynamic
Vehicle control LocalControl, SerialScheduling, AgentAppend,

AgentInsert, AgentTSP
Vehicle coordination None, Trade
Job control None, DynamicThreshold Linear,

DynamicThreshold Quadratic
Table 3.1: Experimental factors

The experimental factor ”Demand structure” refers to the variation in trans-
portation flows over time. We distinguish three cases: Stable, Dynamic, and
Highly Dynamic. In the stable demand structure, (1) the job arrival rates are
identical for all origin destination pairs, (2) the job arrival rates are constant
over the day, and (3) all jobs have a same time-window of 60 minutes.

In the dynamic demand structure, (1) the job arrival rates are still identical
for all origin destination pairs, (2) the time between jobs vary over hours of
the day according to a sinus function with period of half a day, the same mean
as in the stable demand structure, and an amplitude of 3 seconds, and (3) we
have three different time-windows of 30, 60, and 90 minutes that are drawn
with equal probability.

The highly dynamic demand structure is similar to the dynamic demand
situation, except that the job arrival rates are no longer identical for all ori-
gin destination pairs. The imbalance is given by Table 3.2. Within AAS all
terminals have equal probability of being origin or destination.

From \ To AAS RTZ VBA
AAS 0 26% 10%
RTZ 40% 0 4%
VBA 8% 12% 0

Table 3.2: Distribution of transportation flows

The average number of jobs per day is 1800, i.e., a time between jobs (TBJ)
of 48 seconds. These jobs have to be transported by a fixed number of AGVs.
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This number is chosen such that all methods are capable of handing all jobs
in the long run, but not necessarily on time. In case of a stable or dynamic
demand structure, we choose to use 20 AGVs and in case of a highly dynamic
demand structure 22 AGVs. The announcement times a for jobs are equal to
the earliest release times r. Therefore, the time-windows can be defined as the
time between the first auction for a job and the due time d.

To limit the number of experiments, we test the vehicle coordination (Trade)
and job control (DynamicThreshold) for the highly dynamic demand structure
only. We consider four settings: Trade, DynamicThreshold Linear, Dynamic-
Threshold Quadratic, and the combination of Trade with DynamicThreshold
Linear. We omit the combination of Trade with DynamicThreshold quadratic
pricing because we observed that the differences between both price functions
are small (see Section 3.8.1).

Random networks

As a basic scenario we use a network consisting of 20 nodes, 20 AGVs, a time
between jobs (TBJ) of 1.5 minute, and a time-window of 60 minutes. As key
performance indicator we use the average relative costs per job, see Section
3.3.2. This value resembles the extra costs we make relative to the minimum
costs for all jobs.

The experimental factors can be found in Table 3.3. Each of these factors
will be varied, keeping the other factors equal to the basic scenario.

Factor Values
Length time-windows (sec) 50, 70, 90, 110, 130
Look-ahead (min) 0, 3, 6, 9, 12
Time between jobs (sec) 84, 87, 90, 93, 96
Amplitude in deviation from mean TBJ (sec) 2, 4, 6, 8, 10
Number of nodes 12, 14, 16, 18, 20

Table 3.3: Experimental factors

We use as control methods LocalControl, SerialScheduling, AgentAppend,
AgentInsert, and the combination of AgentInsert with Trade and Dynamic-
Threshold Linear, referred to as AgentInsertSmart. To vary the time between
jobs during a day, we describe the TBJ as a sinus with a period of half a day
and a mean of 1.5 minute, and we change the amplitude.

We use a replication / deletion approach for our simulations (Law and Kel-
ton, 2000), where each experiment consists of a sufficient number of replications
(each with different seeds) of six days, each including a one-day warm-up pe-
riod. The number of replications will be determined in the next sections.
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3.8 Numerical results

In this section we present the results of our simulation experiments; first for
the OLS network (3.8.1) and next for the random networks (3.8.2).

3.8.1 OLS network

We first determine the number of replications. To this end we consider the
percentage of driving loaded (DL) and the service levels (SL) of all control
methods for all three demand structures. The maximum number of replications
needed with a confidence level of 99% and relative error of 5% is 10. To facilitate
comparison, we use 10 replications for all scenarios.

We also performed a paired t-test on the key performance indicators SL and
DL of SerialScheduling and AgentInsert using the 10 replications with a stable
demand structure. Results show that, for all strategies, both differences are
significant with a confidence level of 99%. The results for all control methods
for the different demand structures can be found in Table 3.4.

Stable Dynamic Highly dynamic
Control DL SL DL SL DL SL
LocalControl 73 95.9 72 91.4 78 93.6
SerialScheduling 73 99.2 74 96.6 78 94.8
AgentAppend 82 99.7 80 95.3 82 93.9
AgentInsert 83 100 80 97.8 82 97.0
AgentTSP 83 100 80 98.1 82 97.2
Table 3.4: Simulation results - comparing control methods

We see that AgentInsert and AgentTSP both yield similar results which
are better than the hierarchical methods LocalControl and SerialScheduling.
Because of the dynamic system behavior, solving a TSP problem exactly has
apparently little added value. Because AgentTSP is also computationally inten-
sive, we skip this method in the remainder. We further see that AgentAppend
yields lower service levels in some cases. With regard to the percentage of
driving loaded we see that our agent approach always perform better than the
hierarchical control methods.

The difference in service levels is larger in case of dynamic demand compared
to stable demand. In case of highly dynamic demand, we even observe that
decreasing the number of AGVs from 22 to 21 yields lower service levels for the
agent-based methods whereas the LocalControl and SerialScheduling heuristics
are simply not able to handle all demand (the job backlog steadily increases).

To gain insight into the sensitivity of the control methods to the job arrival
intensity, we vary the time between jobs from 46 to 50. The impact on the
percentage of driving loaded for the different control methods in case of stable
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demand can be found in Figure 3.4 and the impact on the service levels in
Figure 3.5.
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From these figures we see that with increasing TBJ, the service levels go
to 100% for all control methods. However, the differences in percentage of
driving loaded between the heuristics and the two agent methods increase.
This means that the agent methods do not lead to unnecessary empty miles if
the transportation capacity is sufficient to handle all jobs in time. In case of
(highly) dynamic demand situations this effective use of capacity can be used
to cope with uncertainty such as rush jobs. Therefore, our agent control seems
to be more robust than the two hierarchical control methods. This can also be
seen from the standard deviation in service levels per replication over the ten
replications for both the stable demand structure (Figure 3.6) and the highly
dynamic demand structure (Figure 3.7). We see that our agent control is less
sensitive to variations in demand volume, loading times, and unloading times.
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To examine the impact of additional agent intelligence, we show the key
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performance indicators DL and SL for agent systems with or without vehicle
coordination (Trade) and DynamicThreshold (both linear and quadratic) in
Table 3.5.

AgentAppend AgentInsert AgentTSP
Control DL SL DL SL DL SL
Normal 82 93.9 82 97.0 82 97.2
Trade 83 96.2 82 98.2 82 98.3
DT-lin 83 95.5 83 97.5 82 97.9
DT-Qdr 83 95.4 82 97.6 82 97.8
TR-DT-lin 83 96.4 83 98.4 83 98.4
Table 3.5: Simulation results - additional intelligence

We see that the use of additional intelligence improves the performance;
especially in case of AgentAppend. However, the improvement in service level
is only significant at confidence level 98% for Trade. It might be surprising to
see that additional intelligence does not significantly improves the percentage
of driving loaded. The reason for this is that there is very little room for
improvement. To illustrate this, we calculate a simple upper bound for the
percentage driving loaded. Therefore, let us relax the problem by assuming
that all jobs are known in advance, there are no time-windows, and all travel-
and handling times are deterministic. Then penalty costs are not relevant and
the problem reduces to the minimization of the total empty travel time under
flow conservation constraints. Using the average handling times and demand
data resulting from our simulation experiments for the highly dynamic case, we
find an upper bound of 89% for the percentage of driving loaded. Even though
this upper bound is calculated under strongly simplifying assumptions, our
agent methods still achieve a percentage of driving loaded that is only 6,7% less
than the upper bound. On the other hand, LocalControl and SerialScheduling
lead to a percentage driving loaded that is 12,4% worse than the upper bound.

3.8.2 Random networks

Again, we first determine the number of replications based on the basic scenario.
With a confidence level of 95% and a relative error of 5%, we find that we need
6 replications in case of AgentInsert and 40 replications in case of LocalControl.
The differences in the required number of replications for the different control
methods are higher than before. This is caused (1) by using the relative costs
as key performance indicator, for which the variances are much higher and (2)
by the changes in the network layout with each replication. We decided to use
20 replications because this provides enough significance to distinguish between
the agent control methods and the two heuristics. This can be seen from the
confidence intervals for the relative costs in the basic scenario (Table 3.6).

First, we vary the time between jobs. In Figure 3.8 we see that, for all
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Control Confidence interval
LocalControl [59.5, 69.7]
SerialScheduling [57.5, 63.6]
AgentAppend [40.5, 44.1]
AgentInsert [38.9, 41.4]
AgentInsertSmart [39.0, 41.2]

Table 3.6: Simulation results - confidence intervals for relative costs

methods, the relative costs decrease with the time between jobs. We also see
that SerialScheduling and LocalControl converge to a same level. The two basic
agent methods converge to a same, but lower level. The addition of Trade and
DynamicThreshold yields lower costs if the time between jobs is small. The
reason is that the average length of the vehicle schedules increases. Then there
are more options for load exchange (Trade). Also, it can be more beneficial to
use threshold prices.

In the next experiment we keep the mean time between jobs the same for
all simulation runs, but we change the deviation from the mean during the day.
We see in Figure 3.9 that increasing the amplitude has negative effect on the
relative costs. Not surprisingly, the method AgentInsertSmart is less sensitive
to these deviations.
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Figure 3.8: Impact of the time be-
tween jobs on the relative costs
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Figure 3.9: Impact of the amplitude in
time between jobs on the relative costs

Second, we vary the length of the time-windows. From Figure 3.10 we
see that the relative costs for all methods decrease with the length of the
time-windows. The costs converge to a situation where the penalty costs are
negligible. The methods LocalControl and SerialScheduling are not able to
reduce their empty trips when the time-windows increase. AgentInsertSmart
benefits more from increasing time-windows because the number N of possible
auction rounds is higher.

Finally, we vary the number of nodes in the network keeping the rest of the
parameters the same, see Figure 3.11. In case of AgentInsert the relative costs
first slightly increase converging to a value of about 40%. AgentInsertSmart
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nodes on the relative costs

works relative better if the network is small (less nodes) because then the
average distances between nodes are higher and therefore trading jobs will be
more beneficial. The relative costs for all other methods decrease in the number
of nodes. Closer inspection reveals that the penalty costs always decrease with
the number of nodes while the amount of empty kilometers increases. However,
both cost factors converge to a stable value. Because the penalty costs are
relatively small and stable for AgentInsert, the increase in costs for empty trips
dominates the relative costs. The hierarchical methods, SerialScheduling and
LocalControl, benefit most from an increase in the number of nodes. However,
based on our simulation results, we expect that differences in relative costs will
remain. Besides, the computation time of the hierarchical methods (especially
for SerialScheduling) increases with the number of nodes. Therefore, we end
with some notes about the computation time of the different control methods.

We implemented our methods in the simulation software eM-Plant 7.0 and
we performed the experiments using a Intel Pentium 4 processor at 3.4 GHz.
The computation times (milliseconds per job) for the basic scenarios can be
found in Table 3.7. The computation times of the agent approaches include
starting the auction, bidding by all vehicle agents (sequential whereas in prac-
tice parallel execution is plausible), and bid evaluation by the job agent. The
computation times of the hierarchical methods consist of the time required for
periodical replanning and local decision making. In both hierarchical methods,
the computation times for local decision making per job are 2 ms on average,
the computation times for periodical replanning can be found between brackets.

Control OLS Random
AgentAppend 2 1.6
AgentInsert 8.3 6.6
AgentTSP 19.0 8.8
LocalControl 2.9 (4.9) 3.8 (5.3)
SerialScheduling 20.2 (91.8) 78.6 (109.7)

Table 3.7: Simulation results - computation times
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Obviously, the computation time of the agent methods mainly depends on
the number of vehicles (participants in the auctions). The computation time
of AgentInsert and AgentTSP also strongly depends on the average length of
the vehicle schedules. The hierarchical methods mainly depend on the average
number of open jobs, but also on the number of nodes in the network. There-
fore, we see some longer computation times in the random networks with 20
nodes.

The two agent extensions result in an increase in computation times. The
extension Trade results in an increase of about 0.09 ms per job exchange (about
0.5% of the jobs are exchanged in both network settings). The extension Dy-
namicThreshold has a bigger impact, because a load requires on average 2.6
auction rounds, resulting in a proportional increase of the computation time.

3.9 Conclusions

In this chapter we propose a distributed agent-based solution to real-time, dy-
namic transport scheduling problems. This approach has a number of advan-
tages. First, it is more robust in the sense that it is less sensitive to fluctuations
in demand or available vehicles than more traditional transportation planning
heuristics (LocalControl, SerialScheduling). Second, it provides a lot of flexibil-
ity by solving local problems locally. Third, it provides online decision-making
using auction mechanisms.

From our simulation experiments, we conclude that our agent approach
yields a high performance in terms of vehicle utilization and service level. When
we compare the best hierarchical method (of the two considered in this chapter)
with AgentInsert, we see that the differences in costs and percentage of driving
loaded are always significant. With regard to the service levels, AgentInsert
performs significantly better in most cases and never significantly worse.

We improve the performance of the agent-based approach by using two ex-
tensions: (1) we allow vehicle agents to exchange jobs and (2) we allow shipper
agents to reject all bids and start a new auction later on. These extensions are
particularly valuable if vehicle schedules contain many jobs on average.

In the next chapters, we focus on improvement of the agent behavior. For
the vehicle agents, further improvement of the pricing strategy is relevant.
Although vehicles can schedule multiple jobs in advance, our model is still
myopic. Vehicle agents only consider the direct costs of doing certain jobs,
whereas it could be better to include an opportunity loss for arriving at a
terminal without a next job with low expectations for an attractive load in the
near future. This topic is studied in Chapter 5. For the job agents, formal
methods for the dynamic threshold policy will be developed (Chapter 6). But
first (Chapter 4) we go into more detail on the design choices that we face in
building a multi-agent system.
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Chapter 4

MAS: design choices

In this chapter1 we provide insight into the design choices we may face when
building a multi-agent system (MAS). These design choices include (1) the
identification of agents; (2) the roles, responsibilities, and decision-making ca-
pabilities of these agents; and (3) the way they interact. Current MAS de-
velopment methodologies provide guidelines to help the designer with these
decisions. However, qualitative design guidelines turn out to be insufficient to
select the best agent architecture. Therefore, we propose to extend current
MAS methodologies by multi-agent discrete event simulations.

To illustrate this approach, we consider a MAS for the logistics control of
Automatic Guided Vehicles (AGVs) that are used in the dough making process
at an industrial bakery. Using real-life data from the bakery, we evaluate several
alternative designs. We find that architectures in which line agents initiate the
allocation of transportation jobs, and AGV agents schedule multiple jobs in
advance, perform best. We conclude by discussing the benefits of our MAS
design approach for real-life applications.

4.1 Introduction

In recent years there has been a growing interest in distributed intelligent man-
ufacturing due to the necessity of greater adaptability and flexibility to changes
in the market demand. Agent technology is considered an approach that holds
high promises for developing such systems (Jennings et al., 1998). Multi-agent
systems (MAS) are believed to be particularly suited for decentralized systems
in real-time and dynamic environments. Because problems are solved locally,

1This chapter is based on the paper: M.R.K. Mes, M.C. van der Heijden, and J. van
Hillegersberg (2008). Design choices for agent-based control of AGVs in the dough making
process, Decision Support Systems 44(4): 983-999.
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these systems should (1) be able to deal with a high level of complexity, (2) re-
quire less information exchange than central control methods, (3) respond fast
to unexpected events, and (4) reduce system nervousness compared to global
optimization (which may lead to completely modified plans in case of minor
information updates). In the previous chapter, we have described the benefits
of decentralization and we have compared the performance of a basic multi-
agent system with two central scheduling heuristics. Using a case study on an
underground AGV system around Amsterdam Airport Schiphol, we found that
a properly designed multi-agent system performs as well as or even better than
central scheduling methods.

As multi-agent systems are starting to find their way from laboratory set-
tings to real-life manufacturing, full life-cycle methodologies are needed to sup-
port MAS development. Methodologies that have recently been introduced are
built upon concepts from object-oriented software engineering and artificial
intelligence. These methodologies generally provide guidelines for identifying
agents, their roles, responsibilities, and interaction protocols (Jiao et al., 2005).
However, when applying these guidelines, several alternative designs for MAS
can be derived. Designs may vary in the roles and responsibilities assigned to
agents, the level of intelligence of the agents (forecasting and learning behav-
ior), and the interaction protocols selected. Current MAS methodologies lack
a mechanism to evaluate such design-choices and provide only limited support
to the designer in selecting the preferred design for implementation. Therefore,
we propose to extend current MAS methodologies by multi-agent discrete event
simulations. These simulations provide insight into the effect of MAS design
choices on system quality aspects such as logistical performance (handling and
delivery times), scalability, computing time, communication cost, and robust-
ness of the system.

We demonstrate and test this approach by applying it to a real life project;
the design and development of a MAS for manufacturing biscuits at the in-
dustrial bakery Merba in the Netherlands. Merba produces a wide range of
cookies for the Dutch and international market and is among Europe’s largest
producers of American chocolate chip cookies.

The goal of the project is the automation of the dough making process. Cur-
rently, employees collect ingredients for dough manually into barrels and move
these barrels between the various processing locations. This manual process
has a negative effect on the labor conditions, on the product quality, and on
the traceability of ingredients. Product quality problems arise from deviations
in rising times of dough and amount of ingredients. Also, human body contact
with the dough is inevitable. To overcome these problems and to achieve cost
reductions, Merba aims at a fully automated dough production process using
Automatic Guided Vehicles (AGVs). To achieve a reliable and flexible AGV
system, Merba aims at implementing MAS for scheduling transportation tasks.

During 2006, we have worked with Merba in implementing this system. In
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carrying out this project, we found that current MAS development method-
ologies aid in creating various alternative MAS designs, but do not provide
sufficient support to select the preferred design for implementation. Therefore,
we applied multi-agent discrete event simulations in addition to the conceptual
design stages proposed in common MAS design methodologies. In this chapter
we demonstrate and evaluate this approach. We investigate in what way design
choices effect logistic and system performance. We thus follow a design science
approach (Hevner et al., 2004) in which the artifact (the MAS methodology)
is extended by adding simulation and evaluated in a field project.

The remainder of this chapter is structured as follows. In the next section
we give an overview of related literature. The Merba setting and the require-
ments of the project are described in Section 4.3. In section 4.4 we present our
extension to current methodologies to design MAS. We describe the resulting
alternative agent-based designs in Section 4.5. Next, we present our simulation
experiments of the alternative designs in Section 4.6, present some extensions
(Section 4.7), and end up with conclusions (Section 4.8).

4.2 Literature

Wooldridge and Jennings (1995) define an agent as a computer system that
is situated in some environment, and that is capable of autonomous action in
this environment in order to meet its design objectives. An intelligent agent is
further required to be proactive and social (Wooldridge, 2002).

Agent technology has been used for a vast range of applications, ranging
from e-mail assistants to air traffic controllers (see Jennings et al., 1998). Re-
cently, agent-based control architectures have been suggested as alternatives
to traditional manufacturing control techniques (McDonnell et al., 1999). One
of the earliest agent-based manufacturing systems, called "yet another manu-
facturing system" (YAMS), was developed by Van dyke Parunak (1987). He
considers a hierarchical production system in which each node (factory, man-
ufacturing cell, workstation, and machine) is represented as an agent. Each
agent has a collection of plans and negotiates with lower level agents to assign
production tasks. In a later paper, Van dyke Parunak et al. (2001) presented
AARIA (Autonomous Agents for Rock Island Arsenal) in which the manu-
facturing resources (e.g. people, machines, and parts) are encapsulated as
autonomous agents that are using a mixture of different scheduling techniques.
This approach, to represent manufacturing resources by agents, is common in
agent-based manufacturing systems. Coordination between the agents is usu-
ally achieved through negotiation or by means of an auction protocol. For
example, Lin and Solberg (1992) introduce part agents and resource agents
that negotiate with each other to achieve individual objectives. Maturana
et al. (1999) also use resource agents and introduce mediator agents for coor-
dination between agents. McDonnell et al. (1999) use three classes of agents:
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part managers, resource managers and information managers. Coordination is
achieved using an auction protocol to construct complete plans for part pro-
duction. In (Maione and Naso, 2001) part dispatching decisions are made by
part agents and machine agents. The proposed approach is effective and re-
active to severe disturbances and changes in the manufacturing environment.
Shen and Norrie (2001) present an approach that combines mediation and bid-
ding mechanisms for agent-based dynamic manufacturing scheduling. Kim,
Graves, Heragu and St. Onge (2002) consider an industrial warehouse order
picking problem where goods, storage areas, and order pickers are modeled as
intelligent agents. Real-time task allocation is achieved through the use of a
negotiation mechanism. Their results demonstrate an increase in throughput,
flexibility, robustness, and fault tolerance with respect to unforeseen events.
For more references on agent-based systems in the manufacturing area we refer
to (Jennings et al., 1998; Van dyke Parunak, 1999; Shen and Norrie, 1999).

Most papers on agent-based control of AGV systems focus on routing (e.g.
Wallace, 2001; Frazzoli et al., 2005) and the MAS architecture (e.g. Heragu
et al., 2002). Only a few papers have appeared on planning and scheduling
decisions in agent-based control of AGVs. An early application can be found
in (McElroy et al., 1989) where intelligent AGV agents bid for transportation
of loads. Also closely related is the decentralized architecture of (Liu et al.,
2002) for the coordinated control of AGVs. They compare their approach
with a centralized approach, and conclude that their system provides higher
utilization and is more robust to fluctuations in processing times. Boucke et al.
(2004) propose a negotiation protocol for flexible and decentralized allocation
of transportation tasks. This approach consists of a negotiation protocol where
the allocation of tasks is continuously reconsidered until the task is actually
started. Lau et al. (2003) describe AGV control for material handling in an
automated warehouse. They present a self-organizing distributed system where
schedules for transportation tasks arise from interactions between the AGVs.

We observe, for both manufacturing and transportation systems, that (1)
the majority of research on agent-based planning and control focuses on the
development of generic architectures/frameworks; (2) usually only a single ar-
chitecture is given without any quantitative selection from alternative designs;
and (3) case oriented research is often limited to a conceptual description in
combination with simulation based on artificial data rather than real-life data.

The contributions of this chapter are (1) to show that qualitative arguments
and modeling guidelines in current MAS methodologies are insufficient to select
a single "best" architecture for MAS; (2) to show how simulation can be used
to help in this selection process; and (3) to evaluate this approach by applying
it in a real world setting.
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4.3 Requirements for the agent system

Before presenting the requirements for the agent system, it is important to
make a distinction between the scientific and practical interest of this research.
Our scientific interest - and hence the goal of this chapter - is to provide insight
into the MAS design choices, and to develop a decision support tool (in this
case simulation) in order to evaluate the impact of these design choices on the
system quality aspects as mentioned in the introduction. Our practical interest
is related to the case study at Merba bakeries for the automation of the dough
making process. In this chapter this case study serves as an illustration to
support our research objectives. For this purpose it is not required to provide
a full case description with all kind of details on the dough-making process.

To come up with an AGV control system we first established the system
requirements by performing interviews with the management of the bakery.
The main requirement is a flexible production system that can easily be ad-
justed to new product introductions or modifications in the bakery layout, and
can react in real-time on process uncertainties like equipment failures, product
quality problems, and the arrival of rush jobs. For example, if the quality of a
(part of a) batch is insufficient, additional dough has to be prepared, leading
to insertion of new jobs in the dough preparation schedule. Because of the
first issue, the management decided to use AGVs rather than pipelines for the
transportation of dough ingredients (as is common in industrial bakeries). Be-
cause of the second issue, the management prefers a multi-agent system for the
logistic control of the AGVs.

The main requirement for the AGV system is that both, the movements of
AGVs and the control of AGVs, are flexible. Although the specific details are
beyond the scope of this chapter, we mention a few. For details on different
AGV systems we refer to (Le-Anh and De Koster, 2006).

With respect to the AGV movements we can think of wireless guidance
(i.e., laser or inertial), automatic battery charging or automatic battery swaps,
and a flexible guide path. These guide paths should provide the AGVs enough
freedom to drop their load at different locations (here locations are not always
fixed points but rather areas in the factory). Here we can think of free-ranging
AGVs (which means that their preferred tracks are software programmed and
can be changed relatively easily) and unidirectional conventional (networked)
guide paths (see Le-Anh and De Koster, 2006). Decisions regarding battery
management and guide paths may have an impact on the availability of AGVs,
and hence on the planning and scheduling decisions within our multi-agent
system. Here we assume that this impact can be expressed indirectly through
the travel times between different object in the factory. These travel times are
input of our simulation environment. Besides, given the factory layout (Figure
4.1) and the estimated number of AGVs (<10), congestion is not likely to occur.

With respect to the control of AGVs, we require that the routing decisions
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as well as the planning decisions are taken by the vehicles themselves. This
requires close cooperation with the vendors of AGVs and of the AGV control
system. Luckily, there is an increased interest among these companies in so-
called smart vehicles and distributed control systems. A recent example can be
found in Weyns et al. (2005), where a Belgian manufacturer of AGVs, Egemin
N.V., in cooperation with the AgentWise research group, did a pilot project
with agent controlled AGVs.

From the requirements mentioned above we designed several multi-agent
systems. We discussed these alternative designs, together with our modeling
assumptions, with the management of the bakery. To evaluate the design al-
ternatives, we implemented a prototype in a simulation environment and col-
lected the input data for this experiment at the bakery. We provided these
alternatives together with the simulation results to the bakery management in
order to make the final decision.

In the next subsections, we describe the dough preparation process at the
industrial bakery, our model of the physical process with our basic assumptions,
and the decisions involved in planning and control.

4.3.1 Process description

The production process at this bakery consists of three phases: (1) preparation
of dough, (2) baking of cookies, and (3) packing and storage. Our focus is on
the first phase, the preparation of dough. Dough is produced in barrels that are
essentially the same. AGVs transport the barrels between the various locations
in the dough preparation process, see Figure 4.1.

The process always starts with a dough production request generated by
the Manufacturing Execution System (MES). Each dough request is restricted
by an earliest- and latest delivery time of the dough at the production line.
The timing of dough requests depends on the day planning and the packing
department where cookies undergo a quality check.

First, we have to find a suitable barrel for the dough request. This can be a
barrel that has been used before for a similar dough type, or a barrel that has
been used for an incompatible dough type which has been cleaned at a special
cleaning area. An AGV picks up the barrel and moves it towards a storage area
consisting of three silos. Each silo may contain multiple ingredients and the
silos have to be visited in a fixed order (displayed by S1 - S2 - S3 in Figure 4.1).
The AGV positions its barrel below these silos to collect the ingredients. The
time spent at each silo is the same for all dough types. Next, the AGV moves
the barrel to a mixer. A single unique mixer is assigned to each dough type, but
a mixer may process multiple dough types. During mixing, also new ingredients
might be added to the dough such as decoration or ingredients that may only
be added just before finishing mixing (like chocolate chips). After mixing the
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Figure 4.1: Factory layout

ingredients, the dough has to rise before it can be put into the oven. Once
the rising time has passed, an AGV moves the barrel to the production line.
Each dough type is assigned to a single production line, but each production
line may process multiple dough types. There are no setup times for switching
between dough types. At the production line, the barrel is emptied in a feeder.
This feeder slowly delivers the dough to a conveyer belt moving through the
oven. Because a feeder can store more than one barrel of dough, dough can be
delivered some time before it is actually needed, i.e., before the earliest delivery
time. The empty barrel will stay on the AGV or will be dropped at the barrel
storage area.

The rising time plays an important role in planning and control of the dough
preparation process. Rising starts when ingredients are mixed and stops when
the dough is used at the production line. That is, rising continues if the dough
is being transported by an AGV and while it is waiting in the feeder. However,
each dough type has a minimum rising time at the rising area. Therefore, an
AGV always waits at the rising area until the minimum rising time has passed,
even if this leads to a violation of the latest delivery time. For each dough type,
a best rising time is specified. The product quality depends on the deviation
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between the actual rising time and the best rising time. A key problem for the
planning and control system is to balance product quality (deviation from the
best rising time) and tardiness (w.r.t the latest delivery time).

4.3.2 Model

Planning of the dough preparation process consists of scheduling all transporta-
tion jobs. To describe this in more detail, we discuss in this section (1) gener-
ating dough requests, (2) translating dough requests to transport jobs, (3) the
overall goal function of the planning problem, and (4) the model assumptions.

Generating dough requests As mentioned in Section 4.3.1, dough requests
are generated by the Manufacturing Execution System. We assume that dough
requests arrive one by one according to some stochastic process (e.g. a Poisson
process). Each dough request has the size of a single barrel, and is characterized
by a certain dough type and time-window restrictions. Each dough type has
a unique mixer, production line, and minimum- and best rising time. The
time-window of a dough request consist of an earliest- and latest delivery time.
The earliest delivery time is the time a line expects it can start processing
the dough. If dough is delivered before this time, it has to wait in the feeder.
Delivery after the latest delivery time is penalized.

Translating dough requests to transport jobs From the process descrip-
tion in Section 4.3.1, we can distinguish five job types for the AGVs: (1) silos -
mixer, (2) mixer - rising area, (3) rising area - production line, (4) production
line - barrel storage area, and (5) barrel storage area - silos. At each loca-
tion, an AGV may drop the barrel in order to carry out other transportation
jobs during the processing times for e.g. rising and mixing. However, it is not
always practical to drop the barrel, because (1) dropping and picking up the
barrel takes time and may cause waiting time for an AGV after processing is
finished and (2) the AGV is needed during several processing steps for tech-
nical reasons (e.g. an AGV is needed to move the barrel from one silo to the
other when collecting ingredients). For these reasons, the management decided
that an AGV is not allowed to drop the barrel at the silos, the mixer, and the
production lines. As a consequence, we only have two job types for the AGVs:
a preparation job (barrel storage area - silos - mixer - rising area) and a delivery
job (rising area - production line - barrel storage area).

A preparation job may be scheduled immediately after release of a dough
request, even if the corresponding line has already released other jobs that
are not yet delivered. We decided to postpone releasing the delivery job until
the corresponding dough has been delivered at the rising area, because (1) the
earliest- and best delivery time of the delivery job is dependent on the uncertain
delivery time of the dough at the rising area and (2) rising times provide enough
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flexibility to schedule the delivery job. Whenever an AGV delivers dough at
the rising area, it informs the corresponding line about the actual delivery time
so that it can release the delivery job.

Goal function The overall goal is to minimize costs based on two costs
drivers: deviation from the best rising time and tardiness with respect to the
latest delivery time. We normalize the penalties for deviation in rising time to
1 per time unit. We use the relative costs α for one minute tardiness compared
to one minute deviation from the optimal rising time. The management of the
bakery can influence the planning by manipulating α as the relative importance
of tardiness compared to deviation from the best rising time (timeliness versus
product quality). Note that these penalty functions can easily be extended
towards non-linear functions. Disadvantage of this is that it will be less intuitive
to the managers.

Model assumptions Throughout this chapter, we make the following as-
sumptions:

1. Although all travel- and processing times may be stochastic, we assume
that their means are known. Only the mean waiting times have to be
estimated by the agents themselves.

2. We do not explicitly include traffic congestion in our model, but we can
correct for traffic delays by adjusting the effective AGV speed.

3. All dough requests have to be handled, even if they are late.

4. An AGV can park at any location when it is idle.

5. We omit the processing times of dough at the production lines from our
model. By using externally generated time-windows we ignore possible
interdependencies between subsequent dough deliveries at the same line
with limited capacity.

6. We omit batteries from our model. We assume that recharging or swap-
ping batteries takes place during the idle times of AGVs.

7. We omit cleaning of barrels for ease of presentation. We assume that
whenever an AGV delivers dough at the production line, it drops the
empty barrel at the barrel storage area. For each new dough request,
there is a clean barrel available at the barrel storage area.

4.3.3 Planning and control

The main functionality the AGV system should perform is to assign all trans-
port jobs (preparation and delivery jobs) to AGVs and to schedule these jobs.



66 Chapter 4. MAS: design choices

In order to do so we have to reckon with (1) the minimal and best rising time
of dough and (2) limited capacity (and therefore waiting times) at the silos and
mixers. Because we decompose our system into multiple agents, the main goal
of the bakery has to be achieved by individual agents with individual goals.
Here we face two difficulties: (1) we have to deal with multiple criteria and
(2) goals of individual agents may differ from the main goal (or might even be
conflicting). To deal with multiple criteria we introduced the relative costs α.
An example of divergence in goals is that minimizing the costs of one dough
delivery may have a negative effect on the costs for the next dough delivery.
An AGV with the goal to minimize the tardiness and deviation from best ris-
ing times might incorporate extra waiting for a preparation job such that the
expected rising time equals the best rising time. Because scheduling jobs has
an impact on the future availability of AGVs, it might be the case that future
jobs are delivered late. Therefore, we enable the individual agents to value
their capacity. In the next section we describe alternative agent architectures
to support the allocation and scheduling decisions.

4.4 Alternative designs for the agent system

According to Luck et al. (2003), a suitable methodology for analyzing, design-
ing, and building multi-agent systems is a key factor for introducing agent-
orientation as an engineering approach to the industry. Three well known
methodologies are Prometheus (Padgham andWinikoff, 2004), Gaia (Wooldridge
et al., 2000), and MaSE (Wood and DeLoach, 2000). Roughly speaking, each
of these three methodologies consists of the following steps:

1. Decomposition of the system into multiple functionalities.

2. Allocation of functionalities to agents.

3. Establishing interaction protocols between the agents.

4. Designing the decision making capabilities of the agents.

The terminology may vary, but the approaches have many similarities. The
first step is usually achieved by listing all system goals and grouping related
goals. These related goals, together with related data, triggers, and actions,
form functionalities. The main task here for the system designer is to decide
among alternative decompositions. In the second step it is decided how these
functionalities are allocated to agents. In the third step, we face several design
choices such as the sequence of steps in an interaction protocol. In the last
phase we have to design protocols for internal processing of the individual
agents. This involves the way they react on triggers and incoming messages.
In our approach, we call the first three steps the architectural design phase
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and the last step the detailed design phase. The architectural design phase
is generally supported by Agent Oriented Methodologies. For the Detailed
Design Phase, support is currently lacking; especially to quantify the quality
of the design. Therefore, we apply simulation as a design technique to support
this phase.

Although our proposed method is independent of the specific agent design
methodology used, we select the Prometheus methodology and the Prometheus
Design Tool. It is a practical, rather complete and easy to understand method-
ology that especially provides support to our design choices in the architectural
phase, which we describe below. The detailed design phase is described in Sec-
tion 4.5.

4.4.1 Architectural design phase

Decomposition of functionalities (step 1)

The main goal of the bakery, balancing the deviation from best rising times and
tardiness (Section 4.3.3), has to be decomposed into multiple functionalities,
which can be assigned to different agents. A functionality describes a behavior,
consisting of decisions and actions, together with relevant triggers and data
(Padgham and Winikoff, 2004). Here we focus on the decisions and ignore
physical actions (drive, pickup etc.) which are obvious. First, we create a
network of connected goals (see Padgham and Winikoff, 2004). The main
design choice here is to group these goals. To select reasonable groupings
we use the standard software engineering criteria of coupling and cohesion.
Coupling is the level of interdependency between functionalities, while cohesion
is the level of uniformity of the goals in a functionality. After evaluation of
different groupings we end up with three functionalities: AGV selection, dough
preparation management, and dough delivery management. AGV selection is
concerned with the selection of AGVs waiting in a queue before a silo or mixer.
The last two functionalities are concerned with the allocation and scheduling
of respectively preparation jobs and delivery jobs.

Allocation of functionalities to agents (step 2)

Next, we have to allocate the functionalities to agents, which represent physical
objects in the bakery. We have the following objects: AGVs, lines, silos, and
mixers. Besides an AGV agent and a line agent, we use a storage agent that
combines the silos and mixers because an AGV will always visit a mixer directly
after visiting the silos.

In order to assign functionalities to these agents we look at data and trig-
gers. Functionalities may be triggered by actions of physical objects within
the factory, which then form candidates for these functionalities. We also eval-
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uate the data used and produced by different functionalities. This of course
requires an iterative approach, because at this point we can only guess where
information is located and which information is necessary for decision making.
Functionalities that share the same data source form candidates for allocation
to the same agent because it requires less information exchange.

The AGV selection functionality has as triggers the arrival of an AGV at a
silo or mixer and finishing loading ingredients of mixing. Therefore, we allocate
this functionality to the storage agent. For the dough preparation and dough
delivery functionalities, we decide to investigate allocation to either the line
agent or AGV agent. If we allocate these functionalities to the line agent, it
will search for an AGV based on its triggers (e.g. it receives a dough request or
dough has been delivered at the rising area). If we allocate these functionalities
to the AGV agent, then it will search for a job at all lines based on its triggers
(e.g. it becomes idle). Because both allocations seem reasonable (based on
qualitative arguments), we decide to evaluate both of them using simulation.
In the remainder of this chapter we refer to the case where these functionalities
are assigned to the line agent by line centric (LC) and the case where they are
allocated to the AGV agent by AGV centric (AC).

Interaction between agents (step 3)

Having allocated functionalities to agents, we now have to specify how agents
exchange information in order to perform their given functionalities. Again, we
use Prometheus by building scenarios, interaction diagrams, and protocols (see
Padgham and Winikoff, 2004). Main difficulty is to establish suitable interac-
tion sequences that describe (1) which agents communicate with which other
agents and (2) the timing of communication. Given the different agent- and
message types, we might end up with a large number of possible interaction
sequences. Therefore, we propose a stepwise approach. First, we focus on the
order in which agents are involved in an interaction sequence, which we indicate
by a communication sequence. From this, we derive communication schemes
that describe who communicates with whom. Next, we make a selection of suit-
able communication schemes. Finally, we specify communication by describing
the communication protocols. This results in several agent architectures which
we evaluate using simulation.

We illustrate this approach only for the dough preparation management
functionality. The interaction sequences for the other two functionalities are
obvious because they require only two agent types.

Communication sequences The initiator of a communication sequence is
given by the agent that is responsible for the functionality under considera-
tion. Given the two allocations of the previous section (LC and AC) and the
three agents (AGV, line, storage) involved in the dough preparation manage-
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ment functionality, we have 4 possible sequences. However, we also have an
option to discard some agents in the decisions processes. We decided also to
consider communication sequences without the storage agent, which result in
2 additional sequences (1 for each allocation).

Communication schemes An overview of all possible communication schemes
for the dough preparation functionality is given in Figure 4.2. The initiator
(agent at the first row) always communicates with the second agent in the se-
quence. The third agent, however, can be contacted either by the first or by
the second agent. Each of these schemes provides a rough sketch of a possible
protocol. Consider, for example, the 6th scheme: based on its triggers, the line
agent is triggered by a dough request and generates a preparation job. The
line agent contacts the AGV agents for offers to process this job. To generate
an offer, each AGV has to decide when the job should be started. Therefore,
they communicate with the storage agent about available capacity at the silos
and mixers.

Selection of communication schemes In principle, each scheme from Fig-
ure 4.2 could be implemented. However, we select a few schemes for our nu-
merical experiments using qualitative arguments. We may consider (1) the
scarceness of resources in the communication sequences and (2) the required
information exchange in the communication schemes. The scarceness of re-
sources is not unambiguous here because in a dynamic environment - such as
the bakery - it may occur that at different moments, different resources will
be the bottleneck. Therefore, we focus on the expected information exchange.
As a guideline regarding the information exchange we avoid schemes which
require relatively more information exchange while decisions are based on the
same information.
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Figure 4.2: Communication schemes
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Basically, the dough preparation management functionality should support
the following decision: which AGV should do which preparation job at what
time. The three agents involved in this decision process have the following
information that might support this decision. The line agent has knowledge
about dough requests and dough deliveries. The AGV agent has knowledge
about its availability and expected waiting times. The storage agent has know-
ledge about AGV arrivals. For both allocations (LC and AC) we select one
communication scheme with three agent types using the following two obser-
vations:

1. If the first agent in a scheme communicates with the other two agents,
it is required that the second agent provides all necessary information to
the first agent. Otherwise, the first agent has to provide all necessary
information to the second agent. In the AGV centric schemes, an AGV
agent only informs the other players about its idle status. So schemes AC2
and AC4 require more information exchange than schemes AC1 and AC3
respectively. In the line centric schemes, AGVs may have schedules with
multiple jobs, and the storage agent may have a schedule with multiple
AGV arrivals. Because the line agents inform the other players only about
a single job, schemes LC2 and LC4 require more information exchange
than schemes LC1 and LC3 respectively.

2. Communication with the line agent in the AGV centric schemes always
involves communication with all line agents (because we want to find the
most suitable job for a specific AGV), and communication with the AGV
agent in the line centric schemes always involves communication with all
AGV agents (because we want to find the most suitable AGV for a specific
job). Therefore, it requires less information exchange if the storage agent
is used as second agent instead of third. So we skip schemes AC1 and
LC1.

After applying these guidelines we end up with schemes AC3, AC5, LC3,
and LC5. Note that we only skipped schemes for which there is an alternative
that requires less communication in order to make decisions based on exactly
the same information. Therefore, this choice does not affect the logistics perfor-
mance. However, it has an impact on the responsibilities and decision making
capabilities of the agents. In schemes AC3 and LC3, the storage agent plays a
more central role compared to the skipped schemes. A possible disadvantage,
we did not take into account, is that these schemes have a single point of failure.

Agent architectures Next, we have to specify the communication protocols
to be applied to the remaining communication schemes. The most common
protocol between agents, in both real applications and detailed simulations,
is the Contract-Net Protocol (CNP) (Van dyke Parunak, 1987). The CNP,
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introduced by Smith (1980), is a high level negotiation protocol for achieving
efficient cooperation. This protocol consists of four steps: (1) an initiator sends
a call for proposals to a set of participants, (2) the participants respond with a
proposal, (3) the initiator chooses the best proposal and awards a contract to
the respective participant, and (4) the other participants are rejected. We use
the CNP to support the dough preparation management and dough delivery
management functionalities. For the AGV selection functionality we simply use
a FCFS strategy, i.e., the storage agent simply selects the AGV that arrived
first in a queue. Given the remaining communication schemes we derive four
architectures. Here an architecture consists of a description of how agents react
on triggers and exchange information with other agents.

In the agent centric architectures (AC3 and AC5), the job allocation process
is triggered by an AGV that becomes idle. Then it might occur that a line
receives a dough request while all AGVs are idle. In this case the dough will
never be allocated to an AGV. Therefore, we also trigger an arbitrary idle
AGV, if there is one, whenever a new job arrives.

In AC3 (Figure 4.3), the AGV informs the storage agent about its position
whenever it becomes idle. In return, the storage agent sends a request to all
lines to submit their job characteristics. After receiving the job characteristics,
the storage agent selects the most suitable job, informs the corresponding line
agent about the expected delivery time of this job, and informs the AGV agent
where to move to and when.
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Figure 4.3: AGV centric architecture AC3

In AC5 (Figure 4.4), the AGV sends a request to all lines to submit their
job characteristics. After receiving the job characteristics, the AGV agent
selects the most suitable job and informs the corresponding line agent about
the expected delivery time of this job.
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Figure 4.4: AGV centric architecture AC5
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In the line centric architectures (LC3 and LC5), preparation jobs are trig-
gered by a line agent who receives a dough request. Delivery jobs are triggered
when corresponding dough has been delivered to the rising area. In LC3 (Fig-
ure 4.5), the line agent informs the storage agent about a new job. The storage
agent sends a request to all AGVs. After receiving the requested information
from all AGVs, the storage agent selects the most suitable AGV and informs
the line agent and the AGV agent.
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Figure 4.5: Line centric architecture LC3

In LC5 (Figure 4.6), the line agent sends the job characteristics to all AGVs.
Each AGV selects the best time to start this job and calculates a price. The
line agent simply selects the AGV with lowest price and informs the winning
AGV.
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Figure 4.6: Line centric architecture LC5

The decision making capabilities of the agents (illustrated by the white
rectangles in the figures above) are described in Section 4.5.

4.4.2 Summary of the architectural design phase

In the architectural design phase we go from a main system goal through a
sequence of the following steps: (1) decomposition into functionalities, (2) al-
location of functionalities to agents, and (3) establishing interaction protocols
between the agents. The last step is achieved by (a) determining communica-
tion sequences for all allocations, (b) determining communication schemes for
each sequence, and (c) determining interaction protocols for all communication
lines in each scheme.

This design approach enables us to avoid overlooking promising architec-
tures. However, when there are a lot of resources (with corresponding agents),
the number of possible schemes may become very large. In our case we have 12
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schemes for the dough preparation management functionality and 2 schemes
for the dough delivery management functionality. Suppose we also incorporate
the cleaning process of barrels. Then we have an additional functionality called
barrel management and a cleaning agent. The total number of possible schemes
is then 168. By going through a step-wise approach we are able to limit the
number of possibilities in a structured manner. In our case we end up with 4
architectures.

4.5 Detailed design phase

In this section we describe the following decision making capabilities that are
required in the four alternative architectures: create jobs (4.5.1), evaluate jobs
(4.5.3), evaluate AGVs (4.5.4), schedule arrivals (4.5.5), schedule jobs (4.5.6),
and price jobs (4.5.7). In addition, we introduce a waiting strategy (4.5.2) that
is required for scheduling and job evaluation, and end with a section on how
agents estimate parameters (4.5.8).

4.5.1 Create jobs

As mentioned before, a dough request leads to a preparation job and a delivery
job for the AGVs. The characteristics of these two jobs are determined from
the characteristics of the dough request. We denote the set of preparation jobs
and delivery jobs by Lp and Ld respectively.
A dough requests is characterized by a dough type, a release time a, a

production line p, and an earliest- and latest delivery time at the production
line denoted respectively by ed and ld. The dough type uniquely describes the
following characteristics of a dough request: the minimum rising time rmin

at the rising area, a best rising time rbest, and a mixer m. For notational
convenience we subtract the travel time from the mixer to the rising area from
the rising time. The rising time therefore starts upon delivery at the rising
area and ends at the time the line start working on this dough.

When a line receives a dough request at time a, it creates a preparation
job ϕ with the following characteristics: a production line p, a mixer m, and
a best- and latest delivery time at the rising area, respectively denoted by bp

and lp. For the best delivery time we use bp = max(a, ed − rbest) because we
want to deliver this job as early as possible such that there is more flexibility
for the corresponding delivery job. For the latest delivery time we use lp =
ld − rbest because delivery after this time certainly results in penalties for the
corresponding delivery job.

When a line receives a message at time t that dough has been delivered at
the rising area, it creates a delivery job ϕ for this dough. This delivery job is
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characterized by a production line p and an earliest-, best-, and latest delivery
time of the dough at the production line, respectively denoted by ed, bd, ld. The
earliest delivery time is given by ed = t+ rmin + τ , where τ is the travel time
between the rising area and the production line of the job. The best delivery
time is given by bd = min(t+ rbest, l

d).

In the remainder we also write the above characteristics as functions of a job
ϕ to denote the characteristics of a specific job. For example, the best delivery
time of job ϕ is given by bd (ϕ).

4.5.2 Waiting strategy

To describe the waiting strategy we introduce a best starting time of a job.
The best starting time of a preparation job provides the best time to start
loading the ingredients at the first silo. The best starting time of a delivery
job provides the best time to pickup the dough at the rising area. To derive
the best starting time, agents have to be able to make a trade-off between loss
of capacity (waiting) and the direct costs caused by deviation from the best
rising time or tardiness w.r.t. the latest delivery time. Therefore, we introduce
a cost factor β for the value of AGV capacity per time unit (see Section 4.5.8
for estimation of this parameter).

If (β ≥ 1), then the costs for waiting are higher then the expected costs for
deviation in rising times. The best starting time of a preparation job is given
by the earliest arrival time of the AGV at the first silo. The best starting time
of a delivery job is given by the maximum of the earliest pickup time (delivery
time plus minimum rising time) and earliest arrival time of the AGV at the
rising area. Otherwise, if (β < 1), then it is better to wait if this results in less
deviation from the best delivery time. The best starting time of a preparation
job is given by the maximum of the earliest arrival time of the AGV at the first
silo, and the best delivery time bp minus the expected time between loading
the ingredients at the first silo and the time to drop the barrel at the rising
area. The best starting time of a delivery job is given by the maximum of the
earliest arrival time of the AGV at the rising area, and the best delivery time
bd minus the travel time from the rising area to the production line.

4.5.3 Evaluate jobs

Job evaluation is used in the agent centric architectures to determine the job
which should be handled first. Therefore, we determine a priority value of each
job. This value should reflect the priority of a job and the waiting time of an
AGV doing this job. The total handling time is not a valid selection criterion
because delivery jobs have shorter handling times than preparation jobs but
may be equally important.
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As input we need the characteristics of all jobs, and the expected earliest
delivery times zvϕ for an AGV v to deliver job ϕ, for all jobs. In AC3, jobs
are evaluated by the storage agent. To calculate the earliest delivery time of
an AGV, the storage agent receives the current location of the AGV and the
costs β. In AC5, jobs are evaluated by an AGV agent. To calculate the earliest
delivery time, the AGV agent estimates the waiting times before loading- and
mixing ingredients. The priority value Wvϕ for an AGV v doing a job ϕ, is a
measure of the distances between the best- and latest delivery times, and the
expected earliest delivery time zvϕ. If the earliest delivery time zvϕ is later
than the best delivery time bp (ϕ), we add the difference to the priority value
because other AGVs will do the job with even more penalties. If the earliest
delivery time zvϕ is earlier than the best delivery time, then we subtract the
difference because another AGV may do this job better at a later moment.
The same holds for the difference between the earliest delivery time and the
latest delivery time. If waiting is required due to minimum- or best rising time
constraints, we subtract the value of waiting given by β times the waiting time.
We have the following:

Wvϕ =

½
(zvϕ − bp (ϕ)) + α (zvϕ − lp (ϕ))− βmax (0, bp (ϕ)− zvϕ) for ϕ ∈ Lp¡
zvϕ − bd (ϕ)

¢
+ α

¡
zvϕ − ld (ϕ)

¢
− βmax

¡
0, bd (ϕ)− zvϕ

¢
for ϕ ∈ Ld
(4.1)

After calculation of all priority values, the job with highest priority will be
selected.

4.5.4 Evaluate AGVs

AGV evaluation is used in LC3 to determine the AGV that should handle a
specific job. We use the same approach as for job evaluation. As input we
need the expected delivery times of all AGVs and the job characteristics of
the job. To calculate the earliest delivery time of a delivery job, the storage
agent receives the earliest arrival time at the rising area from all AGV agents.
To calculate the earliest delivery time of a preparation job, the storage agent
receives the earliest arrival time at the first mixer from all AGV agents. The
AGV v with highest priority value Wvϕ for a specific job ϕ, calculated with
(4.1), is selected.

4.5.5 Schedule arrivals

In AC3 and LC3, the storage agent maintains a schedule of AGV arrivals. This
schedule consists of the following AGV handling records:

[AGV, Earliest arrival time, Scheduled starting time, Mixer, Arrival at

mixer, Waiting time at mixer, Departure time, Best departure time,

Latest departure time]



76 Chapter 4. MAS: design choices

Initially these times are random variables. For simplicity of the planning,
we decide to use the expectations only. These expected times are updated at
three events: (1) whenever an AGV starts loading ingredients at the silos, (2)
when an AGV leaves the mixer, and (3) when a new AGV arrival is scheduled.
When an AGV leaves the mixer, the corresponding record will be deleted.
Whenever the storage agent or AGV agent decides about a scheduled starting
time, the storage agent adds a record to its schedule and updates the times of
all records. When scheduled starting times of other AGVs are changed, they
are only communicated to AGV agents at the moment they schedule a new job
(earlier is not necessary).

The AGV arrival schedule has two purposes: earliest arrival scheduling
and best arrival scheduling. Earliest arrival scheduling is used by the storage
agent in AC3 to calculate the earliest delivery time of a preparation job. Best
arrival scheduling is used in architectures AC3 and LC3 to schedule the starting
times of AGVs such that the expected penalties are minimized. For both
purposes, the storage agent needs to know the earliest arrival time of the AGV,
the costs β, and the best-, and latest departure times from the mixers. The
only distinction between the two purposes is that in case of earliest arrival
scheduling, we set the best departure time equal to the earliest departure time
(based on the earliest arrival time and zero waiting times at the silos and
mixers).

The storage agent will schedule a new AGV arrival as close as possible to the
best departure time, moving some jobs earlier (without violating the earliest
arrival time restrictions) and moving other jobs forward. Therefore, the storage
agent evaluates the following situations: (1) for each insertion position after
the first job, the new arrival is scheduled directly after the previous arrival
(possibly moving further jobs forward); (2) for each insertion position before
the last arrival, the new arrival is scheduled as close as possible before the next
job (moving earlier jobs backwards and possibly moving further jobs forward
if preceding arrivals cannot be moved further backwards); and (3) the delivery
time of the new job is scheduled as close as possible to the best delivery time
while moving the other arrivals.

If the current AGV arrival schedule contains n arrivals, then we have 2n+1
possible insertion positions of the new AGV arrival. The alternative schedule
with lowest costs will become the temporal schedule. In case of earliest arrival
scheduling, the temporal schedule is only used to provide the earliest departure
times for different jobs. In case of best arrival scheduling, the storage agent
replaces the current schedule with the temporal schedule derived for the most
suitable job or AGV.
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4.5.6 Schedule jobs

In AC3, an AGV has only one job at a time. The storage agent determines
the best starting time for this job (Section 4.5.2), calculates the loading- and
mixing times in case of a preparation job, and informs the AGV where to be
at what time.

Also in AC5, an AGV has one job at a time. This time the AGV determines
the best starting time for a job (Section 4.5.2). Because loading- and mixing
times are not communicated with the storage agent, the AGV agents estimate
the expected waiting times at the first silo and the mixer. The expected waiting
time is subtracted from the best starting time.

In LC3, an AGV schedule may contain multiple jobs. Each time a new job
arrives, the AGV adds this job to the end of its schedule and determines the
best starting time for this job (Section 4.5.2). The waiting times at the silos
and mixers are calculated by the storage agent who maintains a schedule of
AGV arrivals.

Also in LC5, an AGV schedule may contain multiple jobs. Again, AGVs may
use a scheduling method, denoted by append scheduling, where new jobs are
always added to the end of the schedule. However, this time it has more freedom
to schedule its own jobs because they are not communicated with the storage
agent. Therefore, we also consider an insertion scheduling method where a new
job can be inserted at any position in the current schedule without altering the
order of other jobs (like we did in the previous section with the AGV arrival
schedule). For a given order of jobs, AGVs calculate the best starting times
(Section 4.5.2). Because loading- and mixing times are not communicated with
the storage agent, AGVs estimate the waiting times at the first silo and the
mixer and subtract this time from the best starting time. AGVs may update
their schedule at the following moments: arrival at some destination (line, silo,
mixer, rising area), finishing an action (pickup barrel, drop barrel, loading,
mixing), during bid calculation, and after receiving a grant.

4.5.7 Price jobs

In LC5, AGVs have to price jobs and provide this price to the line agent. The
price for an AGV is given by the marginal costs of appending or inserting a
new job in its current schedule. Depending on the scheduling method, the AGV
agent can schedule the new job at different positions in the current schedule. We
indicate the current schedule of vehicle v by Ψv and we write Ψnvϕ for schedule
alternative n, where the new job ϕ is inserted after job n (1 ≤ n ≤ |Ψv|). For
each insertion position we also have to schedule the optimal starting times of
all jobs. For example, suppose the new job is added directly after delivery of
the last job in the current schedule and the new job is delivered after its due
time, then we might remove unnecessary waiting times for the previous jobs.
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To determine the optimal insertion position for a new job and the optimal
starting times for all jobs, we solve a simple linear program for each alternative
schedule. Below, we describe how this can be done.

Formally, we define the schedule Ψv of AGV v by an ordered list of 3-tuples
Ψvm = (ϕm, ωm, ρm) where: ϕm refers to the mth job in schedule Ψv; ωm to
the scheduled pickup time of this job; and ρm to the scheduled delivery time.
We write τe

d(ϕm)o(ϕm+1)
for an empty move from the destination of job ϕm to

the origin of the next job. The value of a schedule is given by the deviations
from the best rising times, plus α times the tardiness, plus β times the total
time:

C (Ψv) = β
³
ρ|Ψv| − θ

´
+

|Ψv|X
m=1

(
|ρm − bp (ϕm)|+ α (ρm − lp (ϕm))

+ for ϕm ∈ Lp¯̄
ρm − bd (ϕm)

¯̄
+ α

¡
ρm − ld (ϕm)

¢+
for ϕm ∈ Ld
(4.2)

Here we introduce the symbol θ to indicate the current time. The scheduled
delivery time is given by ρm = ωm+h (ϕm), where h(ϕm) is the handling time
of job ϕm. In case of a preparation job, this handling time is given by the
expected time between picking up a barrel at the storage area and dropping
the barrel at the rising area, including expected waiting times at the silos and
the mixer. In case of a delivery job, the handling time is given by the time
between picking up a barrel at the rising area and dropping it at the production
line. The pickup times are scheduled such that they minimize the total costs
of a schedule:

min
ωm,m=2..|Ψv|

C (Ψv) (4.3)

s.t.

ωm ≥ e (ϕm) for ϕm ∈ Ld, m ≥ 2
ωm ≥ ωm−1 + h

¡
ϕm−1

¢
+ τ e

d(ϕm−1)o(ϕm)
for m ≥ 2

Here we assume that the scheduled times of the first job (which may be in
execution) can not be changed. The bid price of a vehicle v for job ϕ is now
given by the difference in costs between the cheapest alternative schedule and
the current schedule:

b (v, ϕ) = min
n

C
¡
Ψnvϕ

¢
− C (Ψv) (4.4)

4.5.8 Parameter estimation

In order to perform their tasks, AGV agents have to estimate some parameters.
In all architectures they estimate the costs β per unit time. In AC5 and LC5,
they also estimate the waiting times before loading and mixing ingredients.
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To estimate the variables, we use an exponential smoothing procedure (Silver
et al., 1998) where a learning rate γ is introduced as a weighting factor that
determines the extent to which the current observation is to influence an ex-
pected value of an internal parameter. The meaning of the learning rate in this
procedure is that when γ is close to one, the new forecast will be based almost
exclusively on the last observation. Conversely, when γ is close to zero, the
new forecast will be similar to the previous one.

The waiting times are updated after each visit at the first silo or mixer.
The value of β is calculated by the AGV agent, based on the average penalties
paid per time unit. The logic behind this is that if we wait an extra time unit,
this AGV will be available one time unit less, which possibly results in one
time unit of extra penalties. We use the exponential smoothing procedure to
incorporate fluctuations in the average penalties. To avoid unstable behavior
we smooth the penalties per period instead of penalties per job. An extension
for learning β is discussed in Section 4.7.

4.6 Simulation

The goal of this simulation study is twofold: (1) to find out which agent archi-
tecture can be used best at the bakery and (2) to demonstrate the impact of
design choices on the system performance under different parameter settings.
Hence, this simulation acts as a decision support tool for the management of
Merba to select the best architecture.

To design a valid simulation model we follow the approach of (Law and
Kelton, 2000). Basically this consists of (1) collection of high-quality input
data, (2) regular interaction with the managers, (3) keeping record of the as-
sumptions and discussing them with the management, and (4) validation of
the output. Comparison of the simulation model with the existing situation
is not a valid approach here because there are large differences between the
current situation and the proposed automated dough production process and
there is a lack of performance data of the current manual processes. As an
alternative we compare the outcomes of our simulation with the expectations
from the management of Merba. These expectations are based on spreadsheet
calculations using the same input data.

In this section we subsequently describe our simulation settings, the exper-
imental factors, and the results.

4.6.1 Simulation settings

The bakery produces over 100 dough types. For ease of presentation, we aggre-
gated these dough types into one fictive dough type per production line based
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on historical data of all dough requests. These virtual dough characteristics
are given in Table 4.1. Here TBJ is the average time between subsequent job
arrivals. All times are given in minutes.

Line TBJ Look-ahead Min rising Best rising Mixer
(p)

¡
ld − a

¢
time (rmin) time (rbest) (m)

L1 30 50 15 20 M1
L2 60 50 15 20 M1
L3 15 70 20 30 M2
L4 30 70 30 52 M3
L5 30 70 30 52 M4
L6 30 70 30 52 M5
L7 15 70 30 52 M5
L8 30 70 30 45 M6

Table 4.1: Dough request characteristics

Production runs 5 days per week, 24 hours per day. Every week, production
starts Monday morning at 4:00 hour. The last batch is released to the dough
preparation process on Saturday morning at 4:00. Because the system starts
and ends empty each week, we have a terminating simulation. We consider
one week as a replication for our simulation experiments. We assume that the
release of dough requests follows a Poisson process with mean time between
jobs per production line as given in Table 4.1. These figures have been derived
from historical data on peak days of the bakery.

All AGVs have a constant speed of 1 m/s. For simplicity, we assume that
AGVs always travel in a straight line (shortest distance) from one object to
another. We add half a minute to all movements to incorporate the time it
takes for an AGV to turn. The time to pickup or drop a barrel is 30 seconds
and the loading time for ingredients is 2 minutes per silo. The time for mixing
is 11.9 minutes at mixer 1, 11.6 minutes at mixer 2, and 5.3 minutes at the
other mixers. The distances between all objects can be calculated from Figure
4.1.

For all experiments, we use 7 AGVs, a penalty factor α = 10, and a smooth-
ing factor γ = 0.05. The number of AGVs is chosen such that all dough requests
can be handled (not necessarily in time). In our simulation experiments we have
seen that the choice for the penalty- and smoothing factor does not affect the
relative performance of the alternative architectures.

As overall performance measures we use (1) the penalty costs for job tar-
diness and deviation between actual and best rising time, (2) the number of
communication messages, and (3) the computation time. The number of com-
munication messages provides an indication of the network load. The com-
putation time is measured per job assignment, taking into account parallel
computation. We implemented the agent architectures in the object oriented
simulation package eM-Plant 7.5 and performed experiments on a Pentium IV
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processor at 3.4GHz. All performance measures are calculated as weekly aver-
ages. We choose the number of replications (weeks) needed in our simulation
experiments such that a 95% confidence interval for the total costs per work
week shows a relative error of at most 5%. We found that 10 replications are
sufficient for all scenarios.

4.6.2 Experimental factors

The experimental factors can be found in Table 4.2. We evaluate the 4 different
agent architectures, and for architecture LC5 we consider the two scheduling
methods. The factor stochasticity describes the uniform deviation around the
mean handling- and travel times. So a deviation of 20 will result in handling-
and travel times between 0.9 and 1.1 of the normal value. We include this
factor to examine the impact of uncertainty because of possible congestion
effects (which architecture and planning method is most robust?). Next, we
consider three fractions that describe the deviation from the standard settings
(Section 4.6.1). These factors will be examined one at a time.

Factor Values
Architecture AC3, AC5, LC3, LC5
Scheduling in LC5 Append (LC5a), Insert (LC5i)
Stochasticity (%) 0, 8, 16, 24, 32, 40, 48
Fraction TBJ 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20
Fraction handling times 1.00, 1.08, 1.16, 1.24, 1.32, 1.40, 1.48
Fraction look-ahead 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4

Table 4.2: Experimental factors

The fraction TBJ provides the fraction of the mean time between subsequent
job arrivals compared to the default values as given in Table 4.1. The fraction
handling times describe the increase in handling time for silo 1 compared to
the default value from Section 4.6.1. The handling times of the other two
silos is decreased by half of this amount such that the total handling time at
the storage department will be the same. In our case, a value of 1.4 means
a handling time of 2 minutes and 48 seconds at silo 1 and 1 minute and 36
seconds at the other silos. We use this factor to investigate the effects of longer
queues at the storage department. The fraction look-ahead is a multiplication
factor for the look-ahead values from Table 4.1.

4.6.3 Results

In the first 4 experiments, we examine the performance of the different archi-
tectures in terms of penalties on tardiness and deviation from the best rising
times.



82 Chapter 4. MAS: design choices

0

20
40
60
80

100
120
140
160
180

200

0.9 0.95 1 1.05 1.1 1.15 1.2

Fraction time between jobs

Pe
na

lti
es

 (x
10

00
)

AC3
AC5
LC3
LC5a
LC5i

Figure 4.7: Impact of the time be-
tween jobs on the penalties
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Figure 4.8: Impact of the amplitude
in time between jobs on the penalties

In the first experiment we vary the time between jobs (Figure 4.7). We see
that architectures LC3 and LC5a, where new jobs are added to the end of AGV
schedules, are less robust against increasing number of jobs. Architecture LC5i
performs best in most situations. However, with decreasing number of jobs, the
AGV centric architectures may become in favor. In the second experiment, we
vary the look-ahead of jobs (Figure 4.8). We see a similar behavior in which the
AGV centric architectures are better with increasing look-ahead. The reason
for this is that increasing look-ahead leads to longer schedules which may result
in less flexibility. This is especially true in case of append scheduling, where
also rush jobs have to be added to the end of the schedule. With decreasing
look-ahead, the time becomes too short for AGVs to deliver the jobs on time.
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Figure 4.9: Impact of the deviation
in handling- and travel times on the
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handing times for silo 1 on the penal-
ties

In a third experiment, we investigate the effect of uncertainty in the handling-
and travel times (Figure 4.9). As expected, penalties increase with increas-
ing uncertainly for all architectures. We see that with increasing uncertainty,
scheduling the AGV arrivals becomes less useful. In a fourth experiment, we
investigate the effects of congestion at silo 1 (Figure 4.10). We see the perfor-
mance of architecture AC3 remains the same with increasing congestion, while
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the costs of all other architectures increase. We also see that with increasing
congestion, it becomes more useful to scheduling the loading- and mixing times
(AC3 and LC3).
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Figure 4.12: Impact of the fraction
time between jobs on the computation
time

Next, we consider the number of communication messages and computation
time as performance indicators. In the fifth experiment, we vary the time
between jobs and investigate the number of communication messages of the
different architectures (Figure 4.11). Note that the number of communication
messages is the same for both scheduling methods in architecture LC5. We
see (1) the number of messages decreases with decreasing number of jobs; (2)
communication with the storage agent (LC3 and AC3) requires much more
communication because loading- and mixing times have to be communicated
for every job with every schedule update; and (3) the line centric architectures
require the most amount of communication. In a sixth and final experiment,
we show the impact of a varying time between jobs on the computation time
(seconds) in Figure 4.12. The results are obvious: (1) scheduling loading-
and mixing times, increases the computation time and (2) the computation
time for all architectures decreases with increasing time between jobs. Note
that computation time is measured based on a parallel implementation. For
architectures AC3 and AC5 this does not make a difference because we have
sequential decision processes. However, in architectures LC5a and LC5i, most
computation is done in parallel by all AGVs when they try to schedule a new
job received by a line agent.

The data used for the experiments described above is based on real factory
data in which we changed one factor at a time. We did not use a full factorial
design because this would be beyond the scope of this chapter; the case study
only serves as an illustration to support our research objectives (see Section
4.2). However, we also examined the effect of several other experimental factors.
We found that for each architecture, there exists at least one instance in which
it performs best. This certainly illustrates that qualitative arguments and
modeling guidelines in current MAS methodologies are insufficient to select a
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single "best" architecture for MAS. With respect to the simulated factory, we
conclude that the line centric architecture LC5i where AGV agents schedule
multiple jobs in advance, performs best in almost all situations, although it
requires a substantial amount of communication and computation time. With
increasing congestion at the silos, the architecture LC3 without the storage
agent (that schedules the loading times of AGVs) will become in favor. The
AGV centric architectures come in favor in case of (1) decreasing number of jobs
or (2) increasing look-ahead or (3) increasing congestion at the silos. Obviously,
under the latter conditions, an insertion scheduling heuristic of the AGV agents
would be less beneficial and/or becomes more difficult.

4.7 Extensions

In Section 4.4.1 we mentioned the FCFS selection strategy at silos and mixers.
An improvement can easily be made by using an auction protocol to select an
AGV from the queue. Each AGV in a queue has to submit a bid consisting of
the increase in penalties if it has to wait one turn. One turn here is the expected
time until the next AGV may leave the queue. The AGV with highest bid will
be handled first.

In Section 4.5.8 we calculated β as being the average penalties paid per time
unit. An alternative is to calculate β as being the average revenue per time unit.
In order to generate revenues we make use of a reverse Vickrey auction. In this
auction, the lowest bidder wins the auction and receives the price of the second
lowest bidder. This auction type has received particular attention within the
multi-agent community because it possesses a dominant strategy to bid one’s
true valuation (Vickrey, 1961). This pricing strategy is especially suitable for
architecture LC5 where AGV agents calculate a price and the AGV with lowest
price is selected. The logic of calculating β, as being the average revenue per
time unit, is that waiting one extra time unit will decrease the period after
this job with one time unit. So expected revenues decrease with the expected
revenue of one time unit. But revenues also provide valuable information about
future penalties. Let us consider an AGV that just won an auction. Its revenue
for the new job resembles the increase in expected penalties if not he, but the
second best bidder had won this auction. Because AGVs plan jobs in the future,
this information provides insight into future network pressure. In other words,
the last observation of revenues provides a better estimate of future penalties
than the last observation of penalties already paid.

4.8 Conclusions

During our field project at Merba bakeries, we found that current MAS de-
velopment methodologies do not provide sufficient support to select the pre-
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ferred design for implementation. The scientific contribution of this chapter is
to provide insight into the MAS design process and to improve current MAS
development methodologies to offer enhanced support in cases where multi-
ple alternative decisions and communication scenarios exist. Scenarios vary in
roles and responsibilities assigned to the agents, the level of intelligence of the
agents, and the interaction protocols. Thus, our results are not restricted to
the agent-based control of AGVs. In a wide range of MAS application areas
where different actors and roles collaborate, such a method support will be
beneficial. Also the proposed multi-agent system itself provides insights that
can be generalized to other situations. Especially regarding the way agents
balance different delivery criteria in the scheduling of jobs.

To illustrate the design process, we considered a simplified part of the dough
production process at Merba bakeries. By using a stepwise approach - built
upon existing MAS development methodologies - we already derived eight al-
ternative designs for this part only. By using qualitative arguments, we were
able to reduce this to four alternative designs. In order to select the preferred
design for implementation we use multi-agent discrete event simulation.

This simulation gave us insight into the effect of our MAS design choices
on the system performance in terms of delivery punctuality, product quality,
robustness, amount of communication, and computation time of the different
agents. It is shown by our simulation study, that qualitative arguments are not
sufficient because each alternative design has its own advantages. A practical
way of dealing with these results is to use a combination of different control
mechanisms. Based on the system status, AGVs might use a different schedul-
ing technique or the architecture itself may even be changed dynamically. Sup-
pose, for example, that we are using architecture LC5i. Whenever we observe
increasing congestion, we might temporarily switch to an AGV centric architec-
ture. This adaptability of the system design is part of our future research. In
addition, we want to investigate the impact of MAS design choices on a broad
class of performance indicators such as flexibility, scalability, adaptability and
extensibility.



86 Chapter 4. MAS: design choices



87

Chapter 5

Carriers: opportunity
valuation policies

In this chapter1 we consider a real-time, dynamic full truckload pickup and
delivery problem with time-windows where jobs should be assigned to one of
a group of competing transportation companies. Our approach decomposes
the problem into a multi-agent structure where vehicle agents are responsible
for the routing and scheduling decisions and where the assignment of jobs to
vehicles is done by using a second-price auction. We propose a pricing and
scheduling strategy for vehicle agents based on dynamic programming where
not only the direct costs of a job insertion are taken into account, but also
its impact on future opportunities. Simulation is used to evaluate the ben-
efit of pricing opportunities compared to simple pricing strategies in various
market settings. Numerical results show that the proposed approach provides
high quality solutions, in terms of profits, capacity utilization, and delivery
reliability.

5.1 Introduction

Most techniques and models used in transportation planning, scheduling, and
routing use a centralized solution approach with static input data. Although
such techniques have successfully been implemented, they are less suitable in a
dynamic environment and in an environment with multiple independent stake-
holders.

1This chapter is based on the working paper (Mes, Van der Heijden and Schuur 2006);
presented at Odysseus 2006, the Third International Workshop on Freight Transportation
and Logistics, Spain; submitted to OR Spectrum.
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Dynamic environments are characterized by frequent and unpredictable
modifications in the relevant planning information and the ability (or even
necessity) to update the planning based on this additional information. For
example, carriers may know only a fraction of the shipments to be served when
the first plan is constructed whereas additional (rush) transportation jobs arrive
during execution of the original plan. Also, additional information on process-
ing times (travel time updates in case of congestion) and equipment failures
may arrive during execution. A proper transport planning approach should be
able to construct initial plans taking into account all such uncertainties and to
update the plans reacting on real-time information updates.

Particularly for real-time planning updates a central approach is not suit-
able, because global reoptimization may lead to a completely different plan in
response to a relatively minor information update. A decentralized approach,
where local problems are solved locally as much as possible to limit schedule
disruption, has certainly advantages. Besides, it is known that the added value
of global optimization versus local planning heuristics decreases in an uncertain
dynamic environment, see e.g. (Van der Heijden, Van Harten, Ebben, Saanen,
Valentin and Verbraeck, 2002). Finally, a distributed solution is required when
multiple independent organizational units (multiple carriers and shippers) are
working in an autonomous, self-interested, and not necessarily cooperative way.
Then a distributed approach is needed to optimize the network performance
(maximize profits) while reckoning with the individual competences, goals, and
information access.

In the literature, our transportation problem is known as a dynamic multi-
vehicle pickup and delivery problem with time-windows. We consider a variant
with full truckloads and stochastic arrivals of jobs. Within the transportation
network multiple shippers offer loads for transportation and multiple carriers
are competing for these jobs. We propose a multi-agent system where ve-
hicle agents are responsible for the routing and scheduling decisions of their
corresponding vehicle. The assignment of jobs to vehicles is done by using
an auction. Therefore, a proper pricing mechanism is needed to optimize the
system-wide performance, such as the minimization of the total costs, consist-
ing of transportation costs and penalties on tardiness.

In Chapter 3 we presented a basic multi-agent system and compared its
performance with two traditional scheduling heuristics. In this chapter we aim
to enhance the performance of this agent-based planning system by improving
the pricing and scheduling techniques of the vehicle agents. We focus on three
key questions. First, how can we use information on historic job patterns and
historic auction results to improve bid pricing? Second, how can we use this
information to improve planning and scheduling? Third, what is the impact of
such additional intelligence on the overall system performance?

The remainder of this chapter is structured as follows. In the next sec-
tion, we give an overview of related literature and we explain the scientific
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contribution of this chapter. Our model is presented in Section 5.3. In Section
5.4 we present our solution method to estimate the value of a schedule using
value functions. In Section 5.5 we describe how the parameters for these value
functions can be estimated. In Section 5.6 we discuss some extensions of our
method. Experimental settings and simulation results are presented in Section
5.7 till 5.9. We end up with conclusions in Section 5.10.

5.2 Literature

Our problem is well known in the area of vehicle routing problems (VRP).
More precisely, we consider a pickup and delivery problem with time-windows
(PDPTW) which is a generalization of the VRP. Here a number of vehicles
have to satisfy transportation requests which are characterized by a pickup
location, a delivery location, and time-window restrictions. Such problems
appear in a wide variety of distribution systems, e.g. courier services, rescue
and repair services, emergency services, taxi cab services, less than truckload
transportation, and long-distance haulage.

The VRP and its variants have been studied extensively, for recent surveys
we refer to (Desaulniers et al., 2001; Toth and Vigo, 2002; Cordeau et al., 2007).
Most work focuses on static and deterministic problems in which all information
is known in advance, see for example (Desrosiers et al., 1995; Fischer, 1995).
However, in most real-world problems we have to deal with uncertainty, i.e.,
some of the parameters of the model are initially unknown or known only prob-
abilistically. Due to recent advances in communication and information tech-
nology, these problems gain importance, and the potential savings generated
by adapting routing decisions to dynamic or stochastic contexts are substantial
(Psaraftis, 1995).

In the dynamic vehicle routing problems (DVRP), new transportation jobs
arrive dynamically when the vehicles have already started executing their tours.
This requires real-time replanning in order to include the new jobs in the vehicle
schedules. Routing and scheduling in a dynamic environment has been studied
by a number of authors, see for example (Psaraftis, 1988; Gendreau and Potvin,
1998; Yang et al., 2004). The most common approach to handle these problems
is to solve a model using the data that are known at a certain point in time, and
to re-optimize as soon as new data become available. Because a fast response
is required in a real-time environment, a solution is usually achieved by using
relatively simple heuristics or by parallel computation methods, see (Ghiani
et al., 2003) for an overview of approaches.

Instead of just reacting to problem changes (e.g. the arrival of new cus-
tomers), it may be beneficial to anticipate such events. Anticipation can take
place in various types of decisions, e.g. decisions regarding the acceptance,
pricing, and scheduling of jobs. In this chapter we focus on pricing, scheduling,
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and repositioning decisions. To support these decisions we use probabilistic
knowledge about future job arrivals. Many researches have claimed that this
topic should receive more attention (for an overview, see Chapter 1, Section
1.1.1).

In the literature one can find two main approaches to cope with the problem
changes caused by new customer arrivals. The two strategies are reoptimization
and dispatching (Branke et al., 2005).

The first approach to deal with new customer arrivals is to renounce plan-
ning to a certain extent, and instead of scheduling all known tasks, only decide
on a vehicle’s next task. Here decisions that take into account future job ar-
rivals, are where to wait and for how long. We indicate this type of decisions
by operational waiting decisions.

An early example can be found in (Bertsimas and Van Ryzin, 1991). They
consider a dynamic traveling repairman problem (DTRP) where service de-
mands arrive according to a Poisson process at uniformly distributed locations
in a Euclidean plane. They show, for the case of a single vehicle and light traf-
fic conditions, that it is optimal to reposition the vehicle to the center of the
service region whenever there are no customers left to be serviced. Returning
to the center anticipates future customer arrivals by positioning the vehicle so
that the expected distance to the next arriving customer is minimized. Similar
results are shown in (Bertsimas and Van Ryzin, 1993) for the multiple-vehicle
traveling repairman problem and in (Swihart and Papastavrou, 1999) for the
single vehicle pickup and delivery problem.

Larsen et al. (2004) consider the dynamic traveling salesman problem. Their
goal is to find a minimum-costs tour through a set of dynamic requests with
soft time-windows. The issue is to relocate empty vehicles to predefined resting
locations in anticipation of future demand. They consider the following online
policies: (1) the vehicle goes to the nearest resting location, (2) the vehicle
goes to the resting location that belongs to a region with the largest arrival
rate, and (3) the vehicle goes to the resting location that belongs to a region
with the highest expected number of customers within a certain time period
depending on future obligations of this vehicle.

Thomas and White (2004) consider the case of a single vehicle which has
to travel from a given origin to a given destination. Within the network there
are a few known locations of potential customers that might issue a request
while the vehicle is under way. The vehicle anticipates these possible future
customer requests both by waiting at a location and by visiting noncustomer
locations. They present an optimal policy for route construction by modeling
their routing problem as a Markov decision process.

Ichoua et al. (2006) consider a DVRP with soft time-windows for serving
customers and a hard time-window for returning at the depot. The problem
consists of using probabilistic knowledge about future requests to minimize the
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cost of vehicle routes. The cost of a route depends on the lateness penalties and
on the total distance traveled. The original algorithm, a parallel tabu search
heuristic, is extended by allowing a vehicle to wait at its current position if the
probability of new, nearby requests is high.

The common problem in the papers mentioned above, is that each time a
vehicle visits a certain location, it has to decide upon its next action. The main
distinction with our research is that we schedule multiple jobs in advance. As
a consequence, we have to anticipate future job arrivals in the sequencing and
timing of jobs currently in the schedule. Another distinction with the work of
(Thomas and White, 2004; Ichoua et al., 2006) is that we consider a rolling
horizon instead of a single fixed period.

The second approach to handle real-time events in DVRP is to reoptimize
whenever a new job arrives. The main decision here is to anticipate future
job arrivals through scheduling of jobs. We indicate these decisions by tactical
waiting decisions.

Mitrovíc-Miníc and Laporte (2004) consider the uncapacitated dynamic
pickup and delivery problem with time windows. They present a methodol-
ogy that captures the need to take future events into consideration, even when
the events are not stochastically modeled or predicted. They examine the ben-
efits of several tactical waiting strategies on the total detour and number of
vehicles, where they distinguish between the impact of decisions on the short-
term and the long-term basis. Their work differs from ours because (1) we do
not focus on detour but profits (i.e., probability and profitability of new job
insertions) and (2) we also consider a variant in which we have to determine
the pickup and delivery times of jobs at the announcement time of an auction.

Branke et al. (2005) consider a DVRP where one additional job arrives at a
beforehand unknown location when the vehicles are already under way. Each
vehicle has a fixed route along different locations. They optimize the waiting
times of the vehicles at each location such that the probability that the new
job can be inserted is maximized. The main difference with our work is that we
determine the optimal pickup time for one job at a time, but evaluate multiple
future jobs insertions and their impact on the profitability.

Van Hemert and La Poutré (2004) consider a DVRP where dynamically
arriving less-than-truckload (LTL) jobs have to be collected and transported
to one central depot within a fixed time-window. They present an evolutionary
algorithm that is able to provide routing solutions taking into account the po-
tential of fruitful regions, i.e., regions with high potential for new pickups. They
show that - depending on time and capacity constraints - using the concept of
fruitful regions, one may increase the number of loads that can be success-
fully delivered to the central depot. The proposed evolutionary algorithm is
extended in a later paper (Bosman and La Poutré, 2006) by combining the evo-
lutionary computation with learning techniques, thereby using information on
predicted future loads to support current decision making. The main difference
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between these two papers and our approach, is that we consider a rolling hori-
zon full truckload (FTL) problem, where jobs have different delivery locations
and latest pickup times.

Another closely related example can be found in (Yang et al., 2004). They
consider and compare five on-line strategies for the dynamic pickup and delivery
problem with full truckloads. Two of these policies are based on repeated
reoptimization of the offline problem, while the others use simple local rules.
One of these policies (called OPTUN) utilizes probabilistic knowledge about
future job requests. To account for future job requests they introduce the
concept of opportunity costs of serving a job. Basically, these opportunity costs
are a measure of the change in degree of isolation for a vehicle ending at a new
location. By taking into account the opportunity costs, remote locations are
penalized and central locations are favored. They conclude that the OPTUN
policy outperforms the other four policies. They further conclude that "future
research should concentrate on the search for better policies that utilize some
information about future jobs more efficiently". In this chapter we aim to
contribute to that by developing opportunity cost functions that do not depend
on distance measures, but more generally on the change in expected revenues
due to a new job insertion. These expected revenues mainly depend on (1) the
arrival probabilities of future jobs at different locations and (2) the probability
of winning these jobs (which in turn depends on the current vehicle schedules).

Besides the differences mentioned above between (Mitrovíc-Miníc and La-
porte, 2004; Van Hemert and La Poutré, 2004; Bosman and La Poutré, 2006;
Yang et al., 2004; Branke et al., 2005) and this chapter, there are two additional
differences. First, we consider the combination of tactical and operational wait-
ing decisions. Second, we also focus on acceptance decisions through dynamic
pricing of jobs. All these decisions are supported by the same opportunity
valuation method, which therefore saves computation time.

Another related line of research is on dynamic fleet management problems
(DFMP), or more generally the dynamic assignment problem. These problems
ask for a dynamic assignment of resources (trucks) to tasks (loads). Truly
stochastic models decompose the DFMP with respect to time periods and as-
sess the impact of the current decisions on the future through a recourse or
value function. An early example can be found in (Powell et al., 1988), who
study a dynamic assignment problem where a fleet of vehicles is assigned to
a set of locations with dynamically occurring demands. They show that it is
advantageous to take forecasted demands into account when deciding where
the vehicles should drive next, compared with a model that only reacts after
new demands have arrived. More recent examples can be found in (Carvalho
and Powell, 2000; Godfrey and Powell, 2002; Topaloglu and Powell, 2006). We
cannot use the DFMP algorithms directly, because (1) jobs have to be accepted
early to avoid loosing them to competitors and (2) jobs are scheduled in a dis-
tributed manner by the vehicle agents. Also, the price of a job is not given
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externally but subject to negotiation. Moreover, the arrival intensity of jobs at
a company is not described by an exogenous information process, but can be
influenced by better repositioning of vehicles.

A recent development is the applicability of multi-agent systems (MAS)
in the field of transportation control. There one aims at the development of
robust, distributed market mechanisms. In an early paper Sandholm (1993)
applied a bidding protocol, called Contract Net Protocol, to a transportation
system, where dispatch centers of different companies cooperate in vehicle rout-
ing. Fischer et al. (1996) developed a system for cooperative transportation
scheduling and a simulation test bed for multi-agent transport planning, called
MARS. In (’t Hoen and La Poutré, 2004) a multi-agent system is presented for
real-time vehicle routing problems with consolidation in a multi-company set-
ting, where vehicles have the option to break an agreement in favor of a better
deal (cf. Chapter 6). The common approach in MAS is to assign sub-problems
to agents that represent resources such as shippers, carriers, and vehicles. A
quite different approach can be found in (Shapiro and Powell, 2006) where a
general decomposition method is described based on how decisions are actually
made. For example, they describe a decomposition into regions of a resource
allocation problem for large transportation companies that are regionally di-
vided. Within the research on MAS in the field of transportation management,
we focus on the intelligence of agents instead of the MAS architecture as is
often subject of research. In our case, this intelligence is mainly concerned
with the pricing and scheduling decisions by taking into account the future
implications of new job insertions. This certainly distinguishes our approach
from other research in agent-based transportation planning where agents are
usually short sighted.

An interesting and closely related line of research comes from Figliozzi and
co-authors. Figliozzi et al. (2003) present a framework for the study of carriers’
strategies in an auction marketplace for dynamic, full truckload vehicle routing
with time-windows. They focus on profit allocation rather than on the effi-
ciency of assignment decisions. The impact of different assignment strategies
on the travel costs under various demand conditions is studied in (Figliozzi
et al., 2004). In (Figliozzi, 2004; Figliozzi et al., 2006) a method to quantify
the opportunity costs in sequential transportation auctions is presented. In
their paper, two carriers compete for transportation jobs. Each arriving job
triggers an auction where carriers compete with each other to win the right of
servicing the job. However, winning a job has an effect on the next auction
round and, therefore, on its profit for the next job. They introduce opportunity
costs to capture the consequences of accepting the current job in the auction
on the expected profit of the next job to be auctioned. Therefore, they refer
to this method as one-step look-ahead opportunity costs. Using simulation,
they show that the carrier that accounts for opportunity costs can significantly
improve its profitability compared to the naive carrier. The main differences
of our work compared to the recent work of Figliozzi (Figliozzi, 2004; Figliozzi
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et al., 2006) are: (1) we estimate the opportunity costs for individual vehicles
in a decentralized planning system; (2) our opportunity costs are defined over
multiple jobs to be acquired within a certain time horizon; (3) our opportunity
costs are used to price a new load, but also to determine the optimal pickup
and delivery times of jobs, and to support pro-active move decisions (moves to
attractive locations if vehicles are idle); and (4) we cover estimation of the prob-
ability distribution of the lowest bid by the competitors based on incomplete
information instead of assuming a known probability distribution.

5.3 Model and notation

We consider a pickup and delivery problem with full truckloads, time-windows,
deterministic travel times, and stochastic arrival of jobs. To present our model
we subsequently discuss the network and cost structure (5.3.1), the job charac-
teristics (5.3.2), the market mechanism (5.3.3), and vehicle scheduling and bid
price calculation (5.3.4).

5.3.1 Network description

Our transportation network is a directed graph (N ,A), i.e., it consists of a
set of nodes N and a set of arcs A connecting these nodes. In this network
multiple carriers and shippers operate. The system dynamics is driven by the
incoming jobs from shippers that are not known beforehand. These jobs consist
of unit loads (full truckloads) which have to be transported between nodes in
the network. A set of vehicles V, not necessarily identical, belonging to the
different carriers is available to transport these loads. The time to transport
a load from node i to node j is given by τfij . This includes travel time, and
the handling time to load- and unload the job. The time to drive empty from
node i to node j is given by τ eij . Both times are deterministic and vehicle

independent. We use the shorthand notation τ ikl for τ eik + τfkl.

Objective of the shippers is to minimize their costs. Objective of the carriers
is to maximize their profits. We consider two cost functions, namely the travel
costs cr (t) as function of the travel time t and the penalty costs cp (t) in case
of tardiness (t > 0) with respect to the time-window restrictions (see Section
5.3.2). To cover the transportation costs, the carriers will charge the shippers
for their transportation services. The total costs for a shipper are given by the
sum of all prices paid to the carriers for transporting their loads. The profits
for the carriers are given by their income from all transportation jobs minus
the transportation costs and costs for tardiness.

Matching of jobs with open vehicle capacity is done using an auction pro-
cedure which leads to a contract between a carrier and a shipper. Execution
of the resulting contracts requires scheduling of the vehicles while taking the
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contract terms into account. Vehicle scheduling has its impact on the future
availability of vehicle capacity and on the system dynamics and hence also on
the profitability of the companies. A general impression of this situation is
given in Chapter 2, Figure 2.1.

As for the dynamics and control, we assume that the system is stable in
the long run, so that all jobs can be handled (not necessarily on time). As
for communication, we assume that at any moment in time communication
between shippers, vehicles, and carriers is possible.

5.3.2 Job characteristics

Jobs to transport unit loads (full truckloads) between nodes in the network ar-
rive one-by-one according to a stationary Poisson process with arrival intensity
λkl of jobs from node k to node l. We define a job ϕ by an announcement time
a (ϕ), an origin node o (ϕ), a destination node d (ϕ), and a latest pickup time
e (ϕ) of the load at its origin. The announcement time is the time at which
the transportation request arrives at the shipper. We introduce a time-window
length z (ϕ) = e (ϕ)− a (ϕ) within which transportation should be started.

We assume that the carrier agrees with the latest pickup time as soft restric-
tion with penalty costs cp (t). This penalty function is a positive non-decreasing
function of the time t and may differ per job. To keep the discussion simple,
we do not include an earliest delivery time in the job characteristics, which can
be incorporated rather easily. We further assume that a job in process cannot
be interrupted (no preemption), i.e., a vehicle may not temporarily drop a load
in order to handle a more profitable load.

We consider two types of contracts, namely contracts with fixed and with
flexible pickup times. In case of fixed pickup times, the exact pickup time is
agreed upon in the contract and carriers are not allowed to change this time
later on. As a consequence, penalty costs are only made when the agreed pickup
time is later than the latest pickup time. In case of flexible pickup times, the
pickup times may be modified by the carriers during schedule execution, even
if this results in tardiness. Moreover, a carrier only has to decide about the
next job of a vehicle whenever this vehicle becomes available.

For simplicity of reasoning, we first consider fixed contracts. In Section
5.4.4 we describe how the results can be extended to flexible contracts.

5.3.3 Market mechanism

Jobs are offered in sequential transportation procurement auctions. In these
auctions, shippers typically put out a request for quotes from a set of carriers
(Song and Regan, 2002). This process is similar to a simple sealed-bid auction
in which each bidder submits a sealed bid for a single job. Without loss of
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generality, we choose here for a reverse second-price sealed-bid auction, also
known as the Vickrey auction. In this auction mechanism, every bidder submits
a single sealed bid and the bidder with the highest bid receives the object at
the price of the second highest bid.

The Vickrey auction has been widely used for multi-agent systems because
(1) it requires a single bidding round and (2) it forces bidders - under some
mild conditions (see Vickrey, 1961) - to bid their true valuation of the object,
thereby avoiding many bidding problems (e.g. speculation on profit margins).
However, this property no longer holds in sequential auctions where the valu-
ation of bundles of items, acquired in separate auctions, differs from the sum
of the valuations of individual items. This certainly is the case in sequential
transportation procurement auctions, where bundles form efficient routes con-
sisting of multiple pickup and/or delivery locations. This issue is illustrated
in (’t Hoen and La Poutré, 2006). They show, through experiments and game
theoretical analysis, that one can benefit from deviation from the true valua-
tion, i.e., the immediate valuation of this single item. In this chapter we define
the true valuation as the estimated value of a new job in the long run. Note
that bidding this true valuation is not as simple as it seems as we aim to take
into account opportunity costs in this chapter. As it will appear, this is not a
trivial matter.

Besides the limitations of the Vickrey auction with respect to sequential
auctions, there are also limitations regarding strategic behavior (e.g. bidders
who deliberatively inflict losses to rivals). For more details on these limita-
tions we refer to (Sandholm, 2000; Brandt and Weiß, 2002). In this chapter
we ignore these limitations by assuming that individual bidders try to maxi-
mize their profits without caring for the profits made by the other agents. As
a consequence, we assume that bidders bid their true valuation as described
above.

We implement the market mechanism as follows. When a job ϕ arrives at
some shipper, it starts an auction by sending an announcement to all carriers.
All carriers respond with a bid confirming agreement with the contract terms.
The shipper evaluates all bids and the winning carrier will receive a grant
message while the others receive reject messages. We assume that the final
price paid by the shipper is published. Of course, generalization towards a
closed auction, where bidders only receive information about whether they win
or lose an auction, is possible. In fact, in a closed auction bidders have censored
data for the distribution of the minimum price. In principle, we can handle
this using e.g. Maximum Likelihood estimation.

In this chapter we focus on the transportation side: the carriers and their
vehicles. When a carrier receives a job announcement it has to calculate the
expected costs for doing this job. However, complete assessment of the feasi-
bility and the expected profit of a job in real-time is hard. In order to respond
fast to these auctions, we choose for a distributed structure where every vehi-
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cle calculates a bid for this job and sends it to its carrier. Therefore, vehicles
are modeled as intelligent agents that determine their bidding and scheduling
strategy based on historic data (experience), learning, and on expectations of
future consequences of current actions. They have the opportunity of learn-
ing about the environment (travel times, job characteristics) and about other
players (winning prices) with each auction. Each vehicle agent is responsible
for the planning and scheduling decisions for its corresponding vehicle.

After the carrier receives all bids from its vehicles, it selects the bid with
the lowest costs and sends it to the auction. When a carrier is awarded for
this job, it will assign this job to the vehicle whose bid was submitted to the
auction. We assume that there is no exchange of jobs between vehicles.

5.3.4 Vehicle scheduling and bid calculation

In this section we explain how vehicle agents price and schedule new jobs.
Because we focus on the strategies of individual vehicle agents, we omit any
subscripts indicating specific vehicles or companies.

Schedule definition

At each point in time, a vehicle has a job schedule, i.e., a list of jobs with
scheduled starting times. The destination of the last job in the schedule will
be referred to as schedule destination and the time until the expected arrival
time at the schedule destination is referred to as length of a schedule.

Formally, we define a scheduleΨ by an ordered list of 2-tuplesΨn = (ϕn, ωn)
where ϕn refers to the n

th job in the schedule and ωn to the scheduled pickup
time of this job. The loaded move for job ϕn goes from o (ϕn) to d (ϕn), starting
at time ωn and being delivered at time ωn + τfo(ϕn)d(ϕn)

. All times mentioned
here and in the sequel are relative to the current time θ. In the remainder we
denote the delivery time of job n by ρn and the number of jobs in a schedule
by N .

A gap appears between two consecutive jobs whenever the pickup time of
the second job is later than the delivery time of the first job. Such a gap
may be used for a suitable job to be inserted later on. The actual insertion of
this new job can take place before arrival at the destination of the first job.
Otherwise, as we will show later on, the vehicle has an option (1) to drive
immediately to the origin of the second job, (2) to wait as long as possible at
the current location in anticipation of a new job insertion, and (3) to move
pro-actively to another, probably more profitable, location in anticipation of a
new job insertion. Obviously, these options are restricted by the pickup time
of the second job.

We introduce the phrase end-gap for the difference between the planning
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period T (which we choose to be much larger than the length of a schedule)
and the length of a schedule. The gaps and the end-gap are important to
value a schedule, because future jobs can only be inserted in these periods. An
illustration of a possible schedule can be found in Figure 5.1. The node at the
beginning of a gap will be referred to as start-node, and the node at the end of
a gap by end-node.
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Figure 5.1: Example of a vehicle schedule

Scheduling and waiting decisions

The goal of a vehicle agent is to maximize its profits. Estimation of the expected
profit of a new job is not straightforward because the destination of this job
may have an effect on (1) the expected empty travel distance for the next job
and (2) the likelihood of winning a next job. The same holds for the origin
which has an effect on the insertion of future jobs before this job. Therefore,
we focus on maximizing the profits within a certain planning horizon T . We
denote the expected profits during period T given a schedule Ψ, by V (Ψ, T ).
These profits consist of the payments for all jobs in schedule Ψ, minus the
costs for these jobs, plus the expected profits for future jobs to be inserted in
schedule Ψ (see Section 5.4 for a formal expression).

When an auction for a new job ϕ is started, each vehicle agent creates a
temporal schedule Ψ ∪ ϕ combining its current schedule with the new job in
such a way that the value V (Ψ ∪ ϕ, T ) is maximized. Note that at this point
we do not know the payment for the new job which is therefore set to zero.

In this chapter we assume that vehicle agents contemplate the insertion of
a new job at any position in the current schedule without altering the order of
execution for the other jobs. Since the fixed contract agreements do not permit
moving already assigned jobs, a new job can only be inserted in gaps in such a
way that the agreed pickup times for other jobs are not violated. If the gap is
larger than the time needed to insert the job, the vehicle agent has flexibility
to select the best pick-up time. One option is to schedule the new job as early
as possible, but in some situations it may be advantageous to postpone. Let
us illustrate that using an example referring to Figure 5.1.

Example 5.1. Suppose a job from A to C is to be inserted in the schedule.
Let τfAC = 2 and τ eBA = 1. Consider Gap 1. Clearly, the new job can start at
any time between t = 3 and t = 5. If we schedule the job as early as possible
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(start at t = 3), the vehicle will arrive in C at t = 5. Probably, the vehicle
has to wait there until the next job can be picked up at t = 7. After all, the
probability that another job can be inserted in this time interval is low, because
an empty ride is needed anyway. If on the other hand the start of the job is
scheduled at t = 5, the vehicle will arrive in C at t = 7 so that the next job
can be started immediately. Then the vehicle has three time units to drive from
B to A. Then it is very well possible that another job can be inserted in this
interval, either from B to A or between other locations that require only little
additional empty driving time.

To construct a temporal schedule, a vehicle agent evaluates all possible
insertions of the new job ϕ in the current schedule Ψ. Because the first job of
the schedule is always in execution, the number of insertion positions equals
N . For a given position n in the schedule (i.e., after the nth job in the current
schedule), the vehicle agent has to select the most profitable pickup time ω (n)
for the new job. This pickup time is bounded by the delivery time of job ϕn
plus the empty travel time towards the origin of the new job, and the pickup
time of job ϕn+1 minus the loaded travel time for job ϕ, and the empty travel
time from the destination of this job to the origin of job ϕn+1. We indicate
each alternative schedule by Ψϕ,n,ω(n). The temporal schedule is given by the
alternative schedule with the highest profit:

V (Ψ ∪ ϕ) = max
n

½
max
ω(n)

V
¡
Ψϕ,n,ω(n)

¢¾
(5.1)

where n = 1..N , ω (n) ≥ ρn + τed(ϕn)o(ϕ)
for all n, and ω (n) + τfo(ϕ)d(ϕ) +

τe
d(ϕ)o(ϕn+1)

≤ ωn+1 for n < N . Note that the numbering n here is defined

over the current schedule Ψ. The numbering in the temporal schedule Ψ∪ϕ is
changed due to the insertion of the new job, i.e., if the new job is inserted after
job n in the current schedule Ψ, then ωm for m ≥ n in the current schedule
becomes ωm+1 in the temporal schedule and the pickup time ω (n) of the new
job becomes ωn in the temporal schedule. We solve the maximization in (5.1)
by discretization of the pickup time ω (n).

A vehicle agent updates its schedule when (1) an auction for a new job is
won and (2) the first loaded move in a schedule has been completed. In the first
case, the vehicle agent replaces its current schedule with the temporal schedule
that had been constructed for the auction. In the second case, the vehicle agent
faces an operational waiting decision. Suppose the vehicle is currently located
in node i and has to be at node j at time t, then it has three options. First,
it can drive immediately to node j and wait over there. Second, it can wait
at node i until it wins another job or at last drives to node j at time t − τeij .
Third, it can drive pro-actively to another node k in anticipation of a future
job and if it does not receive such a job, it can move at time t− τekj to node j.
Operational waiting decisions are presented in Section 5.4.3.
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Bid calculation

As mentioned in Section 5.3.3, we focus on bidding true valuations. The true
valuation of a new job insertion is given by the decrease in expected profits
during period T due to insertion of the new job, assuming we did not receive
a payment for this new job. Bidding less is not optimal since then winning
this job will result in loss of profit. Bidding more reduces the likelihood of
winning the shipment while the expected final price remains the same (see
Figliozzi, 2004; Vickrey, 1961). Therefore, the bid price b(ϕ,Ψ) for a new job
ϕ in the current schedule Ψ is given by the value of the current schedule minus
the value of the temporal schedule with the new job:

b (ϕ,Ψ) = V (Ψ, T )− V (Ψ ∪ ϕ, T ) (5.2)

As shown in the next section, this bid price not only includes the increase
in transportation and penalty costs, but also the change in value of future job
opportunities.

Roadmap for obtaining the value functions

To summarize, a vehicle faces three types of decisions: (1) bid price calculation,
(2) scheduling of jobs, and (3) operational waiting decisions. These decisions
have in common that they have to be made real-time. Bid price calculation
should be done upon announcement of a new job. Scheduling of jobs should
also be done upon each announcement, but in case of flexible contracts also
upon delivery of a job. The operational waiting decision has to be made after
each delivery.

All vehicle decisions are supported by so-called value functions that are
introduced in the next sections. These value functions not necessarily have to
be calculated real-time, and not necessarily separately by each vehicle. For
example, in our simulation experiments (Section 5.7), we calculate the value
functions either once (at the end of a learning phase) or periodically.

In the next sections we introduce the value functions and present some
approaches to calculate these functions. For clarity of exposition we proceed
in a number of steps (Figure 5.2). First, we present the value functions for the
case of fixed contracts (Section 5.4). In Section 5.4.1 we present a recursive
formulation for the value functions. Because it appears that these functions are
difficult to calculate exactly, we present some approximations in Section 5.4.2.
After that, (Section 5.4.3) we describe how the value functions can be used for
bid pricing, scheduling, and waiting decisions. In Section 5.4.4 we present the
required modifications of our approach in order to deal with flexible contracts.
Next, we describe how the parameters are estimated (Section 5.5). In Section
5.6 we improve our results by relaxation of some of the assumptions mentioned
in Section 5.4.2 and 5.6.
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Recursive formulation (5.4.1)

Approximate value functions (5.4.2)

Using the value functions (5.4.3)
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Generalization to flexible contracts (5.4.4)

Relaxation of assumptions (5.6)

Figure 5.2: Roadmap for obtaining the value functions

5.4 Value functions

In the previous section we introduced the expected profits V (Ψ, T ) during a
period T , given the current schedule Ψ. This profit is given by the sum of the
winning prices pϕ for all jobs ϕ in the schedule Ψ, minus the direct costs for
all jobs, plus the value of all gaps between subsequent jobs, plus the value of
the end-gap.

The direct costs of a job ϕ with pickup time ω consist of travel costs for the
loaded move and possibly penalty costs:

Cd (ϕ,ω) = cr
³
τfo(ϕ)d(ϕ)

´
+ cp

³
(ω − e (ϕ))

+
´

(5.3)

The costs for empty moves are not included in the direct costs because they
might be replaced by loaded moves. Instead, we include these costs in the value
of gaps between subsequent jobs.

To quantify the values of gaps we introduce two value functions, namely a
gap-value and an end-value. The gap-value V g (i, j, σ, t) is the expected profit
of all future moves in a gap defined by start-node i, end-node j, expected time
σ until arrival at node i, and gap length t. The end-value V e (i, σ, t) is the
expected profit during a period t = T −σ after arrival at schedule destination i
at time σ from now on. As an example consider the schedule of Figure 5.1. The
value of the first gap is given by V g (B,C, 2, 5) and the end-value is given by
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V e (D, 15, T − 15). In the remainder we use the word time-to-go to indicate the
time σ from now till the arrival at the schedule destination i or the start-node
i of a gap.

The expected profit V (Ψ, T ) during period T given schedule Ψ is now given
by:

V (Ψ, T ) =
NX
n=1

¡
pϕn − Cd (ϕn, ωn)

¢
+ V e (d (ϕN ) , ρN , T − ρN)

+
N−1X
n=1

V g
¡
d (ϕn) , o

¡
ϕn+1

¢
, ρn, ωn+1 − ρn

¢
(5.4)

We also use this expression to calculate the expected profit V (Ψ ∪ ϕ, T )
of the temporal schedule with the new job ϕ. Because we do not know the
payment for this new job ϕ, we set pϕ equal to zero (see Section 5.4.3).

5.4.1 Recursive formulation

In our multi-agent setting, a vehicle agent should find a sequence of decisions
such that its expected trajectory of future states, within gaps or at the end-
gap, yields the maximum expected reward. The values of these trajectories are
given by the value functions V e and V g for which we derive recursive relations
in this section. After discretization of the time, we obtain a Stochastic Dynamic
Programming (SDP) recursion (see Section 5.4.2).

The recursive relations are described by four types of information: state
space, decision set, transition probabilities, and expected rewards. We use the
state variables to capture all necessary information to value the future behavior
of the system to be controlled. Derived directly from the value functions at
the beginning of Section 5.4, we use {i, j, σ, t} to describe the state within a
gap and {i, σ, t} for the state in an end-gap. We present the recursion for end-
values only, since the gap-values are derived in a similar - albeit slightly more
complicated - manner. The necessary modifications for the gap-values will be
discussed at the end of this section.

Example 5.2. An illustration of the transition of states in the end-gap can
be found in Figure 5.3. In this example, the current time is θ = 9, the planning
horizon is T = 14, and the vehicle schedule initially ends in location C at time
17; so the state at time θ = 9 is given by {i, σ, t} = {C, 8, 6}. Suppose that the
vehicle agent wins a next job at time 13 with origin C and destination B, to
be picked up at time 17 and to be delivered at time 19. Then the state at the
auctioning time 13 is given by {B, 6, 4}.

As mentioned in Section 5.3.4, vehicles may create gaps in their schedule in
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Figure 5.3: Transition of end states

anticipation of future jobs. However, for our dynamic programming recursion
we assume that jobs are scheduled as early as possible. As a consequence, we
have that in each iteration, the job is scheduled immediately after the job of the
previous iteration. This enables us to use the state spaces as mentioned above
instead of storing a complete schedule. As can be seen from our simulation
experiments, this results in a slightly underestimation of the real profits.

For a recursion on the end-values, this means that a job is always added
to the end of the schedule. Whenever a vehicle finishes a job and its schedule
is not empty, it will drive immediately towards the origin of the next job.
Whenever it finishes a job and its schedule is empty, it has to decide where
to wait. Therefore, we consider the decision δ (i) ∈ N to move pro-actively to
node δ (i) directly upon arrival at node i. If δ (i) = i, the decision is to wait at
the current node i. In the remainder we use the shorthand notation δ instead
of δ (i). Of course, a vehicle will only make this decision when it is waiting at
some node (σ = 0). So if its current state is given by {i, 0, t} then its next
state, immediately after making the decision δ, is given by {δ, τeiδ, t− τ eiδ}.
To derive a recursion for the end-values V e (i, σ, t), we consider the following

three cases: (1) we win a job during the time-to-go σ, (2) otherwise we end up
at node i and decide to move pro-actively to node δ and we win a job during
this time τ eiδ, and (3) otherwise we end up at node δ and we wait until we win
the next job over there. In the remainder of this section, we show that we can
express the corresponding value for each case using the same value function,
which clarifies the presentation. For this purpose we introduce a partial value
function V p (i, σ, η, t), which is defined as the expected future revenue during
a period t for a vehicle ending in location i given it wins a job at time η during
its time-to-go σ. The end-value is then derived by combining the three partial
value functions. An illustration of the three cases can be found in Figure 5.4.

In case (1), the next job is won within the time-to-go σ, say at time θ + η
(0 ≤ η ≤ σ). We define pikl (σ − η) as the conditional probability that a
vehicle ending in location i will have a trip from k to l as next job, given that
the corresponding agent wins a job at time θ+η. Here σ−η is the time between
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Figure 5.4: Three cases for the partial value function depending on the winning
time

winning a job and the earliest time it can actually start this job. Note that
the probability of winning a specific job may depend on this time because jobs
have time-window restrictions (see Section 5.3.2) and these time-windows may
differ per route.

We define the expected reward of a job from k to l that is won at time θ+η
by rikl (σ − η). This new job ends at time σ+τ ikl from now on. If τ ikl ≤ t (the
job is handled within the time horizon T = σ+t), then we include the full profit
in the value function. Otherwise, we include a fraction t/τ ikl corresponding to
the percentage of the job that is completed within the time horizon. The next
end-value is the value at the new end-node l at time σ+ τ ikl, so the time-to-go
from η on is σ + τ ikl − η and the remaining time horizon is max {t− τ ikl, 0}.
By summation over all possible routes kl we get the following partial value
function:

V p (i, σ, η, t) =
X
k,l∈N

pikl (σ − η)

∙
αikl (t) rikl (σ − η)+

V e (l, σ + τ ikl − η, t− τ ikl)

¸
(5.5)

Here we use the boundary conditions V e (i, σ, t) = 0 and V p (i, σ, η, t) = 0
for t ≤ 0. When t < τ ikl we include only a fraction αikl (t) of the profit in the
value function. This fraction is given by:

αikl (t) = min

½
t

τ ikl
, 1

¾
, t > 0 (5.6)

We put αikl (t) = 0 for t ≤ 0. By weighing over the time η at which the
next job is won - which we describe using a probability density function fiσ (η)
and corresponding distribution function Fiσ (η) - we find that the first part of
the value function for the end-gap is given by

R σ
0
fiσ (η)V

p (i, σ, η, t) dη. Note
that fiσ (η) is an exponential density because we assumed Poisson arrivals, see
Section 5.3.2.

In case (2) and (3), we do not win a job during the time-to-go σ. This
happens with probability 1− Fiσ (σ). Then the vehicle is at location i at time
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θ+ σ, and we update the current time θ by making it the arrival time at node
i. Now we have to find the best option for the pro-active move to location
δ, which takes a time τeiδ and which costs c

r (τ eiδ) (if δ = i we wait at node
i without costs for a pro-active move). Therefore, we compute the expected
revenues and costs if we move pro-actively to δ and we select the option which
maximizes the revenues in our recursion:

• In case (2), we win the next job at time θ + η0 before arrival at node δ
(0 ≤ η0 ≤ τeiδ). The remaining time horizon directly after arrival at the
end-node δ is given by t− τ eiδ. Therefore, we find that the partial value
function is given by V p (δ, τeiδ, η

0, t− τ eiδ), which we have to weigh over
the time at which the next job is won, having density function fδτeiδ (η

0).

• In case (3), we update the current time θ by making it the arrival time
at node δ to which we have moved pro-actively. We win the next job at
time θ + η00. The new time-to-go is therefore also η00 and the remaining
time horizon after winning this new job is t − τ eiδ − η00. The partial
value function for this case is given by V p (δ, η00, η00, t− τ eiδ − η00). Again,
we have to weigh this function over the time at which the next job is
won, having density function fδ0 (η

00). Note that this probability density
function is slightly different because we do not have the condition that
we win during the time-to-go σ which is zero in this case.

By combining the value functions for the three cases, we find the following
relation for the end-value:

V e (i, σ, t) =

Z σ

0

fiσ (η)V
p (i, σ, η, t) dη + (1− Fiσ (σ))max

δ

(
(5.7)

−cr (τeiδ) +
R τeiδ
0

fδτeiδ (η
0)V p (δ, τ eiδ, η

0, t− τeiδ) dη
0

+
¡
1− Fδ,τeiδ (τ

e
iδ)
¢ R∞

0
fδ0 (η

00)V p (δ, η00, η00, t− τ eiδ − η00) dη00

)

Again, we use the boundary conditions V e (i, σ, t) = 0 and V p (i, σ, η, t) = 0
for t ≤ 0. By combining (5.7) with (5.5) we have a recursive formulation that
can be used to calculate the end-values.

The gap-values V g (i, j, σ, t) are derived in a similar manner with three
exceptions. First, the state is given by (i, j, σ, t) (see beginning of Section 5.4).
This implies that the node j at the end of the gap has to be passed to the
next iteration. Second, we use another boundary condition V g (i, j, σ, t) = −∞
if t < τeij , meaning that we have to arrive on time at the gap destination j.
Third, because transitions and corresponding revenues are dependent on the
restrictions at the end of the gap, we also have to include the end-node j and
remaining gap time t in the transition functions pikl (σ − η, j, t), the revenue
functions rikl (σ − η, j, t), and in the winning time distribution Fijσt (η).
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5.4.2 Value function approximations

Even with perfect knowledge of the states, solving recursion (5.7) using (5.5) is
a complex and time-consuming process. Especially because it can not be solved
with backward dynamic programming (even not if we discretize time), because
a value function depends on other value functions with both a larger and smaller
time-to-go σ. Another complicating factor is that the state space can be very
large. Therefore, we apply the following approximations: (1) discretization of
time and (2) replacement of the time-to-go σ with its expectation.

For clarity of exposition we decided to perform two additional approxima-
tions: (3) we approximate the gap-values by using the same parameters for the
gap-values as for the end-values and (4) we use a time-to-go of zero. This way
we avoid introducing too many parameters and keep the algorithms compact.
Besides the notational convenience, these approximations also reduce the com-
putation times. As we show in our simulation experiments (Section 5.7) these
approximations still provide accurate results. Improvement by relaxation of
the last two approximations is straightforward as we will see in Section 5.6.

First, we present the approximation of the end-values. Next, we address
the approximation of the gap-values.

End-value approximation

As a first approximation we discretize time, from the current time θ on, into
intervals of length ε. For ease of notation, we assume that the time dimension
is chosen such that ε = 1. Then we use a discrete probability density qiσ (η)
instead of the continuous density fiσ (η), where qiσ (η) denotes the probability
that the vehicle will receive a job in the time interval (θ + η, θ + η + 1], given
schedule destination i and time-to-go σ. Similarly, we use Qiσ (η) instead of
Fiσ (η).

In the next approximation we replace the time-to-go σ with σ̄. Because
the state is now independent on the time-to-go σ, we can reduce this state to
{i, t} and we are able to derive the approximate value functions recursively.
We denote the approximate end-values by Ṽ e. This new value function is given
by:

Ṽ e (i, t) =
σ̄X

η=0

qiσ̄ (η) Ṽ
p (i, σ̄, η, t) + (1−Qiσ̄ (σ̄))max

δ

(
(5.8)

−cr (τeiδ) +
Pτeiδ

η0=0 qδτeiδ (η
0) Ṽ p (δ, τeiδ, η

0, t− τeiδ)

+
¡
1−Qδτeiδ

(τ eiδ)
¢P∞

η00=0 qδ0 (η
00) Ṽ p (δ, η00, η00, t− τeiδ − η00)

)

where Ṽ p is the approximate partial value function. This function is exactly
the same as in (5.5), with the only exception that the end-value V e (i, σ, t)
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is replaced by the approximate end-value Ṽ e (i, t) where the time-to-go σ is
replaced with its expectation σ̄.

The approximate end-values can be obtained using a simple backward sto-
chastic dynamic programming recursion. At each single (discrete) point in
time, starting with a planning horizon t = 1 until t = T , we calculate Ṽ e (i, t)
for all schedule destinations i ∈ N . However, as mentioned in the beginning
of this section, we decided to use σ̄ = 0 in our recursions. This simplifies our
presentations, especially regarding the gap-value functions. As a result, a ve-
hicle never expects to win a job during a certain time-to-go. So at each point
in time, we calculate the probability that we win an auction during this time
unit. If we do not win an auction, we make a proactive move (ending multi-
ple time-units ahead) or we wait a single period at this node. The backward
recursion for the end-values is given in Algorithm 5.1.

init:
given a planning horizon T
Ṽ e (i, t) = 0 ∀i ∈ N with t ≤ 0

for t = 1 to T do
for ∀i ∈ N do

Ṽ e (i, t) = Qi0 (1) Ṽ
p (i, t) + (1−Qi0 (1))maxδ

(

−cr (τeiδ) + Ṽ e (δ, t−max (τeiδ, 1))
)

Ṽ p (i, t) =
P

k,l∈N pikl (0)
h
αikl (t) rikl (0) + Ṽ e (l, t− τ ikl)

i
end;

end;

Algorithm 5.1: Calculating the approximate end-values

We may expect that this recursion for the approximate end-values Ṽ e (i, t)
underestimates the realized average profits within a period of length t after
arrival at node i, simply because we ignored the time-to-go σ. Therefore, we
also present two extensions (Section 5.6) that provide a more precise treatment
of the time-to-go σ.

Gap-value approximation

We approximate the gap-values analogously to the end-values. First, we replace
the gap-value function V g (i, j, σ, t) by Ṽ g (i, j, t), where time is discretized and
the time-to-go σ is replaced by σ̄.

As mentioned at the beginning of Section 5.4.2, we further apply two ap-
proximations for clarity of presentation. First, we use a time-to-go of zero. Sec-
ond, we approximate the transition probabilities pikl (σ − η, j, t) by pikl (σ − η),
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the revenues rikl (σ − η, j, t) by rikl (σ − η), and the winning time distribution
fijσt (η) by fiσ (η). A drawback of the latter approximation is that we may
overestimate the winning probabilities, especially if we face a transition that
involves a significant risk that we will violate the restrictions at the end of the
gap. Then it is possible that we make a non-profitable transition, e.g., if we
had taken into account the restrictions at the end of the gap we would not
have made a certain transition. To overcome this, we multiply the transition
probabilities with a decision variable δakl. This variable equals 1 if we accept the
transition from k to l and otherwise it is zero. The logic behind this decision
variable is that a vehicle always has the option to wait a single time unit if this
seems to be more profitable than making this non-profitable transition. The
approximate gap-values are calculated using the recursion given in Algorithm
5.2.

init:
given an end-node j and gap length t
Ṽ g (i, j, s) = −∞ ∀i ∈ N/j with s ≤ 0, and Ṽ g (j, j, 0) = 0

for s = 1 to t do
for ∀i ∈ N do

Ṽ g (i, j, s) = max
δakl|k,l∈N

(
Qi0 (1) Ṽ

p (i, j, t) + (1−Qi0 (1) + u (i))×
maxδ

³
−cr (τeiδ) + Ṽ g (δ, j, s−max (τeiδ, 1))

´ )
Ṽ p (i, j, t) =

P
k,l∈N δaklpikl (0)

h
rikl (0) + Ṽ g (l, j, t− τ ikl)

i
u (i) = Qi0 (1)

³
1−

P
k,l∈N δaklpikl (0)

´
end;

end;

Algorithm 5.2: Calculating the approximate gap-values

Here u (i) is the probability that we did not accept a transition for a job
won after node i. Note that the fraction αikl (t) is not used in the approximate
gap-values because the vehicle always has to be at the end-node j before the
end of the gap length t.

5.4.3 Using the value functions

As mentioned in Section 5.3.4, vehicles face three types of decisions: (1) bid
price calculation, (2) scheduling jobs, and (3) operational waiting decisions.
These decisions are supported by the end-values and gap-values. In this section
we explain how this works.
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Bid price calculation

In (5.2) we introduced the bid price of a new job ϕ in the current schedule Ψ,
as the difference between V (Ψ, T ) and V (Ψ ∪ ϕ, T ). After using (5.4), we see
that the insertion of a new job ϕ at position n with pickup time ω in the current
schedule Ψ, does not affect the winning prices and loaded travel costs of other
jobs in the schedule Ψ. It only leads to additional direct costs Cd (ϕ, ω) and a
decrease in one of the value functions in (5.4).

Suppose that at current time θ an auction is started for a new job ϕ. A
vehicle agent evaluates all insertion positions n of the new job in the current
schedule Ψ. An example is depicted in Figure 5.5 where a new job is inserted
either in a gap or in the end-gap.
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Figure 5.5: Change in value functions due to a job insertion

As can be seen, insertion of a new job implicates that a gap in the current
schedule is replaced by two new gaps. We indicate the value of the old gap by
V 0, the value of a new gap before the new job by V − and the value of a new
gap after the new job by V +. Obviously, a gap with length zero has a value of
zero. For a given insertion n and pickup time ω of the new job ϕ in the current
schedule Ψ, these values are as follows:

V 0 (n,Ψ) =

½
V g
¡
d (ϕn) , o

¡
ϕn+1

¢
, ρn, ωn+1 − ρn

¢
if n < N

V e (d (ϕN ) , ρN , T − ρN ) else
(5.9)

V − (ϕ, n, ω,Ψ) = V g (d (ϕn) , o (ϕ) , ρn, ω − ρn) (5.10)

V + (ϕ, n, ω,Ψ) =

½
V g
¡
d (ϕ) , o

¡
ϕn+1

¢
, ρ, ωn+1 − ρ

¢
if n < N

V e (d (ϕ) , ρ, T − ρ) else
(5.11)

As mentioned before, a new job insertion will result in additional direct
costs and a decrease in one of the value functions. We denote this loss in one
of the value functions by an opportunity cost function OC (ϕ, n, ω,Ψ). The
opportunity costs of a given insertion position n and pickup time ω are given
by the value of the current gap or end-gap minus the value of the new gaps:

OC (ϕ,n, ω,Ψ) = V 0 (n,Ψ)− V − (ϕ, n, ω,Ψ)− V + (ϕ, n, ω,Ψ) (5.12)

So the bid price of (5.2) can be rewritten as:

b (ϕ,Ψ) = min
n,ω

¡
Cd (ϕ, ω) +OC (ϕ,n, ω,Ψ)

¢
(5.13)
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The opportunity costs describe the loss in expected future revenues due to a
new job insertion, taking into account the stochastic job arrival process. That
is, the vehicle agent does not know which jobs will arrive, when they arrive, and
which auctions will be won. However, the agent has information about past
jobs and auctioning processes that can be used to estimate the attractiveness
of a specific time slot at a specific location for the vehicle.

Scheduling jobs

As mentioned in Section 5.3.4, a vehicle contemplates the insertion of a new job
at any position in the current schedule without altering the order of execution
for the other jobs. To do this, the vehicle simply evaluates all possible insertion
positions. In case of fixed contracts, the vehicle also has to decide about the
optimal pickup time ω. The optimal pickup time ω is calculated using (5.3),
(5.13), and (5.12). For a given insertion position n, this pickup time is the time
at which the sum of the values for the two new gaps is maximal:

ω = argmax
ω0

n
V − (ϕ, n, ω0,Ψ) + V + (ϕ, n, ω0,Ψ)− cp

³
(ω0 − e (ϕ))

+
´o
(5.14)

To reduce the computational burden for calculating the optimal pickup time
ω, we decided to use the approximations Ṽ e and Ṽ g. When we calculate the
approximate value functions for a given gap length t, we automatically obtain
the value of all gap lengths s < t (because we iterate on the remaining gap
length). The idea is that we calculate the approximate value functions for
extreme lengths of the two gaps resulting from a new job insertion (i.e., the
gap before and after the new job). The optimal pickup time ω can then be
calculated rather easily by using all intermediate values. Let us illustrate this
with an example.
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Figure 5.6: Optimal pickup time for appending a job

Example 5.3. Consider a vehicle with schedule destination i and time-to-
go σ (see Figure 5.6). Suppose this vehicle wants to add a new job ϕ to the
end of its current schedule. Then the earliest pickup time is σ + τeio(ϕ). The
maximum length of the end-gap is therefore T − σ − τ io(ϕ)d(ϕ). The maximum
length of the gap before this job, given that the job has to be delivered within
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the planning horizon T , is T − σ− τfo(ϕ)d(ϕ). The approximate value functions

for the extreme gap lengths are thus given by Ṽ e
¡
d (ϕ) , T − σ − τ io(ϕ)d(ϕ)

¢
and

Ṽ g
³
i, o (ϕ) , T − σ − τfo(ϕ)d(ϕ)

´
. When we calculate these functions, we know

the value of all intermediate gap lengths that can occur due to this new job
insertion. We derive the optimal pickup time ω, by using these intermediate
gap values, as follows:

ω = argmax
ω0

⎧⎨⎩ Ṽ g (i, o (ϕ) , ω0 − σ) + Ṽ e
³
d (ϕ) , T − ω0 − τfo(ϕ)d(ϕ)

´
−cp

³
(ω0 − e (ϕ))

+
´ ⎫⎬⎭

(5.15)

Waiting decisions

Whenever a vehicle becomes idle, it has to decide upon a pro-active move. This
decision can simply be found by using the parts of the value functions for which
we assume we have to wait. Using (5.8), we find that the best waiting decision
δ∗ (i) at node i in case of an end-gap (based on σ̄) is given by:

δ∗ (i) = argmax
δ∈N

⎧⎪⎨⎪⎩
−cr (τ eiδ) +

Pτeiδ
η0=0 qδτeiδ (η

0) Ṽ p (δ, τ eiδ, η
0, t− τeiδ)

+
¡
1−Qδτeiδ

(τeiδ)
¢
×P∞

η00=0 qδ0 (η
00) Ṽ p (δ, η00, η00, t− τeiδ − η00)

⎫⎪⎬⎪⎭
(5.16)

If we are at the end of our schedule and all jobs have a stationary ar-
rival process, then this decision has to be taken only once. If there is a more
profitable node δ than the current node i, then the vehicle will move directly
towards this node, otherwise it will wait at node i until the next job.

In case of a gap, this decision has to be taken at every moment in the
gap for which the vehicle is not active. However, an optimal waiting strategy
can be found in advance using the approximate gap-values which are already
calculated with Algorithm 2. In this recursion we established the best waiting
decision for each node i and remaining gap length δ. Searching these values
will provide the time at which the vehicle has to move to the end-node of the
gap, given that it did not receive another job in this gap.

5.4.4 Extension to flexible contracts

The approach in case of flexible contracts is quite different from the fixed
contracts. In case of flexible contracts, vehicles no longer have to agree on
the pickup times of jobs. Moreover, it is not necessary for the vehicle agent
to maintain a detailed schedule of all pickup and delivery times of all jobs.
However, to calculate the costs of a new job insertion, and to use the gap- and
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end-value functions, we need some kind of schedule. For this purpose we use
a tight schedule in the sense that, given a certain order of jobs, all these jobs
are scheduled as early as possible, while keeping in mind the required time for
empty moves from the destination of a job to the origin of the next job. Note
that this schedule is only used to support the bid pricing decisions. A vehicle is
not restricted by these pickup times, but can simply decide to insert new jobs
or to wait at some node after delivery of a job. To avoid excessive computation
times, we also consider the insertion scheduling heuristic for the case of flexible
contracts.

When using flexible contracts, we have to change our approach on five as-
pects: (1) the temporal schedule, (2) the direct costs, (3) the end-values, (4)
the gap-values, and (5) the waiting strategy.

The temporal schedule

Whenever a vehicle receives a job announcement, it only has to decide upon
the best insertion position and no longer upon the pickup time ω (because each
job is scheduled as early as possible). Therefore, we use an alternative schedule
Ψϕ,n for inserting job ϕ after the nth job in the current schedule Ψ. Again, the
temporal schedule is given by an alternative schedule with the highest profits:

V (Ψ ∪ ϕ) = max
n
{V (Ψϕ,n)} (5.17)

The direct costs

Another consequence of using the flexible contracts, is that the penalty costs
are not fixed in advance. Because a vehicle no longer has to agree on a certain
pickup time, it has the possibility of delaying the pickup time of a job against
predetermined penalties. Instead of calculating the penalties for the new job
ϕ, we now have to calculate the increase in penalties for all jobs in the tem-
poral schedule compared to the current schedule, cf. (3.1) in Chapter 3. As a
consequence, the direct cost function of (5.3) is no longer applicable. Instead,
we now use the original equation (5.2) in combination with (5.4) to calculate
the bid price.

The end-value

For the end-values we use the approximate value function Ṽ e (i, t), with i the
destination of the last job and t the remaining planning horizon after the sched-
uled delivery time of the last job in the tight schedule. Although the actual
time-to-go σ is not used in the approximate end-values, we want to point out
that the time-to-go σ is somewhat different in case of flexible contracts because
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the timing of jobs is not fixed, and as a consequence we do not know the time
until delivery of the last job in the schedule.

The gap-values

Also for the gap-values, we use the approximate value function Ṽ g (i, j, t), with
i the start-node and j the end-node. However, the meaning of t is different
here. We define tn as the flexibility of the nth gap (the gap after job n). This
flexibility consists of an empty travel time τeij from the start-node i to the end-
node j, plus a time slack sn. This time slack is the maximum amount of time
that this job can be postponed without causing an increase in penalties for this
job or one of the succeeding jobs. We calculate the gap flexibilities recursively
as shown in Algorithm 5.3.

init: sN =∞
for n = N − 1 down to 1 do

sn = min
³¡
e
¡
ϕn+1

¢
− ωn+1

¢+
, sn+1

´
tn = sn + τe

d(ϕn)o(ϕn+1)
end;

Algorithm 5.3: Calculating the gap flexibilities

Note that the gap-value Ṽ g (i, j, t) is only defined for t ≥ τeij . For future
reference we put Ṽ g (i, j, t) = −∞ for t < τeij .

A major implication of the flexible contracts for insertion of a new job in a
gap, is that it reduces the value of succeeding gaps and of the end-value. For
the dynamic programming recursion this means that (1) we have to subtract
these values in every iteration and (2) the gap-values are defined recursively.
Regarding the latter, we have to calculate the value of the end-gap first, then
the value of the gap before the last job, then working backwards until the gap
after the first job. We denote the decrease in end-value due to a delay t of the
scheduled delivery time of the schedule destination d by ∆Ṽ e (d, t). We use
∆Ṽ g (n, t) to denote the sum of the decreases in gap-values for all gaps after
the nth gap, given the scheduled pickup time of the job n + 1 is postponed
a time t. To calculate the gap-values for flexible contracts, we use a similar
recursion as in Section 5.4.2, but with the two distinctions mentioned above.
The approximate gap-values are calculated using Algorithm 5.4.

To approximately calculate the decrease ∆Ṽ e (d, t) in end-value, we do not
have to know the time-to-go σ until arrival at the schedule destination d. One
can argue that the expected profit on day t equals the expected profit on day
t+1, for t large enough (see Chapter 7). Therefore, we calculate the change in
end-value as follows:
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init:
given a schedule destination d
tN =∞

for n = N − 1 down to 1 do
given j = o

¡
ϕn+1

¢
, and tn (the end-node and flexibility of the nth gap)

Ṽ g (i, j, s) = −∞ ∀i ∈ N/j with s < τ eij , and Ṽ g (j, j, s) = 0 ∀s
for ∀i ∈ N/j do

for s = τ eij to tn do (only if τ
e
ij ≤ tn)

Ṽ g (i, j, s) = max
δakl|k,l∈N

(
Qi0 (1) Ṽ

p (i, j, s)+(1−Qi0 (1) + u (i))×

max
δ∈N

⎛⎜⎜⎝
−cr (τeiδ) + Ṽ g (δ, j, s−max (τ eiδ, 1))
−∆Ṽ e

³
d,max (τeiδ, 1) + τ eδj − τ eij

´
−∆Ṽ g

³
n,max (τ eiδ, 1) + τeδj − τeij

´
⎞⎟⎟⎠
)

Ṽ p (i, j, s) =
P

k,l∈N δaklpikl (0)

(
⎛⎝ rikl (0)−∆Ṽ e

³
d, τ ikl + τelj − τeij

´
−∆Ṽ g

³
n, τ ikl + τelj − τeij

´
+ Ṽ g (l, j, s− τ ikl)

⎞⎠)
u (i) = Qi0 (1)

³
1−

P
k,l∈N δaklpikl (0)

´
end;

end;
end;

Algorithm 5.4: Calculating the approximate gap-values with flexible contracts

∆Ṽ e (d, t) = Ṽ e (d, T )− Ṽ e (d, T − t) (5.18)

To calculate the decrease∆Ṽ g (n, t) in gap-values, we have to recalculate the
gap flexibilities tm for all gaps m ≥ n+ 1. We denote the updated flexibilities
by t0m. These flexibilities are calculated using Algorithm 5.3, with the only
exception that we increase all times ωm and ρm for m ≥ n+1 with time t. We
calculate the change in gap-values as follows:

∆Ṽ g (n, t) =
N−1X

m=n+1

µ
Ṽ g
¡
d (ϕm) , o

¡
ϕm+1

¢
, tm

¢
−Ṽ g

¡
d (ϕm) , o

¡
ϕm+1

¢
, t0m

¢ ¶ (5.19)

A major disadvantage of the dependencies between gaps, is that we can
not simply calculate the value of all possible gaps in advance. Therefore, we
also propose a variant in which we ignore the dependencies in gaps. Here we
treat each gap in the schedule as if it is the last gap. So each new move that
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is inserted in this gap only reduces the value of the end-gap. Because we can
calculate the end-values in advance for all possible schedule destinations, we
can also calculate these flexible gap-values for all possible gaps in advance. As
we will show in Section 5.7, this reduces the computation time and still yields
reasonable results.

Example 5.4. As an illustration, let us consider the schedule of Figure
5.7. The free flexibility of the third, second, and first gap are respectively
given by: tp3 = min

³
(14− 12)+ ,∞

´
= 2, tp2 = min

³
(10− 7)+ , 2

´
= 2,

tp1 = min
³
(6− 5)+ , 2

´
= 1. The gap flexibilities are now given by: t3 =

2+(12−9) = 5, t2 = 2, and t1 = 1+(5−3) = 3. To calculate the value of this
schedule, we subsequently calculate Ṽ e (C,T − 15), Ṽ g

3 (A,D, 5), Ṽ g
2 (C,C, 2),

and Ṽ g
1 (B,D, 3).

Now consider the value Ṽ g
1 (B,D, 3) for the first gap. For s < 2, the value

Ṽ g
1 (B,D, s) is −∞ because the time τ eBD required for the empty move is longer
than the available flexibility. For s = 2, the value Ṽ g

1 (B,D, s) is −cr (2)
because the available flexibility if just enough to do the empty move. For 2 <
s ≤ 3, there is a probability that the empty move is replaced by one or more
loaded moves. Then every iteration will decrease the flexibility of the subsequent
gaps by s− 2. So we have to subtract the following values:

∆Ṽ e (C, s− 2) = Ṽ e (C,T )− Ṽ e (C,T − (s− 2))
∆Ṽ g (1, s− 2) = Ṽ g

2 (C,C, 2)− Ṽ g
2 (C,C, 2− (s− 2)) +

Ṽ g
3 (A,D, 5)− Ṽ g

3 (A,D, 5− (s− 2))

This computation can be done very fast because these values are already calcu-
lated given the backward iteration over all gaps and time lengths.
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The waiting strategy

A final implication of the flexible contracts is their affect on the waiting strategy.
With the flexible contracts we only have an operational waiting decision. Upon
delivery of a job we have an option (1) to wait at the current location, (2) to
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drive immediately to the origin of the next job, or (3) to move proactively to
another location and wait over there. Again, the optimal decision δ∗ (i) in node
i can be found in the dynamic programming recursion:

δ∗ (i) = argmax
δ∈N

⎛⎜⎜⎝
−cr (τeiδ) + Ṽ g (δ, j, s−max (τ eiδ, 1))
−∆Ṽ e

³
d,max (τeiδ, 1) + τ eδj − τ eij

´
−∆Ṽ g

³
n,max (τeiδ, 1) + τeδj − τeij

´
⎞⎟⎟⎠ (5.20)

In the previous sections, we presented dynamic programming recursions for
the gap-values and end-values, for both the fixed and flexible contracts. Before
calculating the gap-values and end-values we need to estimate the required
parameters. In the next section we describe how this can be done.

5.5 Parameter estimation

As mentioned in Section 5.4.2, we use the same parameters for the gap-values
as for the end-values. In this section we describe how these parameters can be
estimated in order to calculate the (approximate) value functions. In Section
5.6 we describe the required changes to this section in order to use intrinsic
parameters for the gap-values.

Because we have deterministic travel times, we assume that all vehicles are
aware of the travel times τeij and τ

f
ij for all routes i, j ∈ N . This leaves us with

the following parameters that we need to estimate:

• The average time-to-go σ̄.

• The conditional probability pikl (σ − η) that a vehicle ending in location
i will have a trip from k to l as next job, given that the corresponding
agent wins a job at time θ + η < θ + σ.

• The expected reward rikl (σ − η) of a job from k to l that is won at time
θ + η < θ + σ with start-node i.

• The probability qiσ (η) that we win a new job in the time interval (θ +
η, θ + η + 1] if the schedule ends at node i.

• The distribution function Qiσ (σ) that we win a new job during the time-
to-go σ if the schedule ends at node i.

We estimate these parameters and functions based on historic data. A
possibility is to store all historic waiting times, revenues, travel times, and
transition percentages for all possible states. Even when these parameters do
not depend on the time-to-go σ, we must store a lot of information. Therefore,
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we propose to estimate these parameters based on auction data for certain
routes and the job arrival intensity for these routes. The auction data can
be used to estimate (1) the sample mean x̄ij and sample variance s2ij of all
observations of the winning price for all routes i, j ∈ N ; (2) the average job
arrival intensities λij for all routes i, j ∈ N ; (3) the average time-window
length zij for jobs on all routes i, j ∈ N ; and (4) the average time-to-go σ̄.
The time-window lengths zij describes the time between the announcement of
a job and the latest pickup time. The expected length of a time-window might
be dependent on a lot of characteristics such as a specific shipper. In this
chapter we focus on certain routes and therefore we assume that these time-
window lengths can be estimated based on the route. The arrival intensities
λij are estimated based on the job announcement characteristics by taking the
average of past observations. The average time-to-go σ̄ is estimated as the
average time between winning a job and picking up this job. Note that when
the auction data is only visible by the carriers, we assume that they inform
their vehicles about these parameters.

In the next section we describe how the vehicles estimate the distribution
of the lowest bid using the sample mean and variance provided by their carrier.
In Section 5.5.2 we describe how the vehicles calculate the transition probabili-
ties pikl (σ − η) and expected revenues rikl (σ − η). Calculation of the winning
probabilities qiσ (η) and distribution Qiσ (σ) of winning moments is given in
Section 5.5.3.

5.5.1 Distribution of lowest bids

Consider a route k, l. The estimation of the distribution parameters of the
lowest bids for jobs on this route, depends on the structure of the auction.
Here we use a second-price auction (see Section 5.3.3) where only the winning
price, i.e., the one but lowest bid, is published. To estimate the distribution of
the lowest bid, carriers can use information about all winning prices together
with their own bid history. Because your own bids provide little information
about the bids of your competitors, we only use information about the winning
prices. This causes a problem, because we need the probability distribution of
the lowest price whereas we only have observations of the one but lowest price.
In this section we discuss how we deal with this problem.

The choice for a certain distribution function which is appropriate to de-
scribe the lowest bid, depends on the transportation network under considera-
tion. It depends, among others, on (1) whether transportation takes place in a
continuous area or between nodes, (2) the number of vehicles, and (3) the bid
pricing behavior of these vehicles. Consider, for example, a triangular network
with equal distances between the three nodes. Suppose further that the bid
price of a vehicle, for transporting a load between these nodes, is given by the
increase in travel distance of the cheapest insertion. One can easily see that
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we then only have four possible bid prices. An empirical distribution would
be most appropriate in this case. Of course the number of price classes will
increase when (1) bids also include penalty costs and opportunity costs and (2)
we have a network with a lot of nodes. Without loss of generality, we decided to
use a continuous distribution function. For clarity of presentation, we use the
same distribution function in our simulation experiments, even though network
instances with only three nodes are involved.

We use the theory of the so-called Extreme Value Distributions (EVD),
being a class of probability distributions for the order statistics of a large set
of random observations from the same (arbitrary) distribution (mth order sta-
tistic is the mth smallest value). Particularly, the EVD cover the minimum
and maximum value, but also a limiting distribution for the one but lowest
(highest) observation is known. These limiting distributions have the same
set of distribution parameters. This enables us to estimate the parameters of
the limiting distribution for the one but lowest bid, and use these parameters
for the limiting distribution of the minimum bid. Below, we elaborate on this
approach in formulas.

Suppose that the bids bc for a single job from competitor c (c = 1..C) are
independent and identically distributed with a cumulative distribution function
H (x). We denote the probability distribution functions of the corresponding
order statistics by Hm(x). The probability distributions of the first- and second
order statistic are respectively given by:

H1 (x) = 1− Pr (b1 > x, b2 > x, ..., bn > x) = 1− (1−H(x))n (5.21)

H2 (x) = nHn−1 (x) [1−H (x)] +Hn (x) (5.22)

Except for special cases, it is not possible to express these distributions
as closed form expression with parameters that can easily be estimated. It is
shown in (Gumbel, 1958), that for any well-behaved initial distribution (i.e.,
H(x) is continuous and has an inverse), limiting distributions for n −→ ∞
can be derived. In this chapter we use the Gumbel distribution which only
requests that the tail of the distribution H (x) declines exponentially (normal,
log-normal, exponential, and gamma). The Gumbel distributions G1 (x) for
the lowest value and G2 (x) for the second lowest value are given by:

G1 (x) = 1− e−e
x−α
β

(5.23)

G2 (x) = 1−
µ
e−e

x−α
β
³
1 + e

x−α
β

´¶
(5.24)

where α and β > 0 are the location and scale parameters (Reiss and Thomas,
1997). We use G1 and G2 to approximate H1 and H2 respectively. We esti-
mate the parameters α and β using observations from G2(x) and insert these
parameters in G1(x). Various statistical methods can be used to estimate α
and β, depending on the observed data. In case of an open auction we can
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simply use the Method of Moments. From the moments of the standard Gum-
bel distribution Gm (x) (see Reiss and Thomas, 1997), it is straightforward to
derive the location and scale parameter of G2 (x):

βkl =
sklq
1
6π

2 − 1
(5.25)

αkl = x̄kl + βkl (γ − 1) (5.26)

Here γ = 0.577216... is Euler’s constant, and x̄kl and skl are respectively
the sample mean and sample standard deviation of all historical winning prices
(the second-lowest bids) for jobs on route k, l. In the remainder we indicate
the distribution of the lowest bid by Hmin

kl (x), which in fact describes the
probability that a vehicle will lose an auction given its bid price x.

Note that we used the assumption that bids in successive rounds are inde-
pendent and identically distributed (iid) random variables. We may question
whether that assumption is realistic, because the system state (state of the
vehicles) will be quite similar in successive auctioning rounds unless the job
arrival frequency is very low. However, Reiss and Thomas (1997) state that
even if the distributions H (x) are not exactly known or the iid condition of
the bids fails, then H1 may still be an accurate approximation of the actual
distribution of the minimum. Because H2 can be expressed as a function of
H1, the same holds for the distribution of the second lowest bid.

5.5.2 Estimating revenues and transition probabilities

To estimate the revenues and transition probabilities, the vehicle agent uses
so-called winning intensities. The winning intensities provide for all routes the
intensity at which the carrier expects to win jobs given a certain state. We
define the winning intensity ξikl (σ) as the mean number of winning jobs per
time unit from k to l after arrival at node i with time-to go σ. The winning
intensities are given by:

ξikl (σ) = λkl · pwinikl (σ) (5.27)

where pwinikl (σ) is the probability of winning a job from k to l with start-node
i and time-to-go σ, given by:

pwinikl (σ) = 1−Hmin
kl (bikl (σ)) (5.28)

where bikl (σ) is the expected bid price for the vehicle, given a job on route kl,
location i, and time-to-go σ. This bid price consists of direct costs ckl (σ) =

cr
³
τfkl

´
+ cp

³
(σ + τeik − zkl)

+
´
and opportunity costs OCikl:

bikl (σ) = ckl (σ) +OCikl (5.29)



120 Chapter 5. Carriers: opportunity valuation policies

This bid price is derived from (5.13). We modified the notation because
we do not have to decide about an insertion position or pickup time in our
recursions since we assume that subsequent jobs are scheduled immediately
after each other (see Section 5.4.1). The opportunity costs, however, are not
known yet. On the contrary, this whole approach is focused on finding them.
Therefore we use an estimate based on previous opportunity costs charged in
this state (an extension is discussed in Section 5.6). In case of end-values, we
approximate the opportunity costs by:

OCikl = Ṽ e (i, T ) + cr (τeik)− Ṽ e (l, T − τ ikl) (5.30)

Here we used the approximate value functions to reduce computation time.
A difference with the original opportunity cost function (5.12) is that the value
of the gap before the new job is replaced by the costs for an empty move. The
reason for this is that the new job from node k to node l is scheduled as early
as possible, i.e., a time τ eik after arrival at node i.

In the end-value function (5.7) we integrate the expected revenues over all
possible winning moments η. Given that we win a job during time-to-go σ
at time η, the remaining time-to-go is γ = σ − η. The expected revenue of
a vehicle as a function of the winning time-to-go γ, is given by the difference
between the expected lowest bid of its competitors (given that its own bid is
lower) and the direct costs:

rikl (γ) =
1

1−Hmin
ikl (bikl (γ))

Z ∞
x=bikl(γ)

xdHmin
ikl (x)− ckl (γ)− cr (τ eik) (5.31)

In our simulation experiments (see Section 5.7) we calculate this function
by numerical integration. The conditional probability pikl (γ) that the winning
job has origin k and destination l given location i is given by:

pikl (γ) =
ξikl (γ)P

k0l0 ξik0l0 (γ)
(5.32)

When time-windows, penalty costs, or travel costs differ per route, then
also the transition probabilities will be time dependent. So at different points
in time, different jobs will have the highest winning probability. We illustrate
this by means of an example.

Example 5.5. Suppose we only have three possible routes AB, AC, and
AD. The arrival intensities of jobs on these routes are λAB = 0.2, λAC = 0.4,
and λAD = 0.6. The time-window length for each job is zero and the travel
costs are 50. For all possible destinations i ∈ {B,C,D}, the winning intensities
ξAAi (σ) are calculated using (5.27), where the Hmin

AAi (b) is the Gumbel distri-
bution with parameters αAi = 100 and βAi = 5. The conditional probabilities
pAAi (γ) are calculated using (5.32), with i ∈ {B,C,D}.
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First, consider a linear penalty function of 1 per time unit for all jobs. The
winning intensities and the conditional probabilities are depicted in Figure 5.8
in the upper left corner and upper right corner respectively. We see that all
jobs have equal winning probability, independent on the winning time-to-go γ.
Now suppose the penalty costs differ per job. We use a linear penalty function
with costs of 1, 1.5, and 2 for jobs on route AB, AC, and AD respectively.
The winning intensities and the conditional probabilities are depicted in Figure
5.8 in the bottom left corner and bottom right corner respectively. Clearly at
different moments in time, different jobs have the highest probability of being
won.
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5.5.3 Distribution of winning moments

We described the winning moments η by a distribution function Qiσ (η). Diffi-
culty is that the winning moments follow a so-called non-homogeneous Poisson
process (NHPP) (see Ross, 2003). To ease our notation we introduce the fol-
lowing definition:

Λiσ (t) =

Z t

0

X
kl

ξikl (σ − u) du (5.33)

The value Λiσ(η) is called the rate function of the nonhomogeneous Poisson
process because the counting process of winning jobs can be described by a
Poisson process with mean Λiσ(η). The distribution function of the random
amount of time η until the first time we win an auction is given by:

Qiσ (η) = 1− e−Λiσ(η), 0 ≤ η ≤ σ, σ > 0 (5.34)

Note that when σ < zkl − τ eik for all k, then the penalties in the expected
bid bikl (σ) of (5.29) are zero. As a consequence, the winning moments follow
a homogeneous Poisson process Qiσ (η) = 1 − e−η kl ξikl(σ). This situation
generally occurs in our simulation experiments.

5.6 Relaxation of assumptions

Throughout this chapter, we made several assumptions regarding the calcula-
tion of the value functions. In this section we relax some of these assumptions.
First, we provide two relaxations that account for a more precise treatment
of the time-to-go σ. Next, we present an alternative way to calculate the ex-
pected opportunity costs of (5.30). Finally, we describe how we can use custom
parameters for the gap-values.

5.6.1 Relaxation 1: precise first uncertain move

In Section 5.4.2 we decided to approximate the time-to-go σ either by zero,
or by its expectation σ̄. We made this approximation to derive a backward
recursion for the value functions. However, an option is to calculate the first
recursive step more precisely by using the actual time-to-go σ. Therefore, we
distinguish between the first uncertain move and all further uncertain moves
(cf. Powell et al., 1988). The first uncertain move occurs directly after arrival
at node i, which is the schedule destination or the start-node of a gap. All
further uncertain moves occur after that. The idea is that the first uncertain
move (1) has the largest impact on the expected profits and (2) can still be cal-
culated more precisely because we can do it outside the dynamic programming
recursion. We illustrate this process with an example.
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Example 5.6. Consider the end-value of the schedule depicted in Figure
5.9. The numbers in black squares refer to the three cases for winning a new job,
as mentioned in Section 5.4.1. The current time is 9:00, and the destination
of the schedule is node C with a time-to-go of 4 hours. Because we are looking
at the end-value, all moves before 13:00 are treated as certain moves. There is
a probability (case 1) that we receive a next job before arrival at our current
schedule destination. In this case we will have a first uncertain move directly
after 13:00 consisting of a full move and possibly proceeded by an empty move.
Otherwise (case 2), we will make a pro-active move towards node B and receive
a job during this pro-active move. Otherwise (case 3), we wait at node B until
we win a job. After the first uncertain move we approximate all further possible
moves, indicated by the grey dotted lines.
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Figure 5.9: Approximation of end-values

In Section 5.4 we introduced the approximate value functions Ṽ e and Ṽ g, for
the end-value and the gap-value respectively. Now we use these approximations
to describe the value of all moves after the first uncertain move. To describe the
value of all uncertain moves, including the first uncertain move, we introduce
the value function V̂ e (i, σ, t) which is given by:

V̂ e (i, σ, t) =
σX

η=0

qiσ (η) Ṽ
p (i, σ, η, t) + (1− Fiσ (σ))max

δ

(
(5.35)

−cr (τ eiδ) +
Pτeiδ

η0=0 qδτeiδ (η
0) Ṽ p (δ, τ eiδ, η

0, t− τeiδ)

+
¡
1− Fδτeiδ (τ

e
iδ)
¢P∞

η00=0 qδ0 (η
00) Ṽ p (δ, η00, η00, t− τeiδ − η00)

)
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where Ṽ p is the approximate partial value function as introduced in Section
5.4.2. The gap-values V̂ g (i, j, σ, t) can be derived in a similar manner. The
advantage of this approach is that we can incorporate the actual time-to-go σ
rather easily.

5.6.2 Relaxation 2: average time-to-go

In Section 5.4.2 we replaced the time-to-go σ with its expectation σ̄. However,
to simplify the presentation, we used a time-to-go of zero in our dynamic pro-
gramming recursions. This way, we do not consider the case that jobs are won
in advance, i.e., during a certain time-to-go or during a pro-active move.

If we use the average time-to-go σ̄, then we have to incorporate the three
cases for winning a new job: (1) during the time-to-go σ̄, (2) during a pro-active
move τeiδ, and (3) after arrival at node δ. The recursion for the approximate
end-values based on the average time-to-go σ̄ is given in Algorithm 5.5. Here
we use (5.8) to describe the value of the three cases. The algorithms for the
approximate gap-values, both fixed and flexible, are derived in a similar man-
ner.

init:
given a planning horizon T
Ṽ e (i, t) = 0 ∀i ∈ N with t ≤ 0

for t = 1 to T do
for ∀i ∈ N do

Ṽ e (i, t) =
Pσ̄

η=0 qiσ̄ (η) Ṽ
p (i, σ̄, η, t) + (1−Qiσ̄ (σ̄))maxδ

(
−cr (τ eiδ) +

Pτeiδ
η=0 qδτeiδ (η) Ṽ

p (δ, τeiδ, η, t− τeiδ)+¡
1−Qδτeiδ

(τeiδ)
¢P∞

η=0 qδ0 (η) Ṽ
p (δ, η, η, t− τ eiδ − η)

)
Ṽ p (i, σ̄, η, t) =

P
k,l∈N pikl (σ̄ − η)

∙
αikl (t) rikl (σ̄ − η)+

Ṽ e (l, t− τ ikl)

¸
end;

end;

Algorithm 5.5: Calculating the approximate end-values using the average time-
to-go σ̄

5.6.3 Relaxation 3: expected opportunity costs

In Section 5.5.2 we mentioned that in order to calculate the opportunity costs,
we already need the opportunity costs, see (5.29). Because we estimate all
parameters (see Section 5.5) before calculating the dynamic programming re-
cursions for the approximate value functions, we propose to use the opportunity
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costs that are calculated earlier for this state (e.g. in an earlier auction round
or period). So the opportunity costs are defined recursively. An alternative is
to perform multiple iterations of the dynamic programming recursions. At the
beginning of each iteration we calculate all parameters, using the results of the
previous iteration to calculate the opportunity costs. Again we can start the
first iteration using the value functions calculated in the previous auction round
or period. We can stop the iteration when the difference in value-function is
sufficiently small. In our simulation experiments we show some convergence
results.

5.6.4 Relaxation 4: custom parameters for the gap-values

Instead of using the same parameters for the end-values as for the gap-values,
we now use the intrinsic parameters for the gap-values. To do this, we have to
(1) make all functions of Section 5.5 also dependent on the end-node j and the
gap flexibility t and (2) use another opportunity cost function (5.30). In case
of fixed contracts, these opportunity costs are given by:

OCikl (j, σ, t) = Ṽ g (i, j, t) + cr (τeik)− Ṽ g (l, j, t− τ ikl) (5.36)

In principle, we can use the approximate gap-values that are calculated
in an earlier auction round or period, or perform multiple iterations of the
dynamic programming recursion (see previous section). Of course, we then
have to store the gap-values Ṽ g (i, j, t) for all combinations of i, j ∈ N and
t = τeij ..T . However, in case of flexible gaps, this approach is less appropriate
because the value of a gap is dependent on other gaps in the schedule. As
a consequence, we would have to store all possible gap-values for all possible
schedules. Therefore we propose another method for both the fixed gap-values
and flexible gap-values.

The basic idea is that we explicitly incorporate the estimation of oppor-
tunity costs in the dynamic programming recursion itself. More precisely we
estimate all required parameters at each stage s of the dynamic programming
recursions, where s is the remaining gap flexibility, by using the gap-values
that are calculated in earlier stages t < s. For a given gap flexibility s we can
estimate the opportunity costs as follows:

OCikl (j, σ, s) = Ṽ g (i, j, s− 1) + cr (τeik)− Ṽ g (l, j, s− 1− τ ikl)

These opportunity costs are calculated using the gap-value functions Ṽ g (i, j, t)
for t < s, which were already calculated in earlier steps of the dynamic pro-
gramming recursion.
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5.7 Simulation

In the next sections we discuss the settings and numerical results of a concise
simulation study. The goal of this study is to provide insight into (1) the
performance of opportunity based bid pricing and scheduling and (2) the effect
of different approximations. We compare the opportunity based bid pricing
and scheduling strategy with a naive strategy where only the direct costs of a
job insertion are taken into account. Because this naive strategy is not able
to value opportunities, we use a simple waiting strategy where new jobs are
scheduled as early as possible at a certain place in the schedule. For a broader
comparison we refer to Chapter 3, where this naive pricing and scheduling
strategy is compared with two centralized heuristics.

We consider three simplified market structures. First, an open market where
we apply our opportunity based bid pricing and scheduling approach to a sin-
gle vehicle, while other vehicles (indicated by external market) are using the
naive strategy. Second, a virtual market which is a special form of open market
where bids of the external market are generated from a given distribution func-
tion. Third, a closed market where all vehicles are using the same pricing and
scheduling strategy. The closed market structure can be seen as an internal
application of our approach. For example if we apply our approach to a closed
consortium of carriers or even to a single carrier where the vehicles compete
with each other.

The opportunity based bid pricing approach is developed for open markets
where we apply this strategy to an individual vehicle and assume that it does
not affect the behavior of the other vehicles. This is a basic assumption of
our approach because current decisions (bid price calculations) are based on
historical observations of auction data. For a closed market, we expect that
when all players update the value functions at the same time based on the same
observations, the average prices for jobs will increase. In Chapter 7 we go into
more details about this.

5.8 Experimental settings

We consider unbalanced transportation networks, in the sense that some nodes
are more popular than others. We consider two network settings, a 3 node
network and a 9 node network. In the 3 node network, the nodes are spanning
up an equilateral triangle. The distances between the nodes are 50 km. We
label the nodes A, B, and C. The probability of being an origin node is 0.1,
0.3, 0.6 for node A, B, C respectively. In the 9 node network, the nodes are
the grid points of a 2x2 square grid. Distances are Euclidian and such that
the horizontal and vertical distances between adjacent nodes are 25 km. The
probability of being an origin for nodes on row 1, is 5 times higher than row 2
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and 25 times higher than row 3. Per row all probabilities are equal. In both
network settings, the destination node is drawn randomly from all nodes other
than the origin node.

We use 10 vehicles, each having a travel speed of 50 km/hour (both empty
and loaded). The travel cost function is given by cr (t) = t and the penalty
cost function by cp (t) = 10t. The loading- and unloading times are 5 minutes
each. For the dynamic programming recursions, we discretize time into periods
of 1 minute and use a planning horizon of 12,000 minutes. Jobs have a time-
window length of 10 hours and arrive according to a Poisson process. In the 3
node network, the mean interarrival time of jobs is 900 seconds. In addition,
we also vary the mean time between jobs and the time-window length. For the
time between jobs we use [600,700,800,900,1000] seconds. For the time-window
length we consider [300,400,500,600,700] minutes. In the 9 node network we
consider two settings for the mean interarrival time between jobs: quiet (1200
seconds) and busy (800 seconds).

We evaluate the approximate end-values and gap-values in combination with
the relaxations of Section 5.6. We consider the following value functions:

VE End-values based on σ = 0
VEA End-values based on σ = σ̄
VG Gap-values based on σ = 0
VGC Gap-values with custom parameters based on σ = 0
VGAC Gap-values with custom parameters based on σ = σ̄
VGS Gap-values calculated recursively over all gaps in the schedule

based on σ = 0
VGAS Gaps-values calculated recursively over all gaps in the schedule

based on σ = σ̄

Relaxation 1 of Section 5.6, the precise first uncertain move, is not added
as an experimental factor. As a consequence, all policies are based on the
approximate values Ṽ e and Ṽ g. We omitted this factor because we have seen,
from our simulation experiments, that the added value of this relaxation is
relatively small in all cases, i.e., a reduction in net costs per job (consisting of
costs for empty moves and penalties on tardiness) of <4% in the open markets
and <1% the closed markets.

For the virtual market we use a Gumbel G1 distribution to generate the
lowest bid of the external market. The parameters of this distribution are
estimated based on a learning phase of 500 days. In this learning phase we have
10 vehicles using the naive pricing and scheduling strategy. At each auction
round, we store the lowest bid of a fixed group of 9 vehicles (which represent the
external market). At the end of the learning phase we estimate the parameters
of the Gumbel distribution from the mean and standard deviation of the lowest
bid data. Also, the single vehicle calculates the different value functions in
advance at the end of the learning phase, except for the flexible gap-values
which are defined over all gaps in a schedule.
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In the open market, we have a single vehicle using opportunity based bid
pricing and scheduling, and 9 vehicles using the naive strategy. Although prices
from the external market are possibly influenced by the behavior of the indi-
vidual vehicle, we decided to use the same value functions as in the virtual
market. As a consequence, we have to calculate the value functions only once
for the virtual or open market.

In the closed market, we have 10 vehicles using opportunity based bid pricing
and scheduling. Because now all players can change their bid pricing behavior,
we can not simply calculate all value functions in advance. Instead, we calculate
them periodically, each 50 days, using the observations of the last 50 days.

We use the 3 node network to evaluate all policies in all combinations of the
virtual and open market, and the fixed and flexible contracts. We further in-
vestigate the impact of varying time-window lengths and varying time between
jobs, using the flexible contracts. In the 9 node network we test a selection of
policies using the flexible contracts. In this network we investigate the virtual
and open market, but also the closed market setting.

As performance indicators we consider the percentage of the time vehicles
are driving loaded (DL), the service level (SL) being the percentage of jobs that
are picked up before the latest pickup time, and the relative profit (RP). The
definition of relative profit differs per market structure. In the virtual market,
the relative profit of a certain policy is given by the realized profit under this
policy compared to the profit of using the naive policy. In the open market,
the relative profit of a certain policy is given by the realized profit under this
policy compared to the average profit of the 9 vehicles that are using the naive
policy. In the closed market, the relative profit of a certain policy provides the
change in total net costs compared to the situation in which all vehicles are
using the naive policy. Here the total net costs consist of costs for traveling
empty and penalty costs. The loaded move costs are not included because they
always have to be made and can not be reduced.

We use a replication / deletion approach for our simulations, cf. (Law and
Kelton, 2000), where each experiment consists of a number of replications (each
with different seeds) and a warm-up period. The length of each simulation
run for the closed market setting is 710 days, including a warm-up period of
210 days. The length of each simulation run for the virtual and open market
consists of 510 days including 10 days as a warm-up period. Here the learning
phase is not included in the run length, but is done separately for multiple
experiments in advance. To determine the number of replications, we consider
all three performance indicators of all experiments. The maximum number of
replications needed with a confidence level of 95% and a relative error of 5%
is 5. To facilitate comparison, we use 5 replications for all experiments. Only
the learning period consists of one replication.
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5.9 Numerical results

First, we present our simulation results for the 3 node network. We subse-
quently present: the prices and behavior of the value functions (Section 5.9.1),
the results for the virtual market (Section 5.9.2), the results for the open mar-
ket (Section 5.9.3), and the effect of the input parameters (Section 5.9.4). After
that, we present the results for the 9 node network in Section 5.9.5, and provide
some insight into the computation times of our methods in Section 5.9.6.

5.9.1 3 node network - Learning phase

During the learning phase all vehicles use the naive pricing and scheduling
policy, and we keep record of the lowest bid from a group of 9 vehicles. The
mean and standard deviation of these observations can be found in Table 5.1.
In case of fixed contracts, prices mainly depend on the origin node because new
jobs are always appended to the end of a schedule. Prices for jobs with origin
node A are the lowest because most jobs end at node A. In case of flexible
contracts, prices depend both on the origin node and the destination node,
because new jobs are inserted in a schedule. Therefore, the prices for jobs with
origin node A (the most popular origin node) or destination node C (the most
popular destination node) are relatively lower.

Flexible contracts Fixed contracts
Route Mean St.dev Mean St.dev
AB 62.89 19.37 70.01 1.30
AC 23.10 24.80 70.04 1.80
BA 78.42 20.97 80.79 23.06
BC 49.47 35.80 80.84 22.80
CA 122.44 19.89 110.51 28.09
CB 118.73 24.03 110.86 27.96

Table 5.1: Mean and standard deviation of lowest bids for jobs on different
routes during the learning phase

Next, we calculate the approximate value functions for the flexible contracts.
To calculate the end-values we perform 10 iterations (see relaxation 3). First,
we calculate the end-values based on a time-to-go of zero (Algorithm 5.1).
After that, we calculate the end-values based on an average time-to-go σ̄ = 180
minutes (Algorithm 5.5). The results can be found in Figure 5.10 and Figure
5.11.

From these figures we draw the following conclusions:

• For a longer planning horizon, we see a linear increase in end-values while
the absolute differences between end-values for the different schedule des-
tinations remain the same. This makes sense because, for t large, the
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Figure 5.10: Approximate end-values
for the flexible contracts using an av-
erage time-to-go of zero
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Figure 5.11: Approximate end-values
for the flexible contracts using an av-
erage time-to-go of 180 minutes

expected profits at period [t, t+ 1] are independent on the start-node at
t = 0 because you visited many nodes afterwards. The absolute differ-
ences in end-values for various schedule destinations, emerge at small t
because the initial increase depends on the popularity of the schedule
destination (see next point).

• Initially, the increase in end-value for start-node C is higher then the
linear slope mentioned above (and the opposite for start-node A). We
have the following explanation. The value of a node is given by the
expected profit of the first job we won, plus the value of the node where
the new job ends. For start-node C, the expected waiting time is small
and the probability of an empty move is low. So the expected profit of
the first job is relatively high. However, this new job ends at node A or
node B, which has a lower value. The initial slope is higher because we
only consider the short-term profits, i.e., without taking into account the
value of the node where the new job ends.

• The end-values based on an average time-to-go (Figure 5.11) have more
visible fluctuations. These fluctuations are cyclic and appear to be flat-
tening out. The cycle period depends on the time to move loaded from
one node to another. To illustrate this, let us consider the start-node
C. The waiting time at this node is almost zero, and therefore profits
immediately increase with increasing gap length. At a gap length of 70
minutes, we expect to do precisely one job from C to A or B. The expected
profit of this job is approximately 50. The next 70 minutes, the expected
profits do not increase much, because the expected waiting times and the
probability of empty moves are higher at the new start-node.

• The end-values are much higher when we take into account the average
time-to-go of 180 minutes. The explanation is that the expected waiting
times are much lower because, on average, jobs can be won 3 hours in
advance. The slope with σ̄ = 0 and σ̄ = 180 is approximately 0.127 and
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0.193 respectively. As we will show later on, the latter provides a better
match with the realized profits. However, an interesting result here is
that the absolute differences in end-values of the different start-nodes are
more or less equal in both situations. As a consequence, the differences in
end-values for the various locations are the same with both figures. The
advantage of using σ̄ = 0 in this case is that we do not have to estimate
the average time-to-go and it requires less computation time (see Section
5.9.6).

To provide insight into the convergence of end-values, we calculate the slope
of the approximate end-values in each iteration. Here the slope is calculated
as the average difference between the values of the largest end-gap and the one
but largest end-gap:

P
∀i∈N Ṽ e (i, T )− Ṽ e (i, T − 1). The results can be found

in Figure 5.12. Clearly, the value functions converge very fast, even though we
started with end-values of zero.
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Figure 5.12: Convergence in the slope of the end-values

Next, we calculate the approximate gap-values for the flexible contracts. We
calculate the gap-values for all possible gaps, skipping those for which the start-
node equals the end-node because these values are always zero. To illustrate
the value functions, we ignore the dependencies between gaps, so in fact we
only consider gaps for which there are no subsequent gaps. The shape of the
gap-value functions for gaps earlier in a schedule is more or less the same;
the absolute values are slightly lower because new job insertions in these gaps
reduce the value of subsequent gaps, see (5.19).

First, we calculate the gap-values using the same parameters as for the end-
values. After that, we calculate the gap-values using their own parameters (see
relaxation 4). The results can be found in Figure 5.13 and Figure 5.14.

From these figures we draw the following conclusions:
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Figure 5.13: Approximate gap-values
for the flexible contracts using the
same parameters as for the end-values
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Figure 5.14: Approximate gap-values
for the flexible contracts using custom
parameters

• The gap-values are minus infinity (see Section 5.4.4) if the gap flexibility
is lower than the time required for an empty move from the start-node
towards the end-node (60 minutes).

• The gap-values are equal to the costs for an empty move (60) when the
gap flexibility is just large enough to make an empty move towards the
end-node.

• For a large gap flexibility, the order of gap-values for the different start-
nodes equals the order of end-values.

• All gap-values converge to some constant value. The explanation is that
when we use more flexibility (because we insert a new job, wait at this
start-node, or move pro-actively towards a node other than the end-node)
the value we gain with this increase is wiped out by the resulting decrease
in end-values.

• The gap-values are slightly higher when we use custom parameters for the
gap-values. As mentioned in Section 5.6, the custom parameters for the
gap-values only affect the opportunity costs in (5.30). Given the second
price auction, these opportunity costs do not affect the prices we receive,
but only the probabilities of winning certain jobs. If we use the same
parameters for the gap-values as for the end-values we sometimes win
less profitable jobs, resulting in lower gap-values.

• Following the argumentation of the previous point, we see that the order-
ing of gap-values in Figure 5.13 is not always logical. For example, the
gap CB appears to be better than the gap CA, while more jobs end at
node A. The reason for this is that we are using the same parameters for
the gap-values as for the end-values. This means that we are working with
bid prices that do not take into account the gap restrictions, see (5.29).
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Because the end-value of the start-node B is higher than the end-value of
the start-node A, the opportunity costs for a job towards node A are also
higher. This reduces the possibility of winning a job towards node A, and
hence the gap-value of gap CB is higher. If we use custom parameters
for the gap-values (Figure 5.14) this ordering is as can be expected.

• An interesting result here is that some gap-values can become positive. So
for a certain node i, it is sometimes better to insert a job with origin not
equal to i (because a gap ii has value zero). For example, let us compare
the gap CC with a gap CA. If we have a gap CC, then we always pickup
the new load at the end-node C, immediately after arrival at the start-
node C. This way we have the longest possible end-gap. If we have a gap
CA, then we possibly have to move empty from the start-node C towards
the end-node A. This empty move will costs 60, but it also reduces the
end-gap with 60 minutes. But still we see that the gap CA, with a gap
flexibility of 600 minutes, has a positive value of 44. The explanation is as
follows. Most jobs depart from node C and most jobs end at node A. So
the probability that the empty move CA can be replaced by one or more
loaded moves is very high. But also in the end-gap, the probability of a
job ending at node A is very high. Once we arrive at node A (the most
unpopular origin node), it is likely that we have to wait or have to make
an empty move. However, this is not the case in the gap CA, because
once we arrive at a node A, we already have a job with origin node A that
immediately can be started. So basically, a job with a relative unpopular
origin node serves as an escape option for cases at which you end at such
a node.

Next, we calculate the approximate end-values for the fixed contracts. The
results can be found in Figure 5.15 and Figure 5.16. Again, the slope is higher if
we use the average time-to-go σ̄, but the absolute differences are approximately
the same.
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Figure 5.15: Approximate end-values
for the fixed contracts using an aver-
age time-to-go of zero
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Figure 5.16: Approximate end-values
for the fixed contracts using an aver-
age time-to-go of 180 minutes
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We also calculate the approximate gap-values for the fixed contracts. First,
we calculate the gap-values using the same parameters as for the end-values.
After that, we calculate the gap-values using their own parameters (see relax-
ation 4). The results can be found in Figure 5.17 and Figure 5.18.
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Figure 5.17: Approximate gap-values
for the fixed contracts using the same
parameters as for the end-values
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Figure 5.18: Approximate gap-values
for the fixed contracts using custom
parameters

We see some similarities between the fixed and flexible gap-values. The
major difference is that for larger gaps, the gap-values increase linearly. The
slope of this function equals the slope of the end-values. The explanation for
this is that for a large gap, the increase in profit due to an increase in gap
length, is less sensitive to the gap restrictions. The behavior of the gap-values
is therefore similar to the end-values. We further see that the nine gap-value
functions tend to four linear trends. The absolute differences between these
linear trends are almost the same as the difference in end-values for different
start-nodes. However, it appears that this behavior is not inherent to the fixed
gap-values; it is the result of using observations of the learning period (see Table
5.1) in combination with the continuous distribution to describe the lowest bid.
In Chapter 7 we go into more details on this.

For both fixed and flexible contracts, we also calculate the gap-value func-
tions based on a average time-to-go σ̄ = 180. These figures (not depicted here)
have more visible fluctuations and higher values compared to the gap-value
functions based on a zero time-to-go. The differences between the lines are
more or less the same. The latter is caused by the fact that in this 3 node
network, a vehicle never decides to make a pro-active move. The pro-active
move decisions can easily be determined from the given figures. For example,
consider the end-values if Figure 5.16. If we make a pro-active move from the
most unpopular node (node A) to the most popular node (node C), we go from
an end-value Ṽ e (A, 1200) = 252.9 to Ṽ e (C, 1140) = 276.2, but we lose a value
of 60 for the empty move. So even for this case we will lose 36.7.

As mentioned before, the error in value functions due to the zero time-to-go
not necessarily means that we also make the wrong decisions. For example, if
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we have to weigh the value of two possible schedule destinations, the end-values
based on a zero time-to-go provide almost the same opportunity costs as those
based on the average time-to-go. However, things go wrong when we weigh
the value of a certain period against the costs for an empty move. Because the
expected profits based on a zero time-to-go are much lower, we often prefer to
wait for a new job instead of making an empty move. Especially in case of
fixed contracts this is an issue. For example consider Figure 5.18. The optimal
gap lengths can easily be determined from Figure 5.18 by subtracting a linear
function with a slope given by the end-values (see Figure 5.16) from all gap-
values. The results can be found in Figure 5.19. For all gaps with start-node
different from the end-node, it appears to be optimal to postpone the pickup
time for the next job (with origin equal to the end-node of the gap) with a time
longer than the time required for a loaded move. Clearly, the zero time-to-go
approximation is not appropriate in case of fixed contracts, as we will show in
the next two subsections.
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Figure 5.19: Value of various gap lengths

5.9.2 3 node network - Virtual market

Based on the data from the learning phase, we now generate the lowest bid
from the competitors of the individual vehicle. For both contracts, fixed and
flexible, we evaluate various policies and approximations. The results can be
found in Table 5.2.

From these results, we draw the following conclusions:

• The opportunity valuation policies always lead to an increase in perfor-
mance with respect to the three performance indicators.



136 Chapter 5. Carriers: opportunity valuation policies

Contract Policy DL SL RP
Flexible Naive 79.5 95.1 0

VE 89.4 99.0 56.9
VE+VG 91.5 99.0 70.0
VE+VGC 91.8 99.0 71.3
VE+VGS 91.9 99.0 72.9
VEA 89.4 99.8 57.6
VEA+VGAS 92.0 99.3 74.1

Fixed Naive 74.9 96.9 0
VE 89.8 99.5 86.2
VE+VG 81.7 98.0 2.6
VE+VGC 82.4 98.4 4.2
VEA 91.6 99.7 87.2
VEA+VGAC 92.0 99.7 89.1

Table 5.2: Simulation results for the virtual market in the 3 node network

• In case of flexible contracts, a more precise policy (adding gap-values, an
average time-to-go, custom gap-parameters, gap dependencies) always
leads to a better performance, with the only exception that the service
level with the policy VEA is the highest.

• In case of fixed contracts we see a similar behavior, although using the
gap-values based on a zero time-to-go, has a negative impact on the per-
formance, especially with respect to the relative profit. The reason for
this is that the individual vehicle underestimates its revenues. The con-
sequence, as already mentioned in Section 5.9.1, is that the pickup times
of jobs are postponed more than they should be.

• A remarkably result is that the relatively simple policies perform very
well. In both cases, the policy VE results already in a major increase in
performance. In case of flexible contracts, the policy VE+VG performs
very well. The advantage of these approximate policies is that they work
much faster, see Section 5.9.6.

To explain the performance of the individual vehicle in case of flexible con-
tracts, let us consider the route between C and B. Theoretically, 15% of the
jobs from a vehicle go from B to C and 30% from C to B. Under the naive
policy we see that for the individual vehicle, 15.4% of the jobs go from B to C
and 24.5% go from C to B. Under the policy VEA+VGAS, these numbers are
37.3% and 39.4% respectively. Obviously, this results in fewer empty miles for
the individual vehicle and hence in higher profits.

Also in case of fixed contracts, the individual vehicle aims at the more
profitable jobs. For example, with the policy VE, 68.9% of the jobs from the
individual vehicle are on the route between B and C. If we use the gap-values,
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then most ’opportunistic gaps’ are created with C as start-node, and A or
B as end-node. With opportunistic gaps we mean that the pickup time of
the new job, given a certain insertion position, is not scheduled as early as
possible. Instead, the pickup time is postponed in anticipation of new loaded
moves which may replace the empty move. Using the policy VE+VG, then
24.3% of the jobs are scheduled with opportunistic gaps, and 24.7% of the
jobs are inserted in these gaps. So in some opportunistic gaps, more than one
new job is inserted. Using the policy VEA+VGAC, then 7.3% of the jobs are
scheduled with opportunistic gaps, and 6.9% of the jobs are inserted in these
gaps. Clearly, less opportunistic gaps are created when we use the average
time-to-go. In fact, it appears that almost all opportunistic gaps are filled with
a new job which replaces the empty move by a loaded move.

5.9.3 3 node network - Open market

Here we compare the performance of the individual vehicle with the other 9
vehicles. For the performance indicators DL and SL, we first show the results
of the individual vehicle, and after the slash we show the average result of the
other 9 vehicles. We further use the relative profit to denote the profit of the
individual vehicle compared to the average profit of the other 9 vehicles. The
results can be found in Table 5.3.

Contract Policy DL SL RP
Flexible naive 69.7 / 70.0 99.7 / 99.8 −3.2

VE 86.4 / 67.9 99.1 / 99.9 560.8
VE+VG 85.6 / 67.5 98.9 / 99.8 726.2
VE+VGC 86.4 / 67.3 98.8 / 99.8 730.3
VE+VGS 86.8 / 67.3 98.9 / 99.9 762.7
VEA 88.5 / 67.8 100.0 / 99.8 575.7
VEA+VGAS 90.6 / 67.6 98.2 / 99.8 769.7

Fixed naive 68.3 / 68.6 99.9 / 99.9 −0.2
VE 87.3 / 65.7 98.2 / 99.9 545.4
VE+VG 81.4 / 66.5 97.7 / 99.9 230.4
VE+VGC 81.9 / 66.5 97.8 / 99.9 214.5
VEA 94.4 / 64.8 99.6 / 99.9 545.9
VEA+VGAC 94.8 / 64.3 98.7 / 99.9 577.3

Table 5.3: Simulation results for the open market in the 3 node network

The results are similar to those of the virtual market. However, the percent-
age of driving loaded of the individual vehicle is slightly lower, and the relative
profit is much higher. The latter can be explained because now not only the
individual vehicle is better off, but the others are worse off because the most
profitable jobs are taken out by the individual vehicle. This can also be seen
from the average percentage of driving loaded of the other 9 vehicles, which
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decreases when the individual vehicle is using an opportunity valuation policy
instead of using the naive policy.

The difference between the different policies and approximations is almost
the same. Again, the approximations perform very well, but the more precise
formulations perform better. In case of flexible contracts, we see that the profit
of the individual vehicle is up to 9 times higher than the average profit of the
other 9 vehicles. So the profit of the individual vehicle is almost equal to the
total profit of the other 9 vehicles.

The explanation for the performance of the individual vehicle is similar to
that given in case of the virtual market. The major distinction is that now the
other 9 vehicle suffer from the individual vehicle picking out the most profitable
jobs. For example, with the policy VE, 68.5% of the jobs from the individual
vehicle are between B and C (the two most popular origin nodes), whereas the
other 9 vehicles have on average 41.8% of their jobs on the route between B
and C, which is less then the average total of 45% of jobs on this route.

5.9.4 3 node network - Varying some parameters

In these experiments we vary the average time between jobs and the time-
window length of jobs. For different settings, we study the relative profit of the
individual player using opportunity based bid pricing and scheduling compared
to the naive pricing strategy. In the virtual market setting, this profit is relative
to the profit under the naive policy. In the open market setting, this profit is
relative to the average profit of the 9 other vehicles, which are using the naive
policy.

First, we show the results for the virtual market settings, see Figure 5.20 and
Figure 5.21. Clearly, the relative profit increases with an increasing number of
jobs (smaller time between jobs) and with increasing time-window length. The
reason is that (1) with increasing number of jobs, the individual vehicle has
more chances to select the most profitable jobs and (2) with increasing time-
window length the individual vehicle has more scheduling flexibility to reduce
empty moves. Furthermore, we see that the added value of using the gap-values
increases with increasing number of jobs and increasing time-window length.

Next, we show the results for the open market settings, see Figure 5.22 and
Figure 5.23. Again, we see a similar behavior for varying time-window lengths.
However, the relative profit as a function of the time between jobs is quite
different. In fact, we see an opposite effect because relative profits decrease
with an increasing number of jobs. The reasons that the results are different
than those of the virtual market are (1) the behavior of the individual vehicle
has an effect on the 9 other vehicles and (2) all jobs have to be transported
by the 10 vehicles. The decrease in relative profit of the individual vehicle
with decreasing time between jobs is caused (1) by the increase in penalties
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Figure 5.20: Relative profit for vary-
ing time between jobs in the virtual
market setting
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market setting

which may dominate the opportunity costs and (2) by the increase in vehicle
utilization for the other 9 vehicles. Also, fewer jobs means lower profits for all
vehicles. However, because the individual vehicle picks out the most profitable
jobs from the few jobs offered, the 9 other vehicles suffer even more from this.
Consider, for example, the largest time between jobs (1000 seconds). Here the
profit for the individual vehicle is more than 5% higher than the sum of the
profits for the 9 other vehicles.
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Figure 5.22: Relative profit for vary-
ing time between jobs in the open mar-
ket setting
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Figure 5.23: Relative profit for vary-
ing time-window lengths in the open
market setting

5.9.5 9 node network

Next, we consider the 9 node network using the virtual market, the open mar-
ket, and also the closed market setting. In the closed market setting, all 10
vehicles are using the same policy. We consider the end-values and gap-values
based on the average time-to-go. Because these value functions require con-
siderably more computation time in the 9 node network, we decided to ignore
the dependencies between gaps and therefore use the gap-values VGAC. The
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results of using these value functions in the 9 node network can be found in
Table 5.4.

Market Policy Network DL SL RP
Virtual Naive Quiet 63.8 94.3 0

Busy 64.0 92.9 0
VEA Quiet 75.5 100.0 79.5

Busy 78.3 99.9 96.2
VEA+VGAC Quiet 75.7 100.0 98.6

Busy 78.5 100.0 103.4
Open VEA Quiet 69.6 / 61.5 99.7 / 98.8 395.0

Busy 71.1 / 62.2 99.5 / 98.1 254.7
VEA+VGAC Quiet 71.9 / 60.9 99.6 / 99.0 822.1

Busy 73.8 / 61.8 99.5 / 98.4 498.0
Closed Naive Quiet 62.6 98.4 0

Busy 63.0 97.7 0
VEA Quiet 64.8 99.7 10.1

Busy 64.8 99.5 8.9
VEA+VGAC Quiet 65.0 98.7 11.1

Busy 65.0 98.5 10.1

Table 5.4: Simulation results for the 9 node network

The results for the virtual and open market are more or less the same as
in the 3 node network. The opportunity valuation policies always lead to an
increase in performance. In some cases, the profit of the individual vehicle is
more than the sum of the profits for the 9 other vehicles. We further see that
the percentage of driving loaded is most of the time higher in the busy networks
because there are more opportunities to avoid empty moves. The service levels
are most of the time lower in the busy networks. With respect to the relative
profit of the individual vehicle, we see that in the virtual market the relative
profit is higher in the busy network whereas in the open market the relative
profit is higher in the quiet networks. This corresponds with our observations
in the 3 node network (cf. Figure 5.20 and Figure 5.22).

In the closed network settings, the opportunity valuation policies also per-
form very well. The total costs for driving empty and tardiness are reduced by
11.1% by using the policy VEA+VGAC in the quiet network setting. In the
virtual and open networks, the benefits of opportunity valuation are merely
caused by selecting the most profitable jobs. This no longer holds in closed
environments because all vehicles use the same policy and all jobs have to be
transported. So the only explanation is that vehicles are scheduling the jobs
more efficiently. To illustrate this, let us consider the policy VE+VGC. Here
jobs from the first row to the last row, are scheduled 5.5% later in time, and
jobs from the last row to the first row 19.7% earlier in time. So jobs with a
higher probability of an empty move afterwards are scheduled later in time,
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increasing the probability that the empty move is replaced by a loaded move.
We also see that the average schedule length (difference between the expected
delivery time of the last job and the current time) is decreased by 9.3%. This
in turn provides more flexibility to schedule jobs on time.

5.9.6 Computation times

The computation times required for the insertion scheduling heuristic and mar-
ginal costs calculation for bid pricing are very small. The major concern here
is the computation time required to calculate the approximate value functions.
At most, these value functions have to be calculated upon each announcement
and each time we make a pro-active move decision. However, we can also calcu-
late these functions periodically; this certainly saves a lot of time. Particularly
because the end-values already have to be calculated for all possible schedule-
destinations and the gap-values for all possible start-nodes. If we calculate the
gap-values periodically, we only face extra computation time because we have
to calculate them for all possible end-nodes and for the longest possible gap (e.g.
the longest time-window length). Only the values VGAS have to be calculated
upon each announcement because they depend on the whole schedule.

Also the two relaxations, the average time-to-go and the custom parameters
for the gap-values, have an impact on the computation times. First, consider
the average time-to-go. If we compare Algorithm 5.5 with Algorithm 5.1, we see
that we have to calculate the partial value function TN2 times in Algorithm
5.1 whereas we have to do it approximately 3T 2N2 times in Algorithm 5.5.
Next, consider the custom parameters for the gap-values. If we use custom
parameters, we have to calculate them for each remaining gap length s. So the
computation time for parameter estimation will be increased by T .

For our experiments we used the simulation software eM-Plant 7.5 and an
Intel Pentium 4 processor at 3.4 GHz. The computation times required to
calculate the value functions for the different policies are given in Table 5.5. The
end-values are calculated for the whole planning horizon of 12,000 minutes. The
gap-values are calculated in advance for all possible end-nodes and a maximum
gap length of 600 minutes.

Policy 3 nodes 9 nodes
VE 0.35 15.19
VEA 1.12 129.21
VG 0.05 8.79
VGA 0.16 75.52
VGC 0.15 23.46
VGAC 0.46 200.47

Table 5.5: Computation times in seconds
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Clearly, the computation time increases drastically when going from 3 nodes
to 9 nodes. However, this increase is much smaller in the approximations where
we are using a time-to-go of zero. In a real-time application with a large number
of nodes, we can overcome the relatively large computation times by offline
calculation of the value functions, like we did in our simulation experiments.
Given the insertion scheduling strategy, we are now able to calculate bids and
schedule jobs within milliseconds.

5.10 Conclusions

In this chapter we presented an opportunity based bidding concept. This
method makes it possible to determine the value of a schedule, more specif-
ically, the value of gaps in the schedule and the value of a schedule destination.
This enables us to calculate the opportunity costs, which are defined as the loss
in expected future revenues due to a new job insertion. By including this value
in our bid price, we not only cover the direct costs of a new job insertion, but
also its future implications. Moreover, by using this value in our scheduling
decisions, we prevent less profitable moves and increase our opportunities by
better prepositioning of vehicles.

From our simulation experiments, we conclude that an individual player us-
ing opportunity based bid pricing and scheduling performs significantly better
than other players who use a naive pricing strategy. For example, in an open
environment with 10 vehicles we showed that the profit of the individual vehicle
is in some cases higher than the total profit of the 9 other vehicles. Besides
the profitability of opportunity based bid pricing and scheduling, we also see
an increase in vehicle utilization and service levels. For closed environments
(internal use of our approach), we showed that opportunity based bid-pricing
and scheduling can reduce the system-wide logistical costs (an average a re-
duction of 10% in the costs for empty moves and penalties on tardiness). We
further have seen that the approximations (a time-to-go of zero and gap-values
using the same parameters as the end-values) perform remarkably well in most
cases. The advantage of using the approximations is that they require less
computation time and are better scalable to larger systems.

We explain the benefits of opportunity based bid pricing and scheduling
from the following behavior. First, the vehicle agents tend to schedule unattrac-
tive jobs later in time, thereby increasing the probability of combining these
job with other jobs. Second, in case of flexible contracts, the average schedule
length is reduced such that there is more flexibility of scheduling jobs on time.
Third, in case of fixed contracts, the vehicle agents tend to create gaps before
unattractive jobs, thereby reducing the possibilities of empty moves. Fourth,
in case of open markets, the individual vehicle using opportunity based bid
pricing and scheduling tend to select out the most profitable jobs.
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In this chapter we focused on the carriers and their vehicles. In the next
chapter, we focus on strategies for the shippers. After that, we combine these
two chapters in Chapter 7, by considering a transportation market where both
shippers and carriers are using look-ahead strategies for scheduling, bid pricing,
and bid evaluation.
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Chapter 6

Shippers: dynamic
threshold policies

In this chapter1 we consider a transportation procurement auction consisting
of shippers and carriers. Shippers offer time sensitive pickup and delivery jobs
and carriers bid on these jobs. We focus on revenue maximizing strategies for
shippers in sequential auctions. For this purpose we propose two strategies,
namely delaying and breaking commitments. The idea of delaying commit-
ments is that a shipper will not agree with the best bid whenever it is above a
certain reserve price. The idea of breaking commitments is that the shipper al-
lows the carriers to break commitments against certain penalties. We evaluate
the benefits of both strategies with simulation. In addition, we provide insight
into the distribution of the lowest bid, which is estimated by the shippers.

6.1 Introduction

The procurement of transportation is an important task for shippers because it
greatly affects their costs and service levels. In practice, a procurement process
includes carrier screening, carrier assignment, load tendering, and performance
review. During the last few years, this procurement has moved from telephone
to web based services (Song and Regan, 2001). In this chapter we consider
an automated transportation procurement auction where shippers offer time
sensitive pickup and delivery jobs and carriers bid on these jobs. Each auction
is initiated by a shipper and ends with commitment between the shipper and
a carrier.

1This chapter is based on the working paper (Mes, Van der Heijden and Schuur, 2007);
presented at TRISTAN VI, the Sixth Triennial Symposium on Transportation Analysis,
Thailand; conditionally accepted for publication in Transportation Research Part C.
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Auctions are often considered as appropriate means for dynamic job alloca-
tion in distributed environments. Desirable properties include limited required
information exchange and, in some cases, Pareto efficient outcomes (McAfee
and McMillan, 1987; Wellman et al., 2001). However, when multiple jobs are
auctioned at different points in time (sequential auctions), such an allocation
would be less appropriate if we do not take into account the future consequences
of an allocation. Also, when jobs are complementary (e.g. transportation jobs
that can be served sequentially by the same vehicle) or substitutable (e.g. trans-
portation jobs that are available at the same time), a certain allocation may
become unfavorable when new jobs appear. To overcome this, several authors
(e.g., Caplice and Sheffi, 2003) suggested the use of combinatorial auctions for
transportation procurement in which a carrier can bid on multiple jobs. How-
ever, combinatorial auctions involve many inherently difficult problems. As
mentioned by Song and Regan (2005), we face the bid construction problem,
where bidders have to compute bids over different job combinations, and the
winner determination problem, where jobs have to be allocated among a group
of bidders. In addition, (1) it may be unrealistic to bundle jobs which belong
to different shippers and (2) these procedures are not directly applicable in
situations where jobs arrive at different points in time.

To improve the allocation of jobs, we take the sequential transportation
procurement auction as given, and focus on strategies for the participants. In
the previous chapter, we focused on profit maximizing strategies for the carriers.
We proposed a bid pricing strategy where the arrivals of future jobs are taken
into account through the use of opportunity costs. In this chapter, we focus
on strategies for the shipper. We propose two options, namely delaying and
breaking commitments.

The idea of delaying commitments is that a shipper postpones commitments
for which it expects to make better commitments in the future. So if a shipper
has plenty of time to auction a certain job, it will not agree with a relatively
high bid. When the time for dispatch becomes nearer, the price it is willing to
accept will rise. We denote this mechanism by dynamic threshold policy. The
idea of breaking commitments is that the shipper allows a carrier to decommit
from an agreement against a certain penalty. These penalties are chosen such,
that whenever a carrier decommits a job, they cover the expected extra costs
for finding a new carrier. We denote this mechanism by decommitment policy.

There is some strategic equivalence between the dynamic threshold policy
and the decommitment policy. Suppose a carrier wins a certain job. After two
days the carrier decommits from the contract and pays a certain penalty. One
can imagine that this penalty equals the expected costs for the shipper for auc-
tioning this job two days later, which in turn has some strong connections with
the dynamic threshold policy. We develop a dynamic programming algorithm
that can be used for both, the dynamic threshold policy and the decommitment
policy.
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The goal of this chapter is threefold. First, to derive a dynamic threshold
policy and a decommitment policy. Second, to evaluate their benefits in terms
of (1) costs savings for the shippers and (2) system-wide logistical costs. Third,
to study their relation, i.e., are they complementary or substitutable?

6.2 Literature

Our problem is related to several research areas, such as operations manage-
ment (transportation), economic theory (optimal auctions), and mathematical
theory (optimal stopping). In the next sections we describe the relation of this
chapter with these research areas and describe our contribution.

6.2.1 Transportation

The dynamic allocation of transportation jobs belongs to the large class of
dynamic fleet management problems. A few representative examples of this
stream include (Carvalho and Powell, 2000; Godfrey and Powell, 2002; Yang
et al., 2004). This research mostly focuses on real-time vehicle routing strategies
for a single carrier. Here we focus on the shipper, and more specifically on
shippers that procure transportation services using auctions. A transportation
procurement auction consists of three steps: (1) bid preparation by the shipper
(who may bid on what), (2) bid pricing by the carriers, and (3) bid analysis by
the shipper. The majority of research on transportation procurement auctions
focuses on the bid preparation step (Caplice and Sheffi, 2003). Others focus
on bid pricing, scheduling, and routing decisions of the carriers (see Figliozzi
et al., 2003). Less attention has been paid to the shipper.

Traditionally, a shipper allocates transportation jobs to carriers one-by-one,
i.e., through sequential auctions. Such a system ignores the interdependencies
between subsequent jobs. A significant portion of the trucking industry costs
is due to the repositioning of empty vehicles from the destination of one load
to the origin of a subsequent load (Song and Regan, 2002). Interdependen-
cies occur because serving one job is greatly affected by the opportunity to
serve another job. To cope with these dependencies, Caplice and Sheffi (2003)
suggested to use combinatorial auctions. As demonstrated by Ledyard et al.
(2002), the benefits of combinatorial auctions to shippers can be significant. A
survey on combinatorial auctions for the procurement of transportation services
can be found in (Sheffi, 2004). For reasons as mentioned in the introduction,
we choose here for sequential one-shot auction procedures. To cope with the
interdependencies among jobs, we propose the dynamic threshold policy and
the decommitment policy.



148 Chapter 6. Shippers: dynamic threshold policies

6.2.2 Optimal auctions

The design of auction mechanisms that maximize the seller’s expected revenue,
called optimal auctions, received a great deal of attention. For an extensive
literature survey on this topic we refer to (McAfee and McMillan, 1987). Part
of this work focuses on reserve prices in sequential auctions. As shown by
Myerson (1981), the reserve price increases the expected revenue of the seller
by preventing the object from being sold at a low price. Closely related is the
work of (McAfee and Vincent, 1997) who study the optimal reserve-price path
in a sequence of first- and second- price auctions. In particular, the auctioneer
puts the same object for sale repeatedly, until it is sold. At each round he
chooses a reserve price according to his (increasingly pessimistic) beliefs about
the buyers’ valuations.

A crucial assumption in the optimal auction literature is that each bidder’s
valuation is known to be drawn from a common distribution (Bose et al., 2006).
We do not make any assumptions on the valuation functions of the individual
bidders, but instead estimate the distribution of the lowest bids. In addition,
we incorporate correlations in bids, together with a regression on time and
several job characteristics. Another difference is that we consider reverse (pro-
curement) auctions.

Another line of research within the economic auction literature focuses on
decommitment. In automated negotiation systems, contracts have traditionally
been binding. Such contracts do not allow agents to efficiently deal with future
events when contracts might become unfavorable. To overcome this, a leveled
commitment protocol is introduced in (Sandholm and Lesser, 2001). Here an
agent can decommit (for whatever reason) simply by paying a decommitment
fee to the other agent. It is shown, through game-theoretic analysis, that
this leveled commitment feature increases the Pareto efficiency of contracts
and can make contracts more beneficial for both parties. The efficiency of
such protocols depends heavily on how the penalties are decided. Therefore,
(Sandholm et al., 1999) developed algorithms for optimizing contracts in terms
of prices and penalties. Penalty functions for sequences of multiple leveled
commitment contracts are studied in (Andersson and Sandholm, 2001). They
conclude that penalties as a percentage of the contract price, increasing in
decommitment time, perform best.

Another example can be found in (’t Hoen and La Poutré, 2004) who apply
the decommitment concept to a multi-agent transportation setting. They con-
clude that significant increases in profit can be achieved when the agents can
decommit and postpone the transportation of a load to a more suitable time.
Their setting differs from ours in that we consider a full truckload problem
where bid prices - and hence the decommitment penalties - are dependent on
time. Another difference is that in their setting exchange of jobs is only allowed
between vehicles of the same carrier, so carriers are not allowed to decommit
from a contract with a shipper. In fact, upon decommitment, a virtual auction
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is held at the carrier to find a new vehicle for the decommited job.

In this chapter we provide a formal expression for time-dependent decom-
mitment penalties by drawing a parallel with the reserve prices.

6.2.3 Optimal stopping

The choice of whether to accept the lowest bid in a sequential auction is related
to the so-called optimal stopping problems. A famous example of an optimal
stopping problem is the secretary problem. In the classical secretary problem,
a decision-maker has to hire one applicant out of a pool of n applicants who
appear sequentially. The decision-maker must decide immediately upon seeing
an applicant whether to hire him. For a historical overview of the classical sec-
retary problem we refer to (Ferguson, 1989). The classical secretary problem is
called a no-information problem in which the distribution of offers is unknown.
The stopping decision is only based on the relative ranks of the observations
and not on their actual values. This is obviously different from our case because
shippers are able to learn the pricing behavior.

A number of authors have established the existence and properties of op-
timal stopping policies when the offer distribution is known in advance, and
the offer rate is periodic. For example, Karlin (1962) studied the problem of
selling an asset. Our approach differs from this line of research in the sense that
we consider (1) historic auction information to update the offer distribution,
(2) time-dependent offers, (3) correlation between subsequent offers, and (4)
the finite horizon problem as a special case. For more information on optimal
stopping problems we refer to (Chow et al., 1971).

6.2.4 Contributions

To summarize the previous sections, our contribution consists of the following:

1. We develop cost minimizing strategies for shippers in transportation pro-
curement auctions. To avoid combinatorial complexities, we propose a
dynamic threshold policy that enables the shippers to strategically delay
commitments or set decommitment penalties for the carriers.

2. We determine optimal reserve-price paths for reverse auctions using prob-
ability distribution functions for the lowest bid based on historical data.
These distributions do not depend on the iid assumption of bids or on
the bid price distributions of individual bidders.

3. We provide a formal expression for time-dependent decommitment penal-
ties by drawing a parallel with the reserve price paths.
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4. We aim at a wider applicability than competitive procurement auctions.
In particular, we aim at closed environments, i.e., allocation to a closed
group of trusted carriers, or for auction procedures that are commonly
used in multi-agent systems for resource allocation. Therefore, we pro-
vide a performance evaluation, using simulation, not only in terms of
individual benefits for the shippers, but also in terms of the system-wide
logistical performance.

6.3 Model

We consider a transportation market consisting of shippers and carriers. Ship-
pers offer jobs by starting a transportation procurement auction and carriers
bid on these jobs. One job involves the transport of a unit load (full truckload).
We define a job by an announcement time a, an origin i, a destination j, and as
a soft restriction a latest pickup time l of the load at the origin. Tardiness with
respect to the latest pickup time is penalized with c per time unit. We intro-
duce a soft time-window length σ = l − a within which transportation should
be started. We introduce d as the distance between the origin and destination
of a job, also indicated by job length. Note that for notational convenience we
omit job indices.

Objective of a shipper is to minimize the price paid to a carrier for trans-
porting a certain load. Shippers consider the prices as random variables with
probability distributions which can be estimated based on historic data. These
distributions are characterized by a time-dependent mean and standard devia-
tion, and by correlations in prices between subsequent auction rounds.

In a transportation procurement auction, shippers typically put out a re-
quest for quotes from a set of carriers (Song and Regan, 2002). This process
is similar to a simple sealed-bid auction in which each bidder submits a sealed
bid for a single item. We choose here for a reverse first-price sealed-bid auction
in which the lowest bidder receives his bid amount, given the shipper does not
reject all bids.

We implement the market mechanism as follows. When a job arrives at some
shipper, it starts an auction by sending an announcement to all carriers. In
return, each carrier responds with a bid. Without a dynamic threshold policy,
the shipper sends a grant message to the carrier with the lowest bid while the
others receive a reject message. When using a dynamic threshold policy, a
shipper might expect to receive a better bid in the future. After all, prices
fluctuate over time due to changes in the available transportation capacity and
in the transportation schedules. So if the best bid is relatively high (which
can be learned from history) it might be better to wait for more attractive
prices. In this case, the shipper only selects a winner whenever the lowest bid
is below a certain threshold level. Otherwise, the auction stays open (Section
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6.4.1) or the shipper will start a new auction some period later (Section 6.4.2).
As the deadline for dispatch comes nearer (or is already reached), the shipper
increases its threshold to get transportation. Basic assumption here is that we
consider only one job at a time. So threshold prices of jobs are independent of
the current set of open jobs.

In case of decommitment, a vehicle is allowed to decommit from a job by
paying some penalty to the shipper (Section 6.5). In this case the shipper
immediately starts a new auction for this job.

6.4 Dynamic threshold

First, we develop a continuous time threshold function (Section 6.4.1). This
function can be used in a continuous auction where a shipper waits until a bid
drops below the threshold price (bidders’ take-it-or-leave-it prices). Next, we
develop a basic policy for repeated auctions in discrete time (Section 6.4.2).
In this structure, the shipper will start a new auction a fixed auction period
later when the best bid is above its threshold price. This structure can be
considered as an approximation for the continuous case if the auction period is
small. In Section 6.4.3 we incorporate possible correlation in bid prices between
subsequent auction rounds.

6.4.1 Basic threshold policy for continuous auctions

To illustrate the theoretical benefits of a dynamic threshold policy, we consider
a continuous time model under some simplifying assumptions.

Whenever a shipper becomes aware of a new job, it will start an auction
for this job. All vehicles immediately bid on this job, but may update their
bid at any time. The shipper, of course, is only interested in the lowest bid.
We assume independent and identically distributed lowest bids which can be
described by a continuous distribution function F (b). The time between sub-
sequent updates of the lowest bid is exponentially distributed with rate λ. At
each update of the lowest bid, the shipper has to decide whether to accept the
current lowest bid. We only consider the period before the latest pickup time.
If the job is not sold before this time, the shipper will face costs Z (τ) = β+cτ ,
where β is a constant, c the penalty costs per time unit, and τ the tardiness
with respect to the latest pickup time (see Appendix for a formal derivation of
this cost function).

We indicate the time until the latest pickup time by a time-to-go t. We
introduce the value function V (t) as the minimum expected price a shipper
has to pay eventually, given a time-to-go t. For t < 0, the value V (t) is given
by the value Z (−t) of auctioning the job after its latest pickup time. The
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recursive relationship which characterizes the finite horizon minimum expected
price, as a function of the time-to-go t, is given by:

V (t) = E [min (B,V (t− Y ))] (6.1)

with B the stochastic variable for the lowest bid and Y the exponentially dis-
tributed time until the next bid update.

Karlin (1962) showed that there exists an optimal policy that accepts the
first bid B whose value satisfies B > E [V (t− Y )]. So we only accept a bid
whenever it is lower than the minimum expected price at the expected time of
the next update of the lowest bid. We rewrite this policy by using a threshold
function α (t), which is given by:

α (t) = E [V (t− Y )] (6.2)

= E [min (B,α (t− Y ))]

Integration over all bid prices B and time between bid updates Y gives the
following:

α (t) =

Z t

0

ÃZ α(t−y)

0

bdF (b) + α (t− y)

Z ∞
α(t−y)

dF (b)

!
λe−λydy +Z ∞

t

Z (y − t)λe−λydy (6.3)

Following an approach similar to (Karlin, 1962), we rewrite this function
in the form of a differential equation. Partial integration of the first integral
yields:

α (t) =

Z t

0

Ã
α (t− ξ)−

Z α(t−ξ)

0

F (b) db

!
λe−λξdξ +

³
β +

c

λ

´
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Next, we replace ξ by t− x, and multiply both sides by eλt:

α (t) eλt = λ

Z t

0

Ã
α (x)−

Z α(x)

0

F (b) db

!
eλxdx+

³
β +

c

λ

´
(6.5)

Differentiation by t, together with the boundary condition α (0), yields:

α0 (t) = −λ
Z α(t)

0

F (b) db, with t ≥ 0 (6.6)

α (0) = β +
c

λ

We can solve this differential equation numerically for different distribu-
tions F (b) of the lowest bid. Since a uniform distribution allows an analytical
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derivation, let us assume that F (b) = b
ω , for 0 ≤ b ≤ ω. We further take

ω = β + c
λ , so at the latest pickup time the shipper expects to pay the highest

possible bid. Then we have the following threshold function:

α (t) =
2ω

λt+ 2
(6.7)

If we get only one chance to auction a job, the expected price equals ω/2.
The relative savings s (t) depending on the time-to-go t, by using the threshold
policy, are therefore given by:

s (t) =

µ
1− 4

λt+ 2

¶
· 100% (6.8)

To illustrate the savings take λ = 1, then for t = 2, 8, 18, 38 the savings are
respectively given by 0%, 60%, 80%, 90%.

Although these results are promising, they only hold under the assumption
of independent and identically distributed lowest bids. In many cases, this
assumption is not realistic. In the next two subsections we extend our results
to time-dependent and correlated bid prices.

6.4.2 Basic threshold policy for repeated auctions

Here we incorporate a more realistic pricing behavior, by taking into account
the time-dependency of bids and the correlation between bids. To do so, let us
discretize time. The resulting dynamic threshold function may then be used
as an approximation for the continuous case. However discretization may also
be part of the market structure because basically the continuous auction is
replaced by a repeated auction. In a repeated auction, we have a series of
auctions used to sell the same object in subsequent periods.

For the timing between successive auction rounds we take a fixed period R.
In contrast with the previous section, we express the timing of an auction in
terms of auction round numbers instead of the time-to-go. Numbering starts
at the first auction round at the announcement time of a job.

In each auction round, the shipper has to decide whether to accept the lowest
bid. Before rejecting all bids, the shipper has to calculate the probability of
receiving a better bid in the future. To do so, we assume that the lowest
bid b as a function of the auction round n can be described by a continuous
distribution function Fn (b). The shipper estimates this distribution based on
historical auction data. In Section 6.6 we illustrate this estimation process for a
specific network instance which we also consider in our simulation experiments
(Section 6.8).

We only consider auction rounds between the announcement time a and
the latest pickup time l. Therefore, the maximum number of auction rounds
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is given by N = b(l − a) /Rc + 1. Again, we use a cost function Z (τ) (see
Appendix) for the expected price after the latest pickup time. We introduce
the shorthand notation Z to denote the expected price of the first auction round
after the latest pickup time.

Depending on the auction period R, there is a probability that the lowest
bid remains the same in the next auction round. Therefore, we introduce
an update probability qu that describes the probability that the lowest bid is
updated (at least one time) between two successive auction rounds. So for a
Poisson updating process with rate λ (see previous section), this probability is
given by qu = 1 − e−λR. We assume that the shipper is able to estimate this
update probability, independent of the underlying updating process.

We introduce the value function Vn (bn) as the expected price a shipper has
to pay eventually (in this or one of the remaining auction rounds) given a lowest
bid bn in the current auction round n. We use Bn as the stochastic variable for
the lowest bid in auction round n. To get an optimal strategy, we deduce the
optimum decision numbers by working backward from the last possible auction
round. We get the following:

VN (bN ) = min {bN , Z} (6.9)

Vn (bn) = min {bn, E [Vn+1 (Bn+1|Bn = bn)]}

In the last auction round we have to choose between the current bid bN
and the expected price Z for auctioning the job after the latest pickup time.
In all other rounds we have to choose between accepting the current bid bn or
reject it and expect a price E [Vn+1 (Bn+1|Bn = bn)] later on. The price we
expect to accept later on depends on the current lowest bid, because there is a
probability 1− qu that we receive the same lowest bid. Therefore, we have to
take into account the current lowest bid in the threshold prices. The threshold
price in auction round n equals the expected price we accept in auction round
n+ 1 or later, given the current lowest bid bn:

αn (bn) = E [Vn+1 (Bn+1|Bn = bn)] (6.10)

= (1− qu)min {bn, αn+1 (bn)}+ qu
Z ∞
0

min {b, αn+1 (b)} dFn+1 (b)

We solve this equation by backwards dynamic programming. To do so, we
have to include the bids in the state space. Therefore, we discretize the bids,
add the current lowest bid to the state space, and iterate on the auction round
n:

αn (bn) = (1− qu)min {bn, αn+1 (bn)}+ (6.11)

qu
LX
b=0

Pn+1 (b)min {b, αn+1 (b)}
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where Pn (b) is a discretization of Fn (b) and L is chosen large enough.

To illustrate the behavior of the threshold prices, we calculate (6.11) for
some parameter settings. We use time-to-go σ = 10, a Poisson updating rate
λ = 1 (so qu = 1− e−R), and we take Z =∞ (so in the last auction round we
always accept the lowest bid). For the probability Pn (b) of the lowest bid, we
discretize a normal distribution to integer values for the bids b. We calculate
the expected price E [Vn (B)] = E [min {B,αn (B)}] as a function of the auction
round n. We perform two numerical experiments: in Example 6.1 we evaluate
the impact of the mean and standard deviation and in Example 6.2 we evaluate
the impact of the auction period.

Example 6.1. Here we use an auction period R = 1 and evaluate three
scenarios for the mean and standard deviation of the lowest bid as a function
of the auction round n:

• Constant mean of 100 and standard deviation of 50

• Increasing mean of 5 per auction round, starting at 50 in the first round,
and constant standard deviation of 50

• Constant mean of 100 and increasing standard deviation of 3 per auction
round, starting at 20 in the first round

The results can be found in Figure 6.1. We see that prices increase with
increasing auction rounds. Starting with a low mean results in lower threshold
prices, which then increase relatively faster. Starting with low standard devia-
tion results in higher threshold prices because we are less able to profit from the
variation in bid prices. But because variances increase, this threshold function
also increases relatively slower. In the last auction round we always accept the
lowest bid. Therefore, in the last auction round, all three prices equal 100.

Example 6.2. Here we evaluate the threshold prices for varying lengths of
the auction period R. For the distribution of the lowest bid we use a constant
mean and standard deviation of respectively 100 and 50. Going from R = 1
to R = 0.2 results in 5 times more auction rounds. Going from R = 0.2 to
R = 0.04 again results in 5 times more auction rounds. From Figure 6.2 we
conclude that the added value of extra auction rounds clearly decreases, which
is in fact a good argument to use this threshold policy as an approximation for
the continuous case.

6.4.3 Incorporating correlation

Bid prices of carriers fluctuate due to new job arrivals. In the previous section
we have developed a basic dynamic threshold policy that takes advantage of
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these fluctuations. We have seen that, for given job characteristics, these prices
depend on the auction round and the time between subsequent auction rounds.
Another important aspect, which we did not consider so far, is correlation
between subsequent lowest bid updates. Suppose the current lowest bid is
relatively high, indicating that all carriers are busy at the moment. When the
shipper re-auctions the job a short time period later, and it receives a new
lowest bid, it is likely that this bid is also relatively high. In this section we
deal with these correlations between subsequent auction rounds.

Because a part of the correlation is caused by the time dependency of bids,
we consider correlation between the deviations from expected lowest bids. We
introduce δn = bn−E [Bn] for the price deviation in auction round n. We only
consider correlations between two successive auction rounds (no time-lags) and
assume that the correlation between two successive auction rounds n and n+1
does not depend on the number n (so the correlation between round 1 and 2
is similar to the correlation between rounds 5 and 6). We further assume that
the deviations can be described by a linear trend with coefficient φ:

δn+1 = φδn + �n+1 (6.12)

where �n+1 is the error term.

To incorporate the impact of a price deviation in auction round n on the
lowest bid in auction round n+1, we simply increase the mean price E [Bn+1]
in auction round n+ 1 by φδn. Using (6.11), we derive the following function
for the threshold prices with correlated bids:

αn (bn) = (1− qu)min {bn, αn+1 (bn)}+ (6.13)

qu
LX
b=0

Pn+1 (b)min {b+ φ (bn −E [Bn]) , αn+1 (b+ φ (bn −E [Bn]))}

The derivation of φ is presented in Section 6.6. To illustrate the impact
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of correlation on the dynamic threshold policy, we perform another numerical
experiment.

Example 6.3. Here we use the same settings as in Example 6.2, but now
with a constant auction period R = 1 and varying correlation factors φ. From
Figure 6.3 we conclude that a large correlation has a negative impact on the
threshold prices. After all, ’free’ fluctuation decreases, resulting in a similar
situation as in Example 6.1 with smaller variances.
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Figure 6.3: Impact of the correlation factor

As mentioned in the beginning of Section 6.4.2, the threshold policy for
repeated auctions can be used as an approximation for continuous auctions.
To determine the continuous threshold price αt (b), depending on a time-to-go
t and current bid b, we use linear extrapolation between the threshold price
in the last auction round before t and the first auction round after t. If there
are no remaining auction rounds after t, we simply use the threshold value Z.
Otherwise (t ≥ σ−(N − 1)R), we use the following continuous threshold value:

αt (b) = αn (b) +

µ
σ − t

R
−
¹
σ − t

R

º¶
(αn+1 (b)− αn (b)) (6.14)

Here αn (b) refers to the original threshold price in auction round n given
the current bid b, where n is given by n =

¥
σ−t
R

¦
+ 1. The auction period R

should be small enough, such that the probability of more than one lowest bid
update within this period is ’low’. For t < 0, i.e., auctioning the job after its
latest pickup time, αt (b) is given by Z (−t), see Appendix.
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6.5 Decommitment

A second trick that can be used by shippers is to allow carriers to break com-
mitments against certain penalties. The decommitment penalties are set by the
shipper and are publicly available to the carriers at all times. These penalties
should cover the extra costs for a shipper to find a new carrier. A shipper will
face extra costs because the time until latest pickup time is shorter now. Here
we assume that shippers are risk neutral in the sense that they only calculate
the expected extra costs.

If the shipper uses the threshold prices (repeated auctions), then these extra
costs are given by the difference in threshold prices as presented in Section 6.4.
The decommitment penalty Ds,t, for a job committed at a time-to-go s (so a
time s before the latest pickup time) and decommitted at a time-to-go t, is
given by:

Ds,t = E [αt (Bt)]−E [αs (Bs)] (6.15)

where t < s, and Bt is the stochastic variable for the lowest bid with a time-
to-go t.

A carrier decommits from a job whenever its expected revenue of inserting a
new job and removing the decommitted job, is higher than the current expected
revenue plus the decommitment penalty. Note that in case of decommitment,
a carrier will not receive its bid price for the decommitted job.

When the shipper is not using the threshold prices, it simply uses one auc-
tion round to find a new carrier for the decommited job. Then the decommit-
ment penalty simply equals the expected difference in price between the initial
commitment time s and the current time t:

Ds,t = E [Bt]−E [Bs] (6.16)

With (6.15) and (6.16) we have derived a formal expression for the leveled
commitment penalties, only by using the threshold prices. The applicability,
however, is quite different because now the decision has to be made by the
carriers.

6.6 Parameter estimation

In the previous sections we illustrated the behavior of the dynamic threshold
policy using numerical experiments. Obviously, the circumstances of these
experiments are ideal in the sense that the shipper has perfect knowledge about
the bid price distribution Fn(b), the update probability qu, and the correlation
φ. In practice, the shipper has to estimate these parameters, for example,
using historical auction data. This estimation is a major issue, especially in
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experimental settings that are often considered in the vehicle routing literature
(i.e., visitors are drawn randomly from a square area), as we shall illustrate in
Section 6.8.

In this section we describe how a shipper can estimate the parameters for
the dynamic threshold policy. We proceed in a goal oriented way because we
feel that it is not possible to estimate the parameters without having some
knowledge about the application area. To this end we make the following
assumptions:

1. The origin and destination of jobs are chosen randomly from the Euclidian
plane.

2. Carriers use a bid function that is linearly dependent on the increase in
travel distance and the increase in penalty costs that are required for the
new job.

Throughout this chapter, we use a single distribution to describe the lowest
bid. However, given the second assumption, bids consist of two cost compo-
nents: transportation costs and penalty costs. These cost factors differ in their
dependence on the time-to-go t and distance d, in the update probability, and
in the correlation between subsequent auction rounds.

The most elegant way to deal with these two cost factors is to explicitly
incorporate them in the dynamic programming recursion. We then use multiple
(linear) regression, and a separate update probability and correlation factor for
both costs components. After all, a shipper should have knowledge on both
cost factors regardless whether or not they are included in the bid prices. In
addition, we may treat the tardiness as left censored data and perform Tobit
regression (Tobin, 1958) to estimate the tardiness and derive the expected
penalty costs from this.

We propose an alternative method based on the observation that once a
shipper receives a bid with penalties, it is very unlikely that it will receive a
lower bid in the future. Therefore, we remove the penalties from the bids b and
include them separately in our dynamic threshold policy. So from this point on,
b represents only the transportation costs in the lowest bid. The distribution of
these costs is given by Fn (b) and Ft(b)̇, for repeated and continuous auctions
respectively. In this section we choose for the continuous representation. Ob-
viously, a variable depending on the time-to-go t can easily be translated into
to a variable depending on the auction period n (see Section 6.4.3). Further
note that we use the subscript d to indicate the dependence on the distance
d. For clarity of presentation we omit this subscript in the dynamic threshold
function αt (b) and distribution function Ft(b).

We determine the distribution Ft(b) of the transportation costs in the lowest
bid using the method of moments. We describe the first two moments of this
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distribution by a linear trend as a function of the time-to-go t and distance d.
Given assumption 2, the transportation costs depend linearly on the distance d.
It is also reasonable that there is a monotone increase in transportation costs in
case of a decreasing time-to-go. If carriers are, for example, using an insertion
heuristic, a decreasing time-to-go will mean that the lowest bid is derived from
a smaller set of possible insertion positions (of all vehicles from all carriers).
Therefore, we also assume a linear dependency on the time-to-go t. But also
the variance in transportation costs depends on the time-to-go t and distance
d. In our experiments (see Section 6.8) we show that also the variances can
be properly expressed as a linear function of the time-to-go and distance. The
mean μwtd and the standard deviation σtd for the distribution Ft(b) are then
given by:

μwtd = αw + βwt+ γwd (6.17)

σtd = ασ + βσt+ γσd (6.18)

To determine the linear trend for the standard deviation, we divide the time-
to-go t and distance d in discrete blocks, and calculate the residual variance in
each of these blocks. To incorporate heteroscedasticity, we use weighted least
squares to estimate the mean transportation costs. Here we give points with
lower variance a greater statistical weight. To be more precise, we multiply
each residual with a weight equal to the inverse of the variance σ2td.

The penalty costs are mainly affected by the time-to-go. In our experiments
we have seen that this dependency can be described by a linear trend. In
fact one can argue that for decreasing time-to-go, penalties approach a linear
function with slope c: the penalty costs per time unit. Therefore we also
describe the mean penalties μptd by a linear trend:

μptd = αp + βpt+ γpd (6.19)

We determine this trend by least squares where we only use observations in
which penalties are greater than zero.

To separate the penalties from the transportation costs, we introduce qpt as
the probability of having a lowest bid with non-zero penalties, given a time-to-
go t. Once we have penalties, we simply accept the lowest bid because we expect
that bid prices only increase from this point on. To determine the probability qpt
of non-zero penalties, we divide the time-to-go t in discrete blocks and estimate
the probability qpt for each of these blocks. Next, we fit a continuous function
through these probabilities. From our simulation experiments we have seen
that the Weibull survival function (qpt = e−(t/λ)

k

) is a good candidate. After
applying the log function two times over the survival function, we are able to
estimate the parameters using ordinary least squares.

We can incorporate the different costs components into the threshold func-
tion, simply by using the probabilities qpt of non-zero penalties. To illustrate
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this we return to the case of repeated auctions for a given job length. So we
use the index n instead of t, and omit the index d. Using (6.13), we derive the
following function for the threshold prices:

αn (bn) = qpn (bn + μpn) + (1− qpn)

(
(1− qun)min {bn, αn+1 (bn)}(6.20)

+qu
LX
b=0

Pn+1 (b)min

½
b+ φ (bn − μwn ) ,

αn+1 (b+ φ (bn − μwn ))

¾)

To illustrate the impact of penalties on the dynamic threshold policy, we
perform another experiment.

Example 6.4. Here we use the same settings as in Example 6.2, but now
with an auction period R = 1. The expected penalties in the last auction round
are 100 and they decrease with 20 in each auction round. We consider varying
parameters for the Weibull survival function. The case with λ = 0 coincides
with the case without any penalties. Obviously, as can be seen from Figure 6.4,
penalties have a negative impact on the threshold prices.
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To incorporate the correlation in price deviation between subsequent auction
rounds, we model the trend in price deviations by an AR(1)-process. Here the
expected deviation in auction round n can be expressed as a linear function
of the deviation in auction round n − 1 (see Section 6.4.3). Since we treat
each pair δn, δn−1 equally for all n, we also assume that the variance in price
deviation remains the same for all auction rounds n. Then the coefficient φ
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equals the correlation coefficient:

φ =
Cov (δn, δn−1)

V ar (δn)
(6.21)

Given the dynamic programming recursion for the threshold prices and the
methodology to estimate the required parameters, we now ready to evaluate
the impact of delaying and breaking commitments in a simulation experiment.

6.7 Experimental settings

We simulate a transportation procurement market where shippers offer trans-
portation jobs to a set of carriers. Selection of a carrier for a certain job is only
based on price and delivery time. Transportation takes place in a square area
of 100x100 km, and we have 10 vehicles which drive at a speed of 50 km/hour.
At the start of each simulation, these vehicles are placed at a random position
in the square area.

Because our focus is on profit maximizing strategies for a shipper, we use
a simple pricing and scheduling strategy for the carriers. In the remainder
we speak in terms of individual vehicles and ignore the carriers. Each vehicle
maintains a list of jobs. These jobs are carried out as soon as possible, and a
job in process cannot be interrupted. Upon announcement of a new job, the
vehicle evaluates the insertion of this job in its job list, i.e., without altering
the relative ordering of jobs already in the list (cf. the insertion scheduling
heuristics mentioned in Chapters 3 till 5). The bid price for this job is given
by the marginal costs of the cheapest insertion. These costs are 1 per hour
travel time and 10 per hour tardiness. If a vehicle wins an auction, it uses the
cheapest insertion position for the new job.

In case of decommitment, a vehicle also evaluates the impact of inserting the
new job while decommitting a job already in its job list. To avoid combinatorial
difficulties, we only consider decommitment of a single job. For all jobs coming
from a shipper that allows decommitment, the vehicle temporarily removes the
job and evaluates the insertion of the new job in its reduced job list. Again, the
bid price of a vehicle is given by the marginal costs of the cheapest insertion,
including possible decommitment penalties.

The simulation study consists of three parts. In the first part we examine
the distribution of the lowest bid. In the second part we evaluate how well the
statistical model of Section 6.6 can be used to describe the lowest bid. After
these two experiments we are able to describe the distribution of the lowest
bid, as a function of the time-to-go and distance. We use this distribution in
the third part to calculate the threshold prices. Therefore, the first two parts
can be regarded as the learning phase for the third part. In the third part
we evaluate a transportation market where a single shipper uses the dynamic
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threshold policy and the decommitment policy. We compare the performance of
this shipper to other shippers, referred to as the external market. To describe
the relative size of the individual shipper compared to the external market,
we introduce the notion of market share. The market share describes which
portion of the incoming jobs belongs to the individual shipper. Jobs that come
from the external market are always rewarded to a vehicle in the first auction
round and decommitment is not possible for these jobs.

It is important to note that delaying and breaking commitments will have
an effect on the market prices. To be precise, the allocation decision for one
job will have effect on the future bids for other jobs (given we are dealing
with a limited number of vehicles). Therefore, we have to be careful with how
we generate jobs during the learning phase. To this end we decided to make
a distinction between learning jobs and regular jobs. The regular jobs are
exactly the same as those from the external market in the third part of this
simulation study. These jobs are auctioned under a naive policy and the origin
and destination of these jobs are chosen randomly from the square area. The
learning jobs are only used to gain insight into the distribution of the lowest
bid. To avoid influencing the market prices, we do not award these jobs to
vehicles. Both job types (regular jobs and learning jobs) appear according to
a Poisson process and have a time-window σ of 10 hours.

In the next sections we describe the three parts of this simulation study in
more detail.

6.7.1 Part 1: price distribution

Here we want to gain insight into the distributional form of the lowest bid as
a function of the job length and the time-to-go. Therefore, we consider fixed
lengths for the learning jobs which we auction at several time instances. The
lengths of these jobs are chosen randomly from {40,60,80,100,120} km. To de-
termine the distribution for a specific job length and time-to-go, we have to fix
the position of the job in some way. Therefore, we place each job on a diagonal
and center it on the middle. To be more precise, the origin and destination co-
ordinate of the job are located on the same diagonal, and the distance between
each of these coordinates and the center equals half the predefined job length.
The direction and diagonal are chosen randomly. The first auction moment of
each job is 10 hours before the latest pickup time. The auction period between
successive auction rounds is 2 hours and the latest auction round is 2 hours
after the latest pickup time. So we auction each job 8 times. After the latest
auction round, we remove the job without rewarding it to a vehicle. We use the
lowest bid data for the learning jobs to evaluate the distribution characteristics
for the lowest bid. The arrival rate of both job types (learning jobs and regular
jobs) is 6 per hour.
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6.7.2 Part 2: price evolution

Here we want to investigate how the distribution of the lowest bid depends
on the job length and time-to-go. Therefore, we consider various lengths and
auction moments for the learning jobs. The origin and destination coordinates
are chosen randomly from the square area, just like the regular jobs. However,
we use two auction rounds for each learning job. The first auction round starts
at a random time between zero and ten hours before the latest pickup time. The
second round starts a random time between zero and 1 hour later. After the
second round, the job is removed. We use the lowest bid data for the learning
jobs to estimate the functions of Section 6.6. For the arrival rate of both job
types, we consider 5 per hour (quiet), 5.5 per hour (normal), and 6 jobs per
hour (busy).

6.7.3 Part 3: transportation market

To calculate the threshold functions, we use the distribution function and time
dependent first moments found in the previous experiments. For the arrival
rate of jobs we use the same values as in part 2 of our simulation study. The
auction period R is 0.5 hour; so given the time-window of 10 hour, a shipper
may use up to 21 auction rounds for a single job.

This third part of our simulation study consists of five subparts.

1. Evaluation of the theoretical benefits of the dynamic threshold policy
using an offline numerical experiment. With offline we mean that we do
not consider vehicles bidding their marginal costs, but instead we draw
a lowest bid according to the given distribution function. In fact, this is
an ideal situation where the shipper has complete knowledge about the
distribution of the lowest bid. In all the other experiments mentioned
below, the bid prices are not given in advance but are based on the
marginal costs of a job insertion in a vehicle schedule.

2. Evaluation of the impact of the dynamic threshold and the decommitment
policy on the logistical costs. We apply these policies both separately and
in combination. We consider a market share of 1% and 10%.

3. Evaluation of the impact of the dynamic threshold and the decommitment
policy on the computation time per job. Here we use the same settings
as in subpart 2.

4. Evaluation of the impact of the input data on the logistical costs by us-
ing the dynamic threshold policy. We investigate changes to the following
parameters that are estimated at the end of the learning phase: the cor-
relation factor φ, the update probability qu, the constant transportation



6.8. Simulation 165

costs αw, and the constant penalty costs αp (see Section 6.6). We mul-
tiply each parameter with the following factors [0.8, 0.9, 1.0, 1.1, 1.2]. We
use a normal job arrival rate (5.5 per hour) and a market share of 1%.

5. Evaluation of the dynamic threshold and the decommitment policy in
closed environments. In a closed environment we have one shipper with
its own fleet of vehicles (so a 100% market share). Again, we use the
estimated data from the first two experiments. However, as mentioned
before, the estimated data from the learning phase is not representative
for closed environments because market prices are affected by the use
of the dynamic threshold and the decommitment policy. Therefore, we
also evaluate an alternative where the estimates are updated periodically.
To this end we introduce learning periods. At the end of each learning
period, the shipper estimates all parameters using the historical data of
at most 3 learning periods. Again, the parameters are estimated using
the methodology of Section 6.6.

6.8 Simulation

Here we present the numerical results corresponding with the three experimen-
tal settings described in the previous section. We end in Section 6.8.4 with a
summary of the simulation results.

6.8.1 Part 1: price distribution

To gain insight into the behavior of the lowest bid, we consider distribution
parameters such as the mean, standard deviation, and skewness of the lowest
bid. In this section we are mainly interested in the skewness. The mean
and standard deviation of the lowest bid as a function of the time-to-go and
distance, are investigated in Section 6.8.2.

To describe the skewness of the lowest bid, we perform a simulation exper-
iment consisting of 10 replications with different seeds. In each replication we
generate 100,000 jobs, including a warm-up period of 100 jobs. The number
of replications corresponds with a confidence level of 95% with a maximum
relative error of 5% for the skewness. The results can be found in Figure 6.5
for the transportation costs and in Figure 6.6 for the penalty costs.

From these figures we see that penalties always have a positive skew and
skewness decreases with decreasing time-to-go. In case of a large time-to-go,
the transportation costs for short jobs have negative skew while long jobs have
positive skew. After the latest pickup time all jobs have negative skew for the
transportation costs.

The skewness of the lowest bid distribution can partly be explained using
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the extreme value theory (EVT). This theory describes the order statistics (kth

order statistic is the kth smallest value) of a large set of random observations
from the same (arbitrary) distribution (cf. Chapter 5, Section 5.5.1). In our
case we are interested in the distribution of the lowest bid out of n bids (with
n = 10, which is of course not a large set). Extreme value theory states (see
Fisher and Tippett, 1928) that for n → ∞, the distribution of the lowest bid
is (1) Weibull whenever the parent distribution is bounded from below and
(2) Gumbel whenever the parent distribution declines exponentially. From
our experiments we see that small jobs have a higher probability of insertion.
Therefore, prices of these jobs have a very long left tail, going to zero if the job
can be nicely inserted. The limiting distribution for the lowest bid on these
jobs is the Gumbel distribution with a negative skew. As can be seen in Figure
6.5 this is indeed the case for small jobs with long time-to-go.

Most of the time, long jobs have to be added to the end of a schedule
(otherwise the cheapest alternative is an insertion in a schedule that currently
requires a large empty move, which is unlikely in situations where both vehicles
and shippers are looking for the cheapest alternative). The price for appending
a job consists of the costs for driving empty towards the origin and the costs
for the loaded move. Hence, these prices are bounded from below at a value
equal to the costs of the loaded move. The limiting distribution for the lowest
bid on these jobs is a Weibull distribution with a positive skew. As can be seen
in Figure 6.5 this is indeed the case for long jobs with long time-to-go.

Although extreme value theory can be used to explain the skewness of our
observations, we can not use one of the extreme value distributions (Gumbel,
Fréchet, Weibull) to describe the lowest bid, since we are not dealing with
large samples. After fitting several distribution functions to the lowest bid
data, we found that only small jobs (40 km and 60 km) can be fitted nicely.
Suitable distributions are the Normal- and Logistic distribution, and for a long
time-to-go the Weibull distribution. Possible candidate distributions for the
longer jobs are Gamma, Beta, Lognormal, and the Gumbel distribution for the
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maximum. However, for longer jobs, none of these distributions provide a good
fit. The reason is that these distributions always have one peak whereas our
data suggest two peaks.

The peaks in the distribution of the lowest bid are caused by the shape of
the transportation area. To gain insight into this phenomenon, let us consider
the bid price of a single vehicle for adding a new job at the end of its job list.
This bid price depends on the loaded travel distance for the new job, but also
on the empty travel distance towards the origin of the new job. The likelihood
of a certain empty travel distance r can be described by the circumference of
a circle with radius r around the origin of the new job. More precisely, by the
part of the circumference that falls within the square area. To illustrate this,
consider a job of length 80km, located on the diagonal and centered on the
middle. After using standard trigonometry, we derive the total length of the
intersection of the circle with the square area, as a function of the radius r.
The results can be found in Figure 6.7. Clearly, the length of the intersection
has two peaks. As a consequence, also the bids of individual vehicles exhibits
two peaks, and the same holds for the distribution of the lowest bid (given
the limited number of bidders). The distribution of the lowest bid differs from
the bid price distribution of an individual bidder in the sense that (1) the
peaks are moved to the left (corresponding with lower costs) and (2) the first
peak is relatively higher because it is likely that the lowest bid comes from the
neighborhood of the first peak.
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Figure 6.7: Length of the intersection of a circle (with fixed center point on the
diagonal) with a square as a function of the radius

Although we only present the results based on an insertion scheduling
method, similar results hold for (1) a scheduling method where every new
job is appended to the end of a schedule and (2) a scheduling method which
allows complete rescheduling (cf. the policies AgentAppend and AgentTSP in
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Chapter 3). The results in case of append scheduling are similar to those of
insertion scheduling for long jobs because long jobs have a low probability to
be inserted. The results in case of complete rescheduling are similar to those of
insertion scheduling with short jobs because there is more scheduling flexibility
and the bounds are therefore less tight.

To summarize this section, it is impossible to come up with a single distri-
bution function that can be used effectively to describe the lowest bid for all
job types. For example, the skewness of the distribution ranges from high neg-
ative values to high positive values. To overcome this, one could use separate
distribution functions, depending on the time-to-go and distance. However, to
keep the results reproducible without providing an enormous amount of differ-
ent distribution functions, we decided to use a single distribution function. We
choose for the normal distribution because it has zero skewness and provides a
good fit for intermediate job lengths.

6.8.2 Part 2: price evolution

For all three network settings (quiet, normal, busy) we perform least squares
on the transportation costs and penalty costs of the lowest bid. Therefore, we
generate 100,000 jobs for all three network settings.

First, we estimate the transportation costs. To estimate the standard devi-
ation σtd in transportation costs, we divide both, the time-to-go t and distance
d, in 10 classes and use least squares on the standard deviation per class (see
Section 6.6). To estimate the mean transportation costs μwtd we use weighted
least squares, considering the heteroscedasticity described by σtd. The results
can be found in Table 6.1.

Network Mean and standard deviation of transportation costs R2

Quiet μwtd = 1742.42− 138.68t+ 85.33d 0.75
σtd = 1266.53− 68.34t+ 8.24d 0.71

Normal μwtd = 1874.45− 164.93t+ 87.32d 0.74
σtd = 1369.07− 84.76t+ 9.42d 0.88

Busy μwtd = 2061.72− 200.68t+ 90.49d 0.73
σtd = 1590.51− 105.92t+ 9.07d 0.84

Table 6.1: Estimation of the transportation costs

Clearly, prices increase with decreasing time-to-go or increasing distance.
The reason for this is that with decreasing time-to-go, there is less flexibility
to schedule a job, so the probability of a cheap insertion decreases. The same
holds for longer transportation jobs. We also see that variances increase with
decreasing time-to-go or increasing distance, just like the expected prices.

Next, we estimate the penalties, consisting of the mean penalty costs μptd,
and the shape and scale parameters of the Weibull survival function (see Section
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6.6), respectively given k and λ. The results can be found in Table 6.2.

Network Mean penalty costs k λ
Quiet μptd = 15912.13− 3218.62t+ 52.25d 1.70 1.09
Normal μptd = 16339.40− 3204.27t+ 69.75d 1.03 1.56
Busy μptd = 16307.84− 2640.34t+ 151.22d 1.69 1.19

Table 6.2: Estimation of the penalty costs

Finally, we consider the correlation coefficient between subsequent auction
rounds and the update probability qut depending on the time t between succes-
sive auction rounds. To calculate the correlation coefficient, we only consider
subsequent auction rounds in which the lowest bid is updated. To determine
the update probabilities, we divide all data in 20 bins, based on the time be-
tween subsequent auction rounds. We then fit an exponential distribution to
derive the update probability qut = 1 − e−λt depending on the time t between
subsequent auction rounds. The results can be found in Table 6.3.

Network Correlation coefficient Rate update probability
Quiet 0.774 0.911
Normal 0.776 0.934
Busy 0.771 0.982

Table 6.3: Correlation and update probability

The correlation in deviation from expected bid prices decreases with in-
creasing number of jobs. Note that these correlation coefficients are quite
high. Therefore, we may expect that ignoring these correlations in the dynamic
threshold policy will have a negative impact on the performance, as we show
later on (Section 6.8.3). The probability of an update of the lowest bid increases
with increasing number of jobs.

6.8.3 Part 3: transportation market

Here we present the results for (1) the offline numerical experiment, (2) de-
laying and breaking commitments, (3) varying input data, and (4) the closed
environment. As a performance indicator we consider the average net costs
per job. These net costs consist of empty travel costs and penalty costs. The
loaded travel costs are excluded because these costs have to be made and can
not be reduced. Because the costs of a job are determined by the accepted bid
price, we subtract the loaded travel costs from the bids. Given a speed of 50
km/hour and travel costs of 1 per hour, the loaded travel costs for a job with
distance d are d/50.
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Offline numerical experiment

To evaluate the theoretical savings of the dynamic threshold policy, we con-
sider a job with average length. The average distance between 2 points in a
square network of 100x100 km is approximately 52.082 km. For a job with
this length, we calculate the expected price E [B1] in the first auction round
and the expected price E [V1 (B)] of following an optimal threshold policy:
E [V1 (B)] = E [min {B,α1 (B)}]. As a performance indicator we consider the
relative savings in net costs for using the threshold policy compared to the
naive policy. Therefore, we subtract the loaded move costs from both values
E [B1] and [V1 (B)]. The results can be found in Table 6.4.

Network Relative savings for a 52km job
Quiet 29.0
Normal 27.5
Busy 23.4

Table 6.4: Theoretical savings for the three network cases

We conclude that the relative savings decrease with increasing number of
jobs.

Delaying and breaking commitments

In this experiment we investigate the performance of the dynamic threshold
policy (DT) and the decommitment policy (DC). We use the following perfor-
mance indicators:

RD Relative difference in net costs per job from the individual shipper com-
pared to the external market. A value of 25.5% means that the net costs
per job for the individual shipper are 25.5% lower than the average net
costs per job for the external market.

RTC Relative difference in the net total costs. A value of 0.2% means that the
net total costs for all jobs (from the individual shipper and the external
market) are reduced with 0.2% by using one or both policies.

FR The percentage of jobs that are accepted in the first auction round. We
use this indicator in combination with the dynamic threshold policy.

TGA The average time-to-go when jobs are accepted, for jobs that are not
accepted in the first auction round. A value of 6.2 means that jobs that
are not accepted in the first auction round, on average are accepted 6.2
hours before the latest pickup time. We use this indicator in combination
with the dynamic threshold policy.
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DE The average relative difference in costs for jobs that are not accepted
in the first auction round, compared to the threshold price in the first
auction round of these jobs. We use this indicator in combination with
the dynamic threshold policy to compare the threshold price in the first
auction round with the realized costs.

DJ The average number of decommitments per jobs. A value of 49.9 means
that each job is on average decommitted 49.9% of the time. We use this
indicator in combination with the decommitment policy.

TGD The average time-to-go when jobs are decommitted. A value of 8.4
means that on average, decommitted jobs are decommitted 8.4 hours
before the latest pickup time. We use this indicator in combination with
the decommitment policy.

AR The average number of auction rounds per job for the individual shipper.

Each experiment consists of 10 replications with different seeds. The number
of replications for the 1% and 10%market share (MS) are 50,000 and 10,000 jobs
respectively. The number of replications corresponds with a confidence level of
95% with a maximum relative error of 5% for the performance indicators RD
and RTC in the normal network setting.

Before presenting our simulation results we mention an important obser-
vation that explains some of our findings. The market prices (average costs
per job) when using one of the policies are higher than expected. The rea-
son for this is that the expected costs are based on the learning period where
we auction each job as soon as possible. When allowing delaying or breaking
commitments, some jobs are auctioned later. This results in less scheduling
flexibility of the vehicles, and therefore higher costs. This effect is more visible
in case of 10% market share and in the busy networks because here vehicles
tend to have longer schedules.

MS Network RD(%) RTC(%) FR(%) TGA DE(%) AR
1% Quiet 25.5 0.2 22.2 6.2 −0.8 6.9

Normal 30.6 0.4 24.6 6.5 0.9 6.2
Busy 23.1 0.6 31.9 6.8 −1.8 5.4

10% Quiet 24.1 1.6 21.3 6.2 −1.5 6.9
Normal 24.9 1.8 24.3 6.5 −0.9 6.4
Busy 19.5 4.3 30.8 6.8 −1.9 5.4

Table 6.5: Simulation results for the dynamic threshold policy

First, we consider the dynamic threshold policy. From the results of Table
6.5 we draw the following conclusions.

1. The relative difference (RD) in net costs per job is the highest in the
normal networks. An explanation for this is that, in the quiet networks,
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the update probabilities are lower and therefore the individual shipper
has less potential for receiving a lower bid. On the other hand, in the
busy networks, the probability of penalties is higher so that the individual
shipper tends to accept more jobs in the first auction round. We see that
with increasing number of jobs, the number of jobs that are accepted
in the first auction round (FR) increases and on average the other jobs
are accepted earlier (TGA). The reduction in total costs (RTC) is always
larger in the busy networks.

2. If we compare the 10% market share with the 1% market share, we see
that (1) the total costs are always lower and (2) the costs advantage for the
individual shipper when using the dynamic threshold policy is smaller.
The latter is caused by the fact that the difference in expected prices
(based on the learning phase) and the actual market prices, increases with
increasing market share. Despite the estimation error, the total costs are
reduced. This provides an indication that with increasing market share,
so towards the application of an internal allocation mechanism, the total
costs will be reduced even further. Of course, we then have to focus on
updating procedures for parameter estimation, see Section 6.8.3.

3. The differences between the realized costs for jobs not accepted in the first
auction round are very close to their expectation, i.e., the threshold price
in the first auction round (DE). Most of the time, the realized costs are
slightly higher than the expected costs, which is caused by the increase
in market prices.

4. In case of 10% market share, relatively fewer jobs are accepted in the
first auction round. Again, this is caused by the increase in market prices
because the threshold functions and the learning data is the same in both
market share settings.

5. Another interesting aspect is that the relative differences in costs for the
individual shipper compared to the external market, are comparable to
the theoretical savings from Table 6.4. There are three explanations for
the differences:

(a) Assumptions in our dynamic threshold policy, such as the time in-
dependent update probability and the use of an AR(1)-process to
describe the correlation in bid prices.

(b) Estimation errors in the data from the learning phase. For example,
the normal distribution is not suitable to describe the lowest bid for
all job types.

(c) The external market also profits from an individual shipper using
the dynamic threshold policy. After all, the total costs go down as
a result of a better vehicle utilization, which provides the vehicles
more flexibility to schedule jobs.
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A remarkable result is that the relative difference (RD) in the normal
network with 1% market share is higher than the theoretical saving
(30.6 > 27.5). After closer inspection it appears that this is mainly
caused by the increase in market prices. To be more precise, the lowest
bid in the first auction round with a normal network and 1% market share
is on average almost 10% higher than expected.

MS Network RD(%) RTC(%) DJ(%) TGD AR(%)
1% Quiet −21.5 0.2 49.9 8.4 1.5

Normal −24.3 0.3 59.3 8.5 1.6
Busy −78.3 2.2 79.7 8.3 1.8

10% Quiet −21.7 1.2 48.7 8.4 1.5
Normal −26.0 1.7 57.7 8.4 1.6
Busy −55.7 4.3 70.7 8.4 1.7

Table 6.6: Simulation results for the decommitment policy

Next, we consider the decommitment policy. From the results of Table 6.6
we draw the following conclusions.

1. The net costs per job for the individual shipper are higher compared
to those of the external market. A reason for this is that we are only
working with cost prices. For the shipper this means that it determines
the decommitment penalties such that the expected costs with or without
decommitment are the same. However, the market prices are higher than
expected.

Another reason for the relative difference in case of decommitment is that
the external market will benefit from the decommitment option for jobs
of the individual shipper. A vehicle only decommits from a job whenever
this results in savings for inserting the new job. With probability of 99%
(in case of 1% market share) this new job comes from the external market
which obviously benefits from the decommitment option for jobs of the
individual shipper.

2. Decommitment works especially well in the busy network. In the busy
network with 1% market share, we see that the decommitment option
for 1% of the jobs decreases the total net costs with 2.2%. Clearly, the
costs for jobs from the external market decreases. An explanation for the
performance of the decommitment policy is that it appears to be saver,
with respect to the latest pickup time, than the dynamic threshold policy.
First, there are more jobs not accepted in the first auction round in the
dynamic threshold policy, than jobs decommitted with the decommitment
policy. Second, decommitment takes place on average 8.4 hours before the
latest pickup time compared to the 6.5 hours before acceptance in case
of the dynamic threshold policy. After decommitment, the individual
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shipper immediately starts a new auction and accepts the lowest bid.
Therefore, we can say that on average, decommitted jobs are accepted
2 hours earlier than delayed jobs (jobs that require more than 1 auction
round in the dynamic threshold policy).

3. The absolute reduction in total costs increases with increasing market
share. However, the relative reduction, with respect to the percentage of
jobs that allow decommitment, decreases with increasing market share.
A similar conclusion is drawn in (’t Hoen and La Poutré, 2004), although
they consider a slightly different network setting (see Section 6.2).

MS Network RD(%) RTC(%) FR(%) TGA DE(%) DJ(%) TGD AR(%)

1% Quiet 11.6 0.6 23.2 5.9 −0.5 32.3 6.8 9.6
Normal 6.5 0.5 25.2 6.0 −0.3 38.5 7.0 9.6
Busy −68.6 0.5 33.6 6.3 −2.8 52.3 7.2 9.0

10% Quiet 13.5 2.5 22.8 5.9 0.7 32.8 6.8 9.7
Normal −23.1 −0.8 25.7 6.1 −0.1 38.5 6.9 9.4
Busy −69.0 −13.4 32.0 6.4 0.1 50.4 7.1 8.8

Table 6.7: Simulation results for the combination of the dynamic threshold
policy and the decommitment policy

Next, we consider the combination of the dynamic threshold policy and
the decommitment policy. From the results of Table 6.7 we draw the following
conclusions:

1. In the quiet and normal network with 1% market share, the total costs
are further reduced (RTC).

2. In the normal and busy network with 10% market share, there is an
increase in total costs. The reason is that with the combination of both
policies, jobs are accepted much later.

Here we summarize the results for the 1% market share which is represen-
tative for open environments (see 6.8.3 for closed environments). With respect
the relative difference in net costs per job for the individual shipper compared
to the external market, we prefer the dynamic threshold policy (savings of 23-
31%). With respect to the reduction in total net costs, we prefer the dynamic
threshold policy in relatively quiet networks (savings 0.2-0.4%) and the decom-
mitment policy in relatively busy networks (savings 2.2%). These savings in
total costs are significant given that only 1% of the jobs allow decommitment.

The costs can be reduced even further by using both policies in combination.
However, in the busy networks, the combination of both policies becomes more
sensitive to estimation errors. In addition, the combination of both policies
requires a lot more computation time as we will see in the next section.
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Computation times

Here we evaluate the required computation times for the different policies.
The computation time for a simulation experiment consists of the sum of time
required for (1) bid pricing and scheduling of the vehicles, (2) saving perfor-
mance data, (3) network animation, and (4) calculation of the threshold prices
and decommitment penalties. Here we are only interested in the later. Besides,
computation times for the vehicles are negligible in this case because they use a
simple insertion heuristic, bid their marginal costs, and are allowed to evaluate
only one job decommitment at a time.

The threshold prices have to be calculated whenever the shipper has to
decide whether to accept the lowest bid. The decommitment penalties have to
be calculated at each auction round, for all jobs of the individual shipper that
are not yet picked up. The threshold prices and decommitment penalties are
calculated using (6.20). Here we iterate on the auction round n = 1...N , and in
each iteration we have to calculate the threshold price αn (b) for all possible bids
b = 1..L. To calculate αn (b), we also have to evaluate all possible bids b = 1..L
for the next auction round. The complexity of the dynamic programming
recursion is therefore O

¡
NL2

¢
, where N is the number of remaining auction

rounds and L the number of possible bid prices.

For our experiments we used the simulation software eM-Plant 7.5 and
an Intel Pentium 4 processor at 3.4 GHz. The dynamic threshold policy is
programmed in Delphi 7 as a dynamic link library which we included in our
simulation environment. We found that there is no significant difference in
running time between the three network settings. The extra time required for
the decommitment penalties (taking the expectation over all possible bids) is
negligible (<1ms). We further evaluate the running time for different number of
remaining auction rounds N and number of possible bids L. First, we evaluate
the affect of different remaining auction rounds N = 1..20 using L = 200. The
running time can be fitted by a linear trend 27.595N−28.795 with R2 = 0.998.
The running time at N = 1 is close to zero because the threshold price simply
equals the expected price in the last auction round (see Section 6.4.2). Second,
we evaluate the affect of different values for the number of possible bids L =
{100, 200, ..., 2000} using N = 20. The running time can be fitted by a power
function 0.0136L1.9921 with R2 = 1.000.

With this information we can estimate the computation time per job under
the different policies. The computation time per job using only the decommit-
ment policy is negligible because we only have to calculate the expected prices
using (6.16). The computation time CDT per job using the dynamic threshold
policy is given by the average number of rounds per job (AR) times the average
computation time per round, which in turn depends on the average number of
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remaining auction rounds:

CDT = AR

µ
27.595

µ
20− AR− 1

2

¶
− 28.795

¶
(6.22)

So given the average number of auction rounds from Table 6.5, this compu-
tation time lies between 2.5 and 3.0 seconds.

To calculate the computation time for the combination of both policies,
we add the time required to calculate the decommitment penalties. These
decommitment penalties have to be calculated at two events:

1. When the individual shipper accepts the lowest bid for a certain job,
it has to calculate the expected costs E [αs (B)]. The average number
of times a job is accepted is given by 1 + DJ

100 . The average number of
remaining auction rounds upon acceptance is 2 · TGA. The computation
time C1 for this event is then given by:

C1 =

µ
1 +

DJ

100

¶
(27.595 (2× TGA)− 28.795) (6.23)

2. At each auction round, for jobs from the individual shipper as well as
from the external market, the individual shipper has to calculate the
decommitment penalties for its open jobs, i.e., the jobs that are allocated
to a vehicle but not yet picked up. We denote the average number of
open jobs by ANO and the average number of remaining auction rounds
for the open jobs by ANRA. At each auction, on average a fraction of
MS/100 (MS = market share) of the open jobs belongs to the individual
shipper. The individual shipper calculates the decommitment penalties
for these jobs using (6.15). The expected costs E [αs (B)] at the time of
commitment are already calculated. Hence, the computation time C2 for
this event is given by:

C2 =
MS

100
ANO (27.595×ANRA− 28.795) (6.24)

The average total computation time CBOTH per job using both policies is
given by CBOTH = CDT +C1+C2. This computation time, together with the
explanatory variables, are shown in Table 6.8 for the different network settings.

Clearly, these computation times are huge. In a simulation experiment with
1% market share we generate 5,000 jobs (1% market share times 50,000 jobs run
length times 10 replications) for the individual shipper. For the busy network
setting, the total computation time is than almost 20 hours (5,000x13.8 sec).
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MS Network TGA DJ(%) AR(%) ANO ANRA CBOTH (sec)
1% Quiet 5.9 32.3 9.6 0.2 13.3 11.0

Normal 6.0 38.5 9.6 0.2 13.1 12.6
Busy 6.3 52.3 9.0 0.3 11.8 13.8

10% Quiet 5.9 32.8 9.7 2.2 13.2 11.6
Normal 6.1 38.5 9.4 2.8 12.6 13.2
Busy 6.4 50.4 8.8 3.4 12.1 14.6

Table 6.8: Simulation results for the combination of the dynamic threshold
policy and the decommitment policy

Sensitivity to the input data

Here we vary some input parameters that are estimated at the end of the
learning phase. The impact on the relative difference and reduction in total
costs can be found in Figure 6.8 and Figure 6.9 respectively.
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Figure 6.8: Impact of the input data
on the relative difference

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.8 0.9 1 1.1 1.2

Deviation factor

R
ed

uc
tio

n 
in

 to
ta

l c
os

ts

Correlation
Update probability
Transportation costs
Penalty costs

Figure 6.9: Impact of the input data
on the reduction in total costs

From Figure 6.8 we conclude that, with one exception, the maximum rela-
tive difference is achieved using the exact values of the learning period. Except
for the update probability, it appears to be better to use a slightly lower value.
A lower update probability will result in higher threshold values. This corre-
sponds with our observation from Table 6.5 where the realized costs are slightly
higher than the current threshold values.

Also for the reduction in total costs, we see that the maximum is achieved
using the exact data from the learning period. Only a slightly lower value of the
transportation costs will result in a larger reduction. However, a lower value
of the transportation costs will decrease the threshold values, which in turn
have an opposite affect on the relative difference. The reason for this is that
the prices for the external market are affected by the single shipper using the
dynamic threshold policy.
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Closed environments

In this last experiment we use the dynamic threshold policy in a closed en-
vironment. For the 3 network settings (quiet, normal, busy) we compare the
system performance under the naive policy, the dynamic threshold policy, and
the decommitment policy. We decided not to use the combination of both
policies given the high computation times (see Section 6.8.3). We consider the
following performance indicators:

• The percentage of time the vehicles are traveling loaded

• The service level defined as the percentage of jobs that are delivered
before the latest pickup time

• The reduction in total costs compared to the situation in which we use
the naive policy

First, we perform a similar experiment as in Section 6.8.3, with the only
distinction that we are using a 100% market share. The results can be found
in Table 6.9. We see that both policies have a positive affect on the percentage
of driving loaded. The dynamic threshold policy has a negative affect on the
service level. Of course, delaying an arbitrary job will increase the probability
of tardiness for this job. Apparently, the dynamic threshold policy, using the
input data of Section 6.8.2, is not able to capture this effect appropriately.
In case of a busy network this even results in an increase in total costs. The
decommitment policy works remarkably well. It even leads to an increase in
service level under all network settings.

Control Indicator Quiet Normal Busy
Naive Driving loaded (%) 74.4 74.8 75.3

Service level (%) 99.4 99.2 98.7
Threshold Driving loaded (%) 77.1 77.2 77.1

Service level (%) 97.4 97.7 96.5
Reduction in total costs (%) 4.7 6.2 −3.9

Decommit Driving loaded (%) 75.6 76.0 76.3
Service level (%) 99.8 99.8 99.6
Reduction in total costs (%) 6.6 7.6 11.6

Table 6.9: Theoretical savings for the three network cases

Next, we introduce an updating procedure for the estimation of parameters
as described in Section 6.6. Therefore, we introduce a learning period of 10
days. Every 10 days, the shipper estimates the required parameters for the
threshold policy using at most the data of the last 30 days.

Each experiment consists of 10 replications with different seeds. Each repli-
cation consists of 100 days with 50 days as a warm-up period. The number
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of replications corresponds with a confidence level of 95%, with a maximum
relative error of 5% with respect to the percentage of driving loaded and the
service level. The results can be found in Table 6.10.

Control Indicator Quiet Normal Busy
Naive Driving loaded (%) 74.2 74.5 74.9

Service level (%) 99.4 99.2 99.1
Threshold Driving loaded (%) 76.1 76.7 75.9

Service level (%) 98.1 98.4 98.7
Reduction in total costs (%) 8.4 9.1 9.3

Decommit Driving loaded (%) 75.5 76.0 76.8
Service level (%) 99.8 99.8 99.7
Reduction in total costs (%) 12.9 14.5 15.5

Table 6.10: Theoretical savings for the three network cases

From these results we see that it is important to use an updating procedure
in a closed environment. In all cases, the dynamic threshold policy and the
decommitment policy yield a higher reduction in total net costs compared to
the results of Table 6.9. Again, the relatively simple decommitment policy
outperforms the dynamic threshold policy.

Another important observation here is that the reduction in net costs is
much lower than the theoretical values found in Table 6.4. As mentioned before,
the theoretical values are calculated using estimated market prices based on a
situation in which all jobs are auctioned as early as possible. Auctioning one
job later will have an effect on prices for other jobs. In the experiments with
a market share of 1%, we have seen (Table 6.5) that on average 75% of the
jobs requires more than one auction round. So market prices will certainly
change and on average they will increase. Therefore, it becomes more difficult
to achieve the theoretical savings. But still, we are able to reduce the net costs
with more than 10%.

6.8.4 Summary of the simulation results

In the first two parts of this simulation study we have seen that the estimation
of parameters can be quite difficult. Despite that, we still see promising results
in the third part of this simulation study.

To test the dynamic threshold policy, we compared the realized savings
of an individual shipper with 1% market share, with the theoretical savings
that can be achieved in open environments. We have seen that the difference
between the theoretical and realized savings is less then 4%. This difference
is caused by (1) estimation errors in the lowest bid and (2) the effect of the
dynamic threshold policy used by the individual shipper on the net costs of the
external market. Given the large number of assumptions we had to make in
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the estimation of parameters, this difference is surprisingly small. To test the
model itself, we compared the estimated costs for not accepting a job in the
first round (the threshold value of the first round) with the average realized
costs. These differences are around 1%, with a largest error of 2.8%.

For an individual shipper in an open environment, the dynamic threshold
policy is able to achieve a reduction in net costs of 20-30% compared to the
external market. In closed environments, the decommitment policy performs
best. In fact, it achieves a reduction in the total net costs of 13-16%.

6.9 Conclusions

In this chapter we presented a dynamic threshold policy and a decommitment
policy. The dynamic threshold policy enables shippers to postpone commit-
ments for which they expect to make a better commitment in the future. The
decommitment policy allows carriers to decommit from an agreement with a
shipper against a predefined penalty. From our simulation experiments, we
conclude that both policies reduce the total costs. Also, the costs per job for a
shipper using the dynamic threshold policy are significantly lower than those
who did not use such a threshold policy (20-30% reduction in net costs per
job). The decommitment policy, as we derived it without profit margins, re-
sults in relatively higher costs per job for the individual shipper, compared to
the other shippers. We also considered closed environments (private fleets or
collaborative carriers) where all jobs are auctioned using reserve prices or allow
decommitment. We found that both policies were able to reduce the system-
wide logistical costs, especially the decommitment policy which yields savings
of 13-16% in total net costs.

In Chapter 5 we focused on profit maximizing strategies for the carriers.
We proposed a bid pricing strategy where the arrival of future jobs are taken
into account through the use of opportunity costs. In this chapter we evaluated
profit maximizing strategies for the shipper. If both parties (carriers and ship-
pers) are using intelligent strategies, it might be the case that they compete
against each other and no party will be better of. It might even be the case that
this has a negative effect on the system-wide performance. This combination
of profit maximizing strategies for shippers and carriers is the subject of the
next chapter.

6.10 Appendix

Here we derive the expected costs Z (τ) to auction the job a time τ after its
latest pickup time. After the latest pickup time, this job can only be scheduled
with penalties. These penalties are c per time unit. We model this by saying
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that if we do not accept the current lowest bid, and the time until the next
bid update is Y , then the shipper faces extra penalties cY , which it has to
pay immediately (obviously in our application these penalties are included in
the future bid prices). We introduce a value function V (τ) which reflects the
minimum expected price the shipper has to pay eventually, given a time τ after
the latest pickup time. This price excludes penalties paid so far. So we write:

Z (τ) = V (τ) + cτ (6.25)

The minimum expected price a shipper has to pay, as a function of the time
τ , is given by:

V (τ) = min (B,E [V (τ + Y ) + cY ]) (6.26)

with B the stochastic variable for the lowest bid and Y the exponentially dis-
tributed time until the next bid update. The threshold function in time τ
equals the expected price at the next update of the lowest bid:

β (τ) = E [V (τ + Y ) + cY ] (6.27)

= E [min (B,β (τ + Y )) + cY ]

Now, we only accept an offer b at time τ if it is lower than β (τ). So we get
the following:

β (τ) =

Z ∞
0

ÃZ β(τ+y)

0

bdF (b) + β (τ + y)

Z ∞
β(τ+y)

dF (b) + cy

!
λe−λydy

(6.28)

Basically β (τ + y) does not differ from β (τ) because we consider an infinite
horizon problem. Note that if you receive a bid update a time Y after the
previous bid update, and you decide not to accept it, this bid ’disappears’ and
you already lost an amount cY . It is just like starting the problem over again,
i.e., the problem is invariant of time. So we write:

β =

Z ∞
0

ÃZ β

0

bdF (b) + β

Z ∞
β

dF (b) + cy

!
λe−λydy (6.29)

=

Z β

0

bdF (b) + β

Z ∞
β

dF (b) +
c

λ
(6.30)

From this we get:

c = λ

Z β

0

(β − b) dF (b) (6.31)

Solving this equation for β yields a stationary threshold policy after the
latest pickup time: we accept the first offer below β. The expected costs Z (τ),
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given we receive a bid update τ time units after the latest pickup time, are
then given by:

Z (τ) = β + cτ (6.32)

As an example, suppose F (b) is U [0, ω], the uniform distribution on the
interval (0, ω). Then we get the following:

c = λ

Z β

0

(β − b)

ω
db, if β ≤ ω (6.33)

c = λ

Z ω

0

(β − b)

ω
db, if β > ω

Equating to c, we find:

β =

r
2ωc

λ
, if c ≤ ωλ

2
(6.34)

β =
c

λ
+

ω

2
, if c >

ωλ

2

So for penalty factors c > ωλ
2 , we have a threshold price larger then ω. This

means that we accept the first bid after the latest pickup time, because it is
always lower then ω. The expected price will then be ω/2, and the expected
penalties c/λ because we expect to receive this bid update a time 1/λ after the
latest pickup time.

For the discrete case, we replace the expected time 1/λ between successive
bid updates by the auction period R.
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Chapter 7

The interaction of carrier
and shipper strategies

In this chapter we study a closed transportation market where shippers offer
time-sensitive full truckload pickup-and-delivery jobs through sequential auc-
tions, and where a fixed set of vehicles compete with each other to service these
jobs. We model this as a multi-agent system consisting of shipper agents and
vehicle agents that both apply profit maximizing look-ahead strategies. We
study the impact of applying these local strategies - in the absence of any form
of central coordination - on the system-wide logistical costs.

For the shipper agent we propose two auction strategies, namely the use
of reserve prices and decommitment penalties (see Chapter 6). For the carrier
agent we focus on pricing and scheduling decisions where not only the direct
costs of jobs are taken into account, but also the impact on future opportunities
(see Chapter 5). We use simulation (1) to compare the performance of the
individual look-ahead strategies with the performance of myopic policies and
(2) to study the interrelation of the different strategies. We conclude that the
individual strategies reduce the system-wide logistical costs in almost all cases,
depending on the network characteristics. We also conclude that the shippers’
and vehicles’ policies are complementary: the joint effect of two policies is larger
than the effect of an individual policy. We further provide insight into possible
problems we may face when multiple players use look-ahead strategies that
require the individual players to learn each others’ behavior to enhance their
decision making capabilities. Therefore, we end this chapter with a proposal
for further research that may overcome some of these problems.
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7.1 Introduction

During the last decade there has been a growing interest in collaborative lo-
gistics due to the ever increasing pressure on shippers and carriers to operate
more efficiently. Cooperation among transportation agencies takes place on
various organizational and institutional levels, and in various forms. These
forms range from spot markets to private fleets. In the spot markets, a large
number of shippers and carriers exchange loads and vehicle capacity. In the
private fleets, a shipper has exclusive and direct control over a fleet of vehi-
cles. Situated between these extremes are the contractual agreement structures
which become increasingly popular in the trucking industry. Here contractual
agreements take place between shippers and carriers. These relations are stable
and often long-term. Many large shippers have a core carrier program in which
they form partnerships with a few large carriers, with the intent both to re-
duce their carrier base and to maintain or increase the level of service provided
(Song and Regan, 2003). In fact, many on-line marketplaces have shifted their
focus to more private collaborative networks (Song and Regan, 2001). Instead
of being open to any shipper and carrier, the private marketplace is a platform
with access only for a small group of companies. This model allows shippers
to maintain long-term relationships with their transportation providers.

In this chapter we focus on private collaborative networks and private fleets.
In these structures, the problem arises of how to allocate jobs, possibly coming
from various shippers, to a fixed set of transportation agencies within one
organizational association. In earlier chapters, we refer to this situation as a
closed environment. Examples of such an environment can be found in Chapters
3 and 4, where internal transportation tasks have to be allocated to a set of
automatic guided vehicles. In these systems, the overall goal is to achieve
an efficient allocation, i.e., to minimize the logistical costs within an affiliated
group of transportation resources.

Traditionally, the allocation and scheduling decisions in a closed environ-
ment are supported by operations research (OR) based optimization methods.
Throughout this thesis, we argue that such a central approach is less suitable for
real-time and dynamic environments (see e.g. Section 1.1.2 and Section 3.1 for
an argumentation). As an alternative we propose to use a multi-agent system
(MAS). Such a system consists of a group of intelligent and autonomous com-
putational entities (agents) which coordinate their capacities in order to achieve
certain (local or global) goals (Wooldridge, 1999). For the described environ-
ments this means that we represent each organizational unit by an agent. In
Chapter 3 we presented such a system, where we introduced shipper agents
that are responsible for finding transport capacity and carrier agents that are
responsible for the routing and scheduling decisions of their vehicles. The main
decisions here are (1) the allocation of full truckload transportation jobs to a
fixed group of carriers and (2) the timing of these jobs. The allocation of jobs is
done using a sequential auction procedure: for each incoming job, the shipper
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agent starts an auction and carrier agents bid on these jobs.

The proposed agent approach may cause some difficulties. First, the individ-
ual goals of agents may be conflicting and even may deteriorate the system-wide
logistical performance. However, in Chapter 3 we compared the performance
of the agent approach with two central scheduling heuristics. Using a case
study on an underground AGV system around Amsterdam Airport Schiphol,
we found that a properly designed multi-agent system performs as well as or
even better than the central scheduling methods. A second problem is that
jobs arrive real-time, so an optimal allocation of transportation jobs to vehi-
cles can only be derived afterwards, i.e., when all jobs are known. This means
that a certain allocation may become unfavorable when new jobs appear. To
cope with this, we improved the decision making capabilities of carriers and
shippers in Chapters 5 and 6 respectively. This improvement consists of the
introduction of look-ahead, where agents take into account future job arrivals
in their current decisions (e.g. bid pricing, job scheduling, and bid evaluation).
These look-ahead strategies are developed for so-called open environments in
which we focus on the strategies of an individual agent and ignore the impact
of others. To evaluate the approach, we compare the profitability of the indi-
vidual agent with the other agents that are using a myopic strategy (such as
described in Chapter 3).

In the present chapter, we apply the look-ahead strategies of Chapters 5
and 6 to a closed environment. As a consequence, we are less interested in the
profitability of individual agents, but rather in the reduction of system-wide
logistical costs. Applying the look-ahead strategies to all players in a closed
environment does result in some problems. The look-ahead strategies require
the agents to estimate the behavior of the other agents. As a consequence, it is
assumed that the behavior of other agents remains the same. Obviously, this
no longer holds when the other players also use strategic learning policies.

The goal of this chapter is threefold. First, to provide insight into the possi-
ble problems that occur when we apply the look-ahead strategies to all players
in a closed environment. Second, to study the impact of these strategies on
the system-wide logistical costs, and to study the interrelation of the different
strategies. Third, to take a few steps towards a new research approach that
might overcome some of the problems caused by multiple agents that learn each
others’ behavior.

7.2 Literature

Because we focus on multiple participants in a transportation marketplace, our
problem is related to several research areas. Our focus on vehicle strategies
is related to Dynamic Vehicle Routing Problems (DVRP) and Dynamic Fleet
Management Problems (DFMP). Our focus on shipper strategies is related
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to research on optimal auctions and optimal stopping problems. In the next
sections we describe the relation of this chapter with these research areas and
describe our contribution.

7.2.1 Vehicle routing and fleet management

Vehicle routing and scheduling in a dynamic environment has been studied by
a number of authors (see Psaraftis, 1988; Gendreau and Potvin, 1998; Yang
et al., 2004). The most common approach to handle these problems is to solve
a model using the data that are known at a certain point in time, and to re-
optimize as soon as new data become available. Because a fast response is
required in a real-time environment, a solution is usually achieved by using
relatively simple heuristics or by parallel computation methods, see (Ghiani
et al., 2003) for an overview of approaches. In this chapter we decompose the
problem into a structure where vehicles themselves are responsible for pricing
and scheduling decisions.

The dynamic allocation of transportation jobs belongs to the large class of
dynamic fleet management problems (DFMP). A few representative examples
of this stream of research include (Carvalho and Powell, 2000; Godfrey and
Powell, 2002; Yang et al., 2004). We cannot use the DFMP algorithms directly,
because (1) jobs have to be accepted early to avoid losing them to competitors
and (2) jobs are scheduled in a distributed manner by vehicle agents. Also the
price of a job is not given externally but subject to negotiation. Moreover,
the arrival intensity of jobs at a company is not described by an exogenous
information process, but can be influenced by better repositioning of vehicles.

Closely related research on opportunity valuation in bid pricing can be found
in (Figliozzi et al., 2006). Examples of related research on opportunity valua-
tion in scheduling decisions can be found in literature on the dynamic fleet
management problems (e.g. Godfrey and Powell, 2002) and waiting strate-
gies (e.g. Thomas and White, 2004; Mitrovíc-Miníc and Laporte, 2004; Ichoua
et al., 2006). For more references we refer to Chapter 5 where we proposed
an opportunity valuation method that supports the pricing, scheduling, and
waiting decisions of vehicles.

7.2.2 Transportation procurement auctions

From the shipper’s perspective, our focus is on the transportation procurement
auction. The design of auction mechanisms that maximize the seller’s expected
revenue, called optimal auctions, has received a great deal of attention. For
an extensive literature survey on this topic we refer to (McAfee and McMillan,
1987).

Traditionally, a shipper allocates transportation jobs to carriers one-by-one,
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i.e., through sequential auctions. Such a system ignores the interdependencies
between subsequent jobs. A significant portion of the trucking industry costs is
due to the repositioning of empty vehicles from the destination of one load to the
origin of a subsequent load (Song and Regan, 2002). Interdependencies occur
because serving one job is greatly affected by the opportunity to serve another
job. To cope with these dependencies, Caplice and Sheffi (2003) suggested to
use combinatorial auctions. As demonstrated by Ledyard et al. (2002), the
benefits of combinatorial auctions to shippers can be significant. A survey
on combinatorial auctions for the procurement of transportation services can
be found in (Sheffi, 2004). In this chapter we consider sequential auctions.
To cope with the interdependencies among jobs, we use reserve prices and
decommitment penalties.

As shown by Myerson (1981), the reserve price increases the expected rev-
enue of the seller by preventing the object from being sold at a low price.
Closely related is the work of (McAfee and Vincent, 1997), who study the op-
timal reserve-price path in a sequence of first- and second- price auctions. In
particular, the auctioneer puts the same object for sale repeatedly, until it is
sold. At each round he chooses a reserve price according to his (increasingly
pessimistic) beliefs about the buyers’ valuations. The choice of whether to
accept the lowest bid in a sequential auction is also related to the so-called
optimal stopping problems, see (Chow et al., 1971) for more details. Our ap-
proach differs from this line of research in the sense that we consider (1) historic
auction information to update the offer distribution, (2) time-dependent offers,
(3) correlation between subsequent offers, and (4) the finite horizon problem
as a special case.

Decommitment penalties are introduced in (Sandholm and Lesser, 2001).
Here an agent can decommit (for whatever reason) simply by paying a decom-
mitment fee to the other agent. It is shown, through game-theoretic analysis,
that this leveled commitment feature increases the Pareto efficiency of contracts
and can make contracts more beneficial for both parties.

For more references on the use of reserve prices and decommitment penalties
we refer to Chapter 6.

7.2.3 Contributions

In the previous sections we have described our contribution on the separate
perspectives of shippers and carriers. Our main contribution, however, lies in
the combination. To the best of our knowledge, the interaction between carriers
and shippers, each using look-ahead profit maximizing strategies, has not been
studied before. To summarize, our contribution consists of the following:

1. We evaluate the impact of the individual look-ahead policies on the
system-wide logistical costs. Here we focus on closed environments in the
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sense that we consider the allocation of transportation jobs to a given set
of vehicles (e.g. collaborative carriers or private fleets).

2. We evaluate the interaction between the different policies and evaluate
their benefits in terms of system-wide logistical costs. Specifically, we
evaluate whether the policies are complementary, i.e., if the joint effect
of two policies is larger than the effects of the individual policies.

3. We provide insight into the possible problems that occur when we ap-
ply the look-ahead strategies to all players in a closed environment and
present methods to deal with this.

7.3 Model of the transportation market

Jobs to transport unit loads (full truckload) arrive one-by-one. These jobs are
characterized by the following parameters: an origin i, a destination j, a latest
pickup time e of the load at the origin, and a time a at which the job becomes
known in the network a ≤ e.

We consider two types of transportation networks:

1. Node networks: transportation takes place between a discrete set of
nodes. Hence, the origin and pickup locations represent nodes in a di-
rected graph (N ,A), where N is the set of nodes and A the set of arcs
connecting these nodes.

2. Region networks: transportation takes place between a continuous set
of locations. The origin and pickup locations are represented by (x, y)
coordinates in the Euclidean plane. However, to estimate the value of
certain areas within the network, we discretize the network into disjoint
regions. We denote the set of regions by N .

Within the network, all jobs have to be transported by a fixed set of available
vehicles (not necessarily identical). For this purpose we assume that the total
transportation capacity is sufficient to handle all jobs in the long run. We
further assume that a job in process cannot be interrupted (no preemption);
i.e., a vehicle may not temporarily drop a load in order to handle a more
profitable job and return later on. The overall goal is to minimize the costs.
We consider two cost functions, namely the travel costs cr (t) as function of
the travel time t and the penalty costs cp (t) in case of tardiness (t > 0), which
is a positive non-decreasing function of the time t. The time to transport a
load from node i to node j is given by τfij . This includes travel time, and
the handling time to load- and unload the job. The time to drive empty from
node i to node j is given by τ eij . Both times are deterministic and vehicle
independent.
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To model the transportation market we use a multi-agent system. Such a
system consists of intelligent individuals that are situated in a dynamic and
uncertain environment, interact with each other, and improve their decision
making capabilities by learning about their environment. We represent each
player by an agent that acts as a decision maker. Following an approach similar
to the previous chapters, we introduce vehicle agents and shipper agents. The
shipper agents receive externally generated transportation jobs. To match these
jobs with transport capacity, they offer these jobs to the vehicle agents through
sequential transportation procurement auctions. Vehicle agents bid on these
jobs and maintain a schedule of the jobs they have won. Without loss of
generality, we choose here for a reverse first-price sealed-bid auction in which
the lowest bidder receives its bid amount (given the shipper agrees with this
bid). For clarity of exposition we further assume that there is only one shipper
agent that receives and auctions all jobs.

Our objective is to minimize the system-wide logistical costs, which consist
of costs for empty moves and penalty costs (the costs for loaded moves are
not included because all jobs have to be transported). This global objective
has to be achieved by individual agents with conflicting goals. Objective of the
shipper agent is to minimize the costs for transportation given by the sum of all
prices paid to the vehicles for transporting their loads. Objective of the vehicle
agents is to maximize their profits given by the income from all transportation
jobs minus the costs for doing these jobs. Optimizing this system basically
comes down to optimizing the auction-based allocation. In the next section we
deal with this issue.

7.4 Improving auction-based allocations

A job is allocated to a vehicle whenever the vehicle agent wins the auction
for this job. After the arrival of new jobs, it may appear that the job assign-
ment is not optimal anymore. Especially when jobs are complementary (e.g.
transportation jobs that can be served sequentially by the same vehicle) or
substitutable (e.g. transportation jobs that are available at the same time), a
certain allocation may become unfavorable when new jobs appear.

To improve the allocation, we may reallocate all jobs that are not yet trans-
ported. However, this is often not realistic in practice because it may require
a lot of computation time. Another option is to use auction protocols that are
specifically designed to deal with complementary goods. For example, simul-
taneous auctions (or parallel auctions) where bidders participate in multiple
auctions at the same time and combinatorial auctions where bidders may bid
on combinations of items. However, combinatorial auctions involve many in-
herently difficult problems. As mentioned by Song and Regan (2005), we face
the bid construction problem, where bidders have to compute bids over differ-
ent job combinations; and the winner determination problem, where jobs have
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to be allocated among a group of bidders. In addition, (1) it may be unrealistic
to bid on a bundle of jobs which belong to different shippers and (2) these pro-
cedures are not directly applicable in situations where jobs arrive at different
points in time.

To improve the allocation of jobs, we take the sequential transportation
procurement auction as given, and focus on strategies for the participants. We
consider the following options:

1. Opportunity valuation

2. Delay commitments

3. Break commitments

In the first option, vehicle agents do not only take into account the direct
costs of doing a certain job, but also its impact on the opportunity costs. These
opportunity costs are used to capture the loss in expected future revenue of
a vehicle due the acceptance of a new job. Job characteristics, such as the
destination of a new job, affect the opportunity costs. But also the order and
timing of jobs in a schedule have an effect on the opportunity costs. Therefore,
we use the opportunity costs in the bid pricing and scheduling decisions (see
Section 7.4.2).

In the last two options (delaying and breaking commitments), we use re-
peated one-shot auction procedures which combine features of both simultane-
ous and combinatorial auctions. We get repeated auctions because we (1) allow
the shipper agents to delay commitments by repeatedly starting an auction for
the same job and (2) permit vehicle agents to break a commitment, i.e., the
allocation for a specific job will be reconsidered by starting a new auction for
this job.

The idea of delaying commitments is that a shipper uses threshold prices
in each auction round. When all bids are higher than this threshold price, the
shipper rejects them and starts a new auction later on. This way, shippers are
able to postpone commitments (an allocation of a job to a vehicle) for which
they expect to make a better allocation in the future. So if the shipper has
plenty of time to auction a certain job, it will not agree with a relatively high
bid. When the time for dispatch becomes nearer, the price it is willing to accept
will rise. We call this a dynamic threshold policy.

The idea of breaking commitments is that the shipper allows a vehicle to
decommit from an agreement against a certain penalty. These penalties are
chosen such, that whenever a vehicle decommits a job, they cover the expected
extra costs for finding a new vehicle. When a vehicle decommits a job, the
shipper has to re-auction the job in order to find a new vehicle that is willing
to do this job. We call this a decommitment policy. Note that such a policy is
only reasonable in case of private fleets or collaborative networks.
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In the next two subsections we describe the three policies in more detail.
Apart from some minor modifications due to specific model details (i.e., first-
price auction and region networks), this description is a recapitulation of the
Chapters 5 and 6. However, we limit ourselves to the basic concepts that
are required for understanding the numerical results presented in this chapter.
After that (Section 7.4.3), we present the resulting system dynamics of using
these policies in our closed transportation market.

7.4.1 Shipper agent: dynamic threshold policy

In the dynamic threshold policy we assume that a shipper has the opportunity
to auction a job multiple times. After each auction, the shipper agent has to
decide whether to accept the lowest bid. To support this decision we use a
value function V r

i,j,d (t, b) (see Chapter 6) as the expected price a shipper has
to pay in the remaining period t before the latest pickup time, for a job from
i to j (which represent nodes or regions), having distance d, given a lowest
bid b in the current auction. We added the current bid b in the state space
because sequential bids for the same jobs are correlated. When the current
lowest bid is relatively high, it is likely that the lowest bid at the next auction
round will also be relatively high. We assume that the time between subsequent
auction rounds is fixed; we denote this time by R. In Chapter 6 we show that
the optimal policy is to accept the current bid b, for a job from i to j having
distance d and remaining time t until the latest pickup time, only when this
value b is below a threshold value αi,j,d (t, b). This threshold value, cf. (6.10)
in Chapter 6, equals the expected value function at the next auction round:

αi,j,d (t, b) = EBt−R

£
V r
i,j,d (t−R,Bt−R|Bt = b)

¤
(7.1)

with t−R the remaining time after the next auction round and Bt the stochastic
variable for the lowest bid at remaining period t.

To calculate the threshold values, Chapter 6 proposes a dynamic program-
ming recursion. For this purpose, shippers should have some knowledge about
the time dependency of bids for various job characteristics. To be precise, a
shipper has to estimate:

1. Mean value of the lowest bid excluding penalties.

2. Variance of the lowest bid excluding penalties.

3. Mean penalty costs in the lowest bid.

4. Probability of having non-zero penalties in the lowest bid.

5. Probability that the lowest bid is updated between subsequent auction
rounds.
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6. Correlation in transportation costs in the lowest bid between subsequent
auction rounds.

These parameters are estimated by the shipper based on historical observa-
tions of the lowest bid. The first three parameters are estimated using multiple
linear regression on the remaining time t and distance d (see Section 6.6). The
fourth and fifth parameter are estimated as a function of the remaining time t
using a continuous distribution function (see Section 6.6).

In Chapter 6 the origin and destination of a job are not taken into account
in the estimation of the lowest bid. This is appropriate in case of balanced
networks such as considered in Chapter 6. However, in this chapter we also
consider unbalanced networks where some nodes/regions are more popular than
others. To deal with this, we incorporate the origin and destination in the
multiple linear regression functions (for the first three parameters), that is, for
both, the origin and destination, we add |N |− 1 indicator functions.
In the decommitment policy, the shipper always accepts the lowest bid.

However, vehicles are allowed to decommit from an agreement with a ship-
per against a predetermined time-dependent penalty. These decommitment
penalties, for a certain job as a function of the remaining time until the latest
pickup time, are calculated by the shipper directly at the start of an auction
for this job. The penalties should cover the extra costs for a shipper to find a
new carrier. A shipper will face extra costs because after decommitment, the
remaining time until the latest pickup time is shorter and the vehicles have
less flexibility to schedule this job on time. This also means that the shipper
faces variation in the prices, i.e., sometimes the decommitment penalties are
insufficient to cover the increase in costs. In principle, the shipper should price
this risk. Here we assume risk neutral shippers.

When the shipper uses the decommitment policy in combination with the
dynamic threshold policy, the decommitment penalties are given by the differ-
ence in threshold prices V r

i,j,d (t, b) between the initial commitment time and
the decommitment time. Otherwise, this value is simply given by the expected
lowest bid at the decommitment time minus the expected lowest bid at the
initial commitment time. The expected lowest bid for given job characteristics
and remaining time t can be calculated from the parameters mentioned before
(mean value of the lowest bid excluding penalties plus the probability of having
non-zero penalties times the expected penalties). Whenever a vehicle decom-
mits, (1) it will not receive the agreed price for the decommitted job, (2) it
has to pay the shipper the time-dependent decommitment penalty, and (3) the
shipper immediately starts a new auction for this job.

In Chapter 6 we simulate the dynamic threshold policy and the decommit-
ment policy in an open environment. Here only a small percentage, denoted
by market share, of the jobs are auctioned under such a policy. For these jobs,
we show that the average costs are much lower than the average costs of jobs



7.4. Improving auction-based allocations 193

that are auctioned under a naive policy (no reserve prices or decommitment
penalties). We further show that if we increase the market share, the savings
per job auctioned under the dynamic threshold policy are relatively lower. As
an explanation we mentioned that with increasing market share, it gets more
difficult to estimate the lowest bid. As a consequence, shippers need more time
to learn the right parameter settings for the dynamic threshold policy and de-
commitment policy. In this chapter we focus on closed environments which
resemble the 100% market share. This causes some problems as we show in
Section 7.5.

In the remainder we denote the use of a dynamic threshold policy by RES
(reserve prices) and the use of a decommitment policy by DEC.

7.4.2 Vehicle agents: opportunity valuation policies

At each point in time, a vehicle v has a job schedule Ψv, i.e., a list of jobs with
scheduled pickup times. These pickup times are scheduled as early as possible,
taking into account the required times for empty moves. In the remainder we
denote (1) the number of jobs in a schedule by N , (2) the destination of the
last job in the schedule Ψ by schedule destination d(Ψ), and (3) the time until
the expected arrival time at the schedule destination by length of a schedule
g(Ψ).

Vehicles use this schedule to support their job sequencing decisions and bid
pricing decisions. Vehicles are not restricted by the scheduled pickup times, but
can simply decide to insert new jobs or to wait at some node after delivery of a
job (denoted by flexible contracts in Chapter 5). The vehicles use an insertion
scheduling heuristic. Here a vehicle contemplates the insertion of a new job at
any position in the current schedule without altering the order of execution for
the other jobs.

Given the insertion scheduling method, new job insertions take place either
in a period between two successive jobs or after the schedule destination. The
idea is that we value these periods in order to capture the impact on future
opportunities. As before, we use the phrase end-gap for the difference between
a planning horizon T (which we choose to be much larger than the length of
a schedule) and the length of a schedule. We use the term gap to indicate the
potential time between two consecutive jobs that can be used for future job
insertions.

The gaps and the end-gap are important to value a schedule, because future
jobs can only be inserted in these periods. To quantify the values of these
periods, we introduce two value functions in Chapter 5, namely a gap-value
and an end-value. In this chapter we only consider the end-values because the
combination with gap-values appears to have little added value (see Chapter
5).
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The end-value V e (i, σ, t) is defined as the expected profit during a period
t after arrival at schedule destination i, given a time-to-go σ until arrival at
node i. In Chapter 5 we calculate the end-values using a Stochastic Dynamic
Programming (SDP) recursion. The recursive relations are described by four
types of information:

• State space (i, σ, t) with schedule destination i, time-to-go σ, and plan-
ning period t.

• Decision δ (i) to move to location δ (i) after arrival at location i.

• Transition probabilities pikl (σ) that a vehicle ending in location i receives
a job from k to l as next job within the time-to-go σ.

• Expected reward rikl (σ) of a job from k to l that is won within the
time-to-go σ and that is scheduled after arrival at node i.

For clarity of exposition, we slightly modified the definition of the transi-
tion probabilities and expected rewards compared to Chapter 5. Originally, see
Section 5.5, these functions also depend on the time at which a vehicle wins
the job, and we integrate them over all possible winning moments. For the
transition probabilities this means that it consists of two parts: (1) the prob-
ability of winning a job during a certain time period and (2) the conditional
probabilities that the winning job foes from k to l.

To calculate the end-values using the SDP recursion, the vehicle agents have
to estimate the transition probabilities and expected rewards as a function of
the route ikl and the time-to-go σ. To do this, vehicles use historical observa-
tions of the lowest bid for various job characteristics (see Chapter 5). In this
Chapter we use an approximation Ṽ e (i, t) where the time-to-go σ is replaced
either by an average time-to-go or by a time-to-go of zero (see Chapter 5). In
the remainder we denote the use of end-values based on an average time-to-go
by VEA and the use of end-values based on a zero time-to-go by VE0. Note
that with the policy VEA, vehicles also have to estimate the average time-to-go.

The end-value Ṽ e (i, t) provides an indication of the attractiveness of a
schedule destination i. With attractive we mean that the expected waiting
time until winning a new job after arrival at this node is relatively short. As a
consequence, the expected revenue during a period t after arrival at this node
is relatively high. The end-values are used by the vehicle agents (1) to calculate
a bid price for a new job, (2) to choose an appropriate insertion position for
a new job, and (3) to support so-called pro-active move decisions. Below we
elaborate on this.

The bid price of vehicle v, for inserting a new job ϕ in its current schedule
Ψv, is given by the marginal costs of this insertion plus opportunity costs.
Given the vehicle has currently N jobs in its schedule, it can schedule the new
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job in N possible ways. We write Ψnvϕ for schedule alternative n, where the
new job ϕ is inserted after job n. The bid price b (v, ϕ) of vehicle v for job ϕ,
is given by:

b (v, ϕ) = min
n=1..N

¡
cr
¡
∆Tn

vϕ

¢
+ cp

¡
∆Dn

vϕ

¢
+OC

¡
Ψnvϕ

¢¢
(7.2)

where

∆Tn
vϕ = expected additional travel time required for vehicle v in schedule

alternative n to transport job ϕ;

∆Dn
vϕ = expected additional tardiness for vehicle v in schedule alternative

n due to accepting job ϕ;

OC
¡
Ψnvϕ

¢
= the opportunity costs of adding job ϕ to the schedule of ve-

hicle v using alternative schedule n. These opportunity costs are given by the
difference in end-value of the alternative schedule Ψnvϕ compared to the current
schedule Ψv:
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= Ṽ e (d (Ψv) , T − g (Ψv))− Ṽ e
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Note that the bid price (7.2) is similar to (3.1) in Chapter 3, with the only
exception that we now use the opportunity costs of a new job insertion instead
of the change in waiting time.

We denote the alternative schedule Ψnvϕ with the lowest costs by the tem-
poral schedule Ψ∗vϕ. A vehicle agent updates its schedule when (1) an auction
for a new job ϕ is won and (2) the first loaded move in a schedule has been
completed. In the first case, the vehicle agent replaces its current schedule Ψv
with the temporal schedule Ψ∗vϕ. In the second case, the vehicle agent has to
decide upon its next move. Here we assume that if the vehicle schedule is not
empty, it will drive immediately to the origin of the next job. Otherwise, the
vehicle faces a pro-active move decision, i.e., it has to decide whether to stay
or to move pro-actively to another node. The decision to move to node δ (i),
given the current node i, is given by the node δ that maximizes the revenue
within the remaining planning horizon T − τeiδ after arrival at node δ, minus
the cost for this empty move:

δ (i) = argmax
δ∈N

³
−cr (τ eiδ) + Ṽ e (δ, T − τ eiδ)

´
(7.4)

Note that more complicated decisions are involved when vehicles not always
start the next job as early as possible. For details on this we refer to Chapter
5.

7.4.3 System dynamics

We implement the market mechanism as follows. When a job arrives at the
shipper, it starts an auction by sending an announcement to all vehicles. In



196 Chapter 7. The interaction of carrier and shipper strategies

return, each vehicle calculates a bid considering the marginal costs of doing this
job and its impact on future opportunities (7.2). Next, the shipper has to decide
whether to accept the lowest bid (7.1). A shipper may decide to reject all bids
and start a new auction later on. Otherwise, the winning vehicle is informed
and all vehicles receive information on the lowest bid. If the shipper allows
decommitment, it also calculates the time-dependent decommitment penalties
for the new job and sends this to the winning vehicle.

The winning vehicle implements the temporal schedule upon which its bid is
calculated. If the winning vehicle decided to decommit from another job, then
this decommitment is announced to the shipper, which in turn immediately
starts a new auction for this job. Finally, after each auction, both the ship-
per and the vehicles store information of the lowest bid together with the job
characteristics. The vehicles also make pro-active move decisions (7.4). These
decisions only have to be made after delivery of the last job in their schedule.
A general impression of the situation is given in Figure 7.1. Here the arrow
network information indicates that vehicles are informed about their position
and status with respect to loading, unloading, and traveling.

Incoming job
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Auction ShipperVehicle
Announcement

Bids

Winner & lowest bid
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penalties

Learn from data
&

Operational 
control

Decommitment

Announcement

Transportation network \ Simulation environment
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Figure 7.1: Transportation procurement market

Apart from these system dynamics, the shipper and the vehicles periodically
update their beliefs about other players by using the auction results of the last
period. Specifically, the vehicle agents estimate the distribution of winning
moments, the transition probabilities, the expected rewards, and the average
time-to-go (required for the policy VEA). They use this information to calculate
the end-values V e (i, t) for ∀i ∈ N and t ≤ T for the next period in advance.
The shipper agent estimates the six parameters mentioned in Section 7.4.1.
This situation, where all players learn form each other, causes some problems
as we will show in the next section.
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7.5 Interaction effects

In Chapters 5 and 6, we evaluated the performance of profit maximizing strate-
gies for shippers and carriers in an open environment. In this environment, we
focused on the behavior of a single agent and assume stationary behavior of
all other players. We compared the profit of the individual player using a
look-ahead strategy with the average profit of the other players that are using
a myopic policy. If all players are using look-ahead strategies, and therefore
learn about each other’s behavior, this certainly leads to some undesired inter-
action effects. We present these difficulties in the next two subsections for the
opportunity valuation policies and dynamic threshold policies respectively.

7.5.1 Opportunity valuation policies

With the opportunity valuation policies, vehicles include opportunity costs
in their bid pricing and scheduling decisions. The resulting performance is
influenced by (1) other vehicles that are doing this and (2) the shipper that
employs reserve prices or allows decommitment of jobs.

First, we consider the impact of other vehicles that are using opportunity
costs. When all players use exactly the same end-values that are updated
periodically (or all players calculate them separately at the same time based on
the same observations), we may expect an increase in prices which we explain
below. Specifically, updating the end-values has an effect on the expected
rewards and transition probabilities that are used in the dynamic programming
recursion:

1. Expected rewards. A vehicle estimates the expected reward of a job
by taking the difference between the expected lowest bid of its competi-
tors, given this bid is higher than its own expected bid, minus its own
expected travel and penalty costs (its bid minus the opportunity costs).
The opportunity costs of this vehicle are not subtracted from its expected
reward because these costs are expected to be made later on (see Section
5.5.2). The opportunity costs of jobs are on average positive because
doing a new job reduces the available time within the planning period T
to do other jobs. Therefore, bids prices on average increase. Given that
the transition probabilities remain the same, because all jobs have to be
served, the expected rewards of jobs increase and therefore also the value
functions. In turn, the opportunity costs will be higher and we end up
with a continuous increase in bid prices.

An example can be found in Figure 7.2, where vehicles calculate the end-
values periodically starting with zero values in the first period. Consider
a vehicle that calculates the end-values at the end of period 2. To do so,
it has to calculate (1) the transition probabilities for jobs on all routes
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Figure 7.2: Illustration of increasing rewards

and (2) the expected rewards of these jobs. To calculate the transition
probabilities, the vehicle uses observations of competitors’ bids in period
2 and its own expected bid based on opportunity costs charged in period
2 (see next point). As a consequence, the expected transition probabil-
ities in period 3 will be more or less the same as the realized transition
frequencies in period 2 (which can be expected in a closed environment).
The expected rewards for this vehicle are (approximately) given by the
lowest bid of its competitors (given that this bid is higher than its own),
minus its travel and penalty costs. The travel and penalty costs for a
given state (i, σ, t) remain the same in each learning period. However,
the lowest bid in period 2 from the competitors includes opportunity
costs. So compared to the first period, the expected rewards for a given
job are increased by the opportunity costs of this job. Given the fact that
the transition probabilities remain the same, the total expected revenue
in a given planning horizon increases.

2. Transition probabilities. If all players learn from the same data (which
is the case when all players see the price received by the winning bidder),
then their bid pricing and scheduling behavior is also the same. So if
a single vehicle wants to estimate its transition probabilities based on
historical auction data, it has to be careful which opportunity costs to
use. For example, if it uses multiple iterations of the approximate end-
value recursion (see Chapter 5, Section 5.6.3), it estimates the transition
probabilities based on ’old’ observations from the competitors’ bids in
combination with its ’new’ opportunity costs. This will change its esti-
mated transition probabilities, whereas in reality all other vehicles also
change their opportunity costs, so that the transition probabilities should
remain the same. If we do not take this into account, we may expect an
even larger increase in expected rewards as mentioned above.

To avoid the increasing rewards we propose some policy adjustments. With
respect to the transition probabilities, we let the vehicles update their value
functions at the beginning of each period, where they calculate the transition
probabilities based on the opportunity costs they charged at the previous pe-
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riod. With respect to the expected rewards, we let the vehicles reason with
profits as being the difference between the second lowest bid, given this bid is
higher then their own, and their own bid. In other words, we do not include
opportunity costs in the calculation of expected rewards. To be precise, we set
the opportunity costs in the expected bid price in the dynamic programming
recursions equal to zero, see (5.29) in Chapter 5. We indicate this adjustment
by NOC (no opportunity costs).

In addition, we consider another policy adjustment where we apply some
revenue optimization principles to the calculation of end-values. Here we apply
a similar trick as in Chapter 5 (Section 5.4.2), where we introduced a decision
variable δa for the gap-value approximation. Earlier, we assumed that we
derive the bid prices in an optimal way, thereby avoiding less profitable moves.
However, given that it takes some time to learn the right parameter settings,
it might be the case that in the recursion, the expected revenue of waiting
one time unit is higher than the expected revenue of accepting a new job.
Therefore, we now add an acceptance decision for each transition: we do not
accept the transition when the resulting expected revenue is lower than the
value of waiting a single time unit. We expect that this policy converges faster
to a steady state behavior. We indicate this adjustment by ACC (acceptance
decision).

Next, consider the impact of the shippers’ look-ahead strategies on the per-
formance of the opportunity valuation policy. The opportunity valuation policy
is affected by (1) the option to decommit because we have an option to switch
to another job and (2) the reserve prices because the use of reserve prices af-
fects the winning probabilities. In this chapter we ignore these dependencies
by using precisely the same dynamic programming recursions as described in
Chapter 5. In other words, vehicles do not explicitly incorporate the reserve
prices and decommitment penalties in their bid pricing and scheduling deci-
sions. The results are evaluated with simulation, see Section 7.6 till 7.8.

7.5.2 Dynamic threshold policy

The results of using the dynamic threshold policy or decommitment policy
are influenced by the number of jobs that are auctioned under such a policy
and by the opportunity costs charged by the vehicles. The latter aspect is
not a problem here because we enable the shipper to continuously update its
estimation of the lowest bid, including the opportunity costs. With respect to
the first aspect we distinguish the following problems:

1. Delaying or breaking commitments has an impact on the vehicle schedules
and hence on the bid prices for future jobs. The more jobs that are
auctioned under such a policy, the larger this impact is. As a consequence,
it will take some time for the shippers to learn the right parameter settings
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for their policies. Obviously, this is not a desired property in fast changing
environments.

2. Updating expectations on the lowest bid for various job types has an
effect on the calculated threshold values. As a consequence, the reserve
prices and decommitment penalties change. This in turn has an effect
on future observations. For example, if the reserve prices are currently
relatively high, most jobs will be accepted early, and hence there will be
fewer observations with a small time-to-go. As a result, estimation of the
lowest bid for jobs with a small time-to-go is less reliable.

3. In addition to the previous point, the number of observations with a cer-
tain time-to-go also affects the estimated value of the lowest bid for jobs
with this time-to-go. To illustrate this, suppose that within a learning
period only a small percentage of jobs are auctioned with a small time-
to-go. Then the estimated value of the lowest bid for jobs with a small
time-to-go is relatively lower than it would have been when relatively
more jobs where auctioned with a small time-to-go within the learning
period.

To cope with the second problem, we introduced so-called learning jobs in
Chapter 6. These jobs are auctioned at several points in time without allocating
them to a vehicle. They are only used to gain insight into the time dependency
of bids. To cope with the other problems, the shipper has to update its beliefs
about the distribution of the lowest bid continuously and has to update its
policies accordingly. We illustrate the benefits of this policy in our simulation
experiments.

7.6 Experimental settings

The goal of this simulation study is (1) to provide insight into the problems
mentioned in Section 7.5 and (2) to evaluate the impact of various combinations
of shipper’s and vehicles’ strategies on the system-wide logistical costs. These
two goals are worked out in two separate parts. The specific settings of these
parts are presented in Section 7.7 and 7.8 respectively. Below we present the
general settings.

We consider four network configurations (see Figure 7.3):

4N Here we have 4 nodes that form the corner points of a square. The hori-
zontal and vertical distances between the nodes are 50km.

4R Here we have 4 square regions that span a 2x2 grid within a square area
of 100x100 km.
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Figure 7.3: Network configurations

9N Here we have 9 nodes located as grid points on a 2x2 grid. The horizontal
and vertical distances between adjacent nodes are 3313 km.

9R Here we have 9 square regions that span a 3x3 grid within a square area
of 100x100 km.

The nodes/regions are numbered consecutively per row, starting in the up-
per left corner and ending in the lower right corner. We consider unbalanced
transportation networks, where some nodes/regions are more popular than oth-
ers. To adjust the transportation flow in the node networks (4N and 9N), we
set for each node an origin probability, which is the probability that this node
becomes the origin of a new job. For a given job, we first draw an origin
node using the given origin probabilities and next draw a destination node
randomly from the remaining nodes. In the region networks (4R and 9R),
we adjust the origin probabilities per region and draw a destination region
randomly from all regions (possibly the same as the origin region). Within a
given origin/destination region, we draw a (x,y) coordinate randomly from the
square area. The different origin probabilities for the 4 node/region networks
are shown in Table 7.1.

Degree of balance Origin probabilities for node/region i (i = 1..4)
Balanced 1

4(1 + (i− 1) ∗ 0.0)
Slightly unbalanced 1

7(1 + (i− 1) ∗ 0.5)
Unbalanced 1

10(1 + (i− 1) ∗ 1.0)
Highly unbalanced 1

13(1 + (i− 1) ∗ 1.5)
Table 7.1: Origin probabilities

For the 9 node/region networks we only consider an unbalanced network
structure, where the origin probabilities are given by i/45 for i = 1..9.

We use 10 vehicles, each having a travel speed of 50 km/hour. The travel
cost function is given by cr (t) = t and the penalty cost function by cp (t) = 10t,
where t is measured in minutes. The loading- and unloading times are 5 minutes
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each. For the dynamic programming recursions on the end-values we discretize
time into periods of 1 minute and use a planning horizon T of 12,000 minutes.
Jobs arrive according to a Poisson process.

In our simulation experiments we evaluate the different look-ahead policies
of the vehicle agents and the shipper agent. To use these policies, the agents
learn about the behavior of others. Here learning takes place periodically (1)
by estimation of all required parameters based on the past period and (2) by
updating their policy in accordance with this (see Section 7.4.3). We call such a
period a learning period. The number of learning periods varies per experiment.
The length of a learning period is always 10 days.

We consider the following policies:

NA The vehicle agents and the shipper agent use naive policies (no end-values,
no reserve prices, and no decommitment penalties).

VE0 Vehicle agents use the end-values in their bid pricing, scheduling, and
waiting decisions. The end-values are based on a time-to-go of zero.

VEA Vehicle agents use the end-values in their bid pricing, scheduling, and
waiting decisions. The end-values are based on the average time-to-go
that is estimated using observations of the last learning period.

DEC The shipper agent allows decommitment of jobs.

RES The shipper agent uses reserve prices.

In addition, we study the policy adjustments NOC and ACC of the op-
portunity valuation policies (see Section 7.5.1) and study combinations of the
opportunity valuation policies with either DEC or RES. We decided not to
consider the combination of DEC and RES given the high computation times
(see Chapter 6, Section 6.8.3).

As mentioned in Section 7.3, we consider a first-price auction. However,
the opportunity valuation methods are developed for a second-price auction
(cf. Chapter 5). In Chapter 5 vehicles observe the second lowest bid and
use this to estimate the lowest bid. For this purpose they use the Gumbel
distribution G1 for the lowest bid and use the distribution parameters of the
Gumbel distribution G2 for the second lowest bid. Here we simply estimate
the distribution parameters of the Gumbel G1 distribution. However, in the
first-price auction, the expected rewards of the vehicles are zero and hence all
end-values would be zero. Therefore, we let the vehicles reason with profits as
being the difference between their bids and the lowest bid of their competitors
(similar to a second-price auction).

As primary performance indicator we consider the average net costs per
job which consists of empty travel costs and penalty costs. The loaded travel
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costs are excluded because they do not depend on the decisions to be taken. In
addition, we consider the relative savings of a certain policy which are defined
as the relative difference in average net costs of this policy compared to that
of the naive policy. For example, a relative savings of 10% for the policy VE0
means that the average net costs per job are 10% lower than those of the policy
NA.

7.7 Simulation study on the impact of learning

The main goal of this simulation study is to evaluate the impact of learning. To
be precise, to study the impact of updating the policies on the behavior of the
value functions and on the average net costs per job. To illustrate the behavior
of the value functions we use the 4R network. We choose this network setting
because (1) strange behavior becomes more visible with fewer nodes/regions,
and (2) the node networks behave quite chaotically as we will see later on. We
further use a time-window of 10 hours and a time between jobs of 800 seconds.

We divide this simulation study in three subparts in which we subsequently
answer the following questions:

1. How do the end-values Ṽ e(i, T ) behave (constant, fluctuate, increase) in
subsequent learning periods using the policies VE0 and VEA in combi-
nation with the adjustments NOC and ACC?

2. How do the estimated parameters behave (constant, fluctuate, increase)
in subsequent learning periods under the policies DEC and RES?

3. What is the impact of the number of learning periods on the net costs
per job?

7.7.1 Part 1: opportunity valuation policies

Here we study the changes in end-values that occur after each learning period.
We evaluate various opportunity valuation policies: the policies VE0 and VEA
in combination with the adjustments NOC and ACC. To illustrate the impact
of learning, we show the results in figures based on one simulation run (the use
of multiple replications would level out some details). Within these figures, we
show the following values as a function of the number of learning periods:

• The average end-value 1
4

P
i=1..4 Ṽ

e (i, T ) for the planning horizon T .

• The difference Ṽ e (4, T )−Ṽ e (1, T ) in end-value between the most popular
origin region and the most unpopular origin region.
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• The realized profits within the planning horizon T (see Appendix for an
explanation of how the realized profits are measured).

Note that the end-values and the realized profits are calculated at the end of
each learning period. As a consequence, we show for each period t, the average
realized profit within a planning horizon T during this period t and the expected
profits within a planning horizon T during period t + 1 as calculated by the
end-values. To distinguish between the realized and calculated profit we add,
respectively, the suffix -R or -C to the abbreviated policy name.

First, we show the end-values in subsequent learning periods for the policies
VE0 and VEA. The results for the average end-values for the whole planning
horizon T are given in Figure 7.4. The difference in end-values of region 1 and
4 are given in Figure 7.5.
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For both policies, we see (1) an increase in average end-values and (2)
an increase in difference in end-values of region 1 and 4. However, with the
policy VE0, this increase is partly wiped out by the overestimation of waiting
times. In addition, the increasing end-values may have a negative impact on the
estimated transition probabilities which in turn reduces the expected rewards.
We further see from Figure 7.4 that the realized profits in period t with the
policy VEA are close to the expected profits of period t + 1. With the policy
VE0 we see a larger difference. This is caused by the assumption that we do
not win a job in advance; the actual waiting times are therefore lower than
expected.

Even though we are dealing with artificial prices and revenues, the increase
in bid prices is an undesirable behavior. To avoid this behavior, we apply the
policy adjustment NOC where the opportunity costs are excluded from the
expected rewards during the calculation of the end-values (see Section 7.5.1).
Then the winning revenues of a vehicle are given by the lowest bid of its com-
petitors, minus its direct costs, minus the opportunity costs charged by this
vehicle. Now, if bids rise due to the inclusion of opportunity costs, the expected
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rewards remain the same. The results for the average end-values for the whole
planning horizon T are given in Figure 7.6. The difference in end-values of
region 1 and 4 are given in Figure 7.7.
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In these figures we see a rather stable level of the end-values. Obviously,
there is a large difference between the expected profits and the realized profits.
This difference is caused by ignoring the opportunity costs. We also see that
the differences in end-values for both policies are close to each other, which
corresponds with our observations in Chapter 5 (Section 5.9.1). We further
see alternating behavior of the difference in end-values (Figure 7.7). We en-
countered these fluctuations in various experiments, of which only some are
displayed here. After thorough investigation, we found two causes for these
fluctuations: (1) using the policy adjustment NOC and (2) estimation errors
of the lowest bid. We explain these causes in the next two subsections.

Fluctuations caused by the NOC adjustment

First, consider the fluctuations that are inherent to the NOC adjustment. Ex-
cept for some special network instances (see next subsection), it appears that
these fluctuations flatten out: so after a few learning periods these fluctuations
are negligible. In Figure 7.7 this is not directly visible because we have much
noise caused by the single replication. Later on, in Figure 7.17, we show the
result for multiple iterations. There it is clearly visible that the fluctuations are
flattening out. The fluctuations are even getting larger when we also apply the
policy adjustment ACC (in fact in some cases, as we will show later on, these
fluctuations never flatten out). We illustrate this with the policy VE0. The
results for the average end-values for the whole planning horizon T are given in
Figure 7.8. The difference in end-values of region 1 and 4 are given in Figure
7.9.

We explain the alternating behavior as follows. Directly at the end of the
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first period we see large differences between the various regions. As a con-
sequence, the end-values under an optimal policy are relatively high. In the
second period we are therefore working with relatively high opportunity costs.
Now consider a job from the most popular region and one from the most un-
popular region.

1. For a job from the most popular region, vehicles that have to come from
another region will bid relatively less than those that are already present
in the most popular region; because the latter group will charge higher
opportunity costs. As a consequence, the difference in bid prices for these
jobs decreases. Because profits with the NOC adjustment are just given
by the difference in bids, the expected profit also decreases.

2. For a job departing from the most unpopular region, vehicles that are
already located in this region will charge less opportunity costs than ve-
hicles that are located in another region. As a consequence, the expected
difference in bid prices increases and the resulting revenues are therefore
higher.

Given these two observations, the most popular region becomes slightly less
profitable and the reverse holds for the unpopular regions. The opportunity
costs of the next period will therefore be lower. Hence, we get some kind of
alternating behavior in end-values.

Fluctuations caused by estimation errors

A second cause for the fluctuations is the error in estimation of the lowest bid.
Particularly we mention here the use of a continuous distribution function to
describe the lowest bid (see Chapter 5). In networks with a few nodes this is
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not appropriate because there exists only a limited set of possible bid prices.
As a consequence, it can happen that a vehicle, at the end of some learning
period, estimates a certain winning probability whereas in reality it will never
win. At the end of the next learning period, the vehicle updates the distribution
to describe the lowest bid. It is likely that this distribution is different because
of the estimation errors in the past period.

To illustrate the fluctuations, we consider the 4N network in combination
with the NOC adjustment. The results for the average end-values for the whole
planning horizon T are given in Figure 7.10. The difference in end-values of
region 1 and 4 are given in Figure 7.11. Clearly, the fluctuations in Figure 7.11
are larger than in Figure 7.7.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9

Learning period

E
nd

-v
al

ue VE0-NOC-C
VE0-NOC-R
VEA-NOC-C
VEA-NOC-R

Figure 7.10: Calculated end-value per
learning period in the 4N network

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Learning period

D
iff

er
en

ce
 in

 e
nd

-v
al

ue

VE0-NOC
VEA-NOC

Figure 7.11: Calculated difference in
end-value per learning period in the
4N network

In fact, in many cases these fluctuations never flatten out, especially when
we also consider the ACC adjustment or perform multiple replications of the
dynamic programming recursion on the end-values. An example can be found
in Figure 7.12 and Figure 7.13 where we consider the 4N network with the
adjustments NOC and ACC. We see that the combination of the two policy
adjustments results in (1) increasing end-values and (2) increasing fluctuations
in the difference in end-values.

Although we focus here on closed environments, we performed similar ex-
periments for open environments. Here we did not encounter the problems of
increasing prices or fluctuations. However, we see that it takes some learning
periods to reach steady state behavior. To provide an indication, we see that
after the three learning periods, the values remain within a range of 5% around
a stable value whereas the values of the first period are 50% away from this
value (for the policy VE0 and VEA). To speed up this process, we propose in
Chapter 5 to perform multiple iterations of the dynamic programming recur-
sion for end-values. In that case we see that it takes only one learning period
to stay within a 5% bound.
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7.7.2 Part 2: dynamic threshold policies

Here we study the changes in regression parameters that occur after each learn-
ing period, using the policies DEC and RES. Note that we already provide a
comparison between the expected prices and the realized prices in Chapter 6.

Learning of the shipper consists of updating its beliefs about the distribution
of the lowest bid for various job characteristics. This distribution is character-
ized by a number of time dependent and distance dependent parameters (see
Section 7.4.1). We observe a lot of fluctuations in these parameters with each
update. An example can be found in Figure 7.14 where we show the results
for (1) the parameter of the mean transportation costs in the lowest bid that
describes the dependency on the remaining time t until the latest pickup time;
(2) the parameter of the mean transportation costs in the lowest bid that de-
scribes the dependency on the distance d; (3) the constant value for the mean
transportation costs in the lowest bid; and (4) the probability that the lowest
bid changes between subsequent auction rounds.

In general we see an initial increase in reserve prices which stabilizes after
some learning periods. This result can be explained as follows. In the first
learning period, all jobs are auctioned in one auction round without the use
of reserve prices or decommitment penalties. Because all jobs are auctioned
as early as possible, the vehicle schedules are relatively flexible in the sense
that new job insertions can take place in many ways without causing additional
tardiness. As a consequence, the prices for learning jobs with a short remaining
time until the latest pickup time are relatively low. After the first learning
phase, jobs are auctioned under the dynamic threshold policy or decommitment
policy. As a consequence, the average remaining time between auctioning a job
and its latest pickup time decreases and the vehicle schedules will become less
flexible. Therefore, the price of learning jobs with a short remaining time until
the latest pickup time will be relatively higher.
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To illustrate this, we consider the decommitment policy and study the pa-
rameters during 25 learning periods. To reduce the fluctuations we decided to
use exponential smoothing (Silver et al., 1998) with a smoothing parameter of
0.05. The results, using the same parameters as for Figure 7.14, can be found
in Figure 7.15.
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Figure 7.14: Value of regression pa-
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Figure 7.15: Value of regression pa-
rameters as a function of the learning
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For most parameters, we see that it takes some learning periods to converge.
For the time dependent parameter we observe a decrease, so it is relatively
better to auction a job early in time. For the distance dependent parameter we
observe an increase, so prices increase, especially for jobs with larger distance.
Among the parameters that are not depicted here, we observe an initial increase
for the variance of the mean transportation costs in the lowest bid and for the
correlation of bids. For all the other parameters (see Section 7.4.1), we observe
a more stable level.

In case of the dynamic threshold policy, it takes even more learning periods
for the estimated parameters to converge. To provide an indication: where the
policy DEC requires 20 learning periods to stabilize (see Figure 7.15) it will
take 35 learning periods with the policy RES to achieve a same level of stability.
The reason for this is that with the dynamic threshold policy, on average more
jobs are auctioned with shorter remaining time until the latest pickup time (cf.
Chapter 6, Section 6.8.3) and hence the lowest bids for these jobs increases.
Clearly, the dynamic threshold policy and decommitment policy require more
learning periods than the opportunity valuation policies (see Section 7.7.1). If
we are dealing with a stable system, this is not a problem. However, in a fast
changing environment, we are not able to adjust these policies in time.
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7.7.3 Part 3: impact of the learning period

Here we evaluate the impact of the number of learning periods (1 till 9) on the
net costs per job. For this purpose we use a replication / deletion approach for
our simulations (see Law and Kelton, 2000) where each experiment consists of
a number of replications (each with different seeds) and a warm-up period. The
warm-up period consists of the number of learning periods times the length of
a learning period (10 days). The length of each simulation run, excluding the
warm-up period, is 100 days. We use 5 replications, which is sufficient for a
confidence level of 95% with a relative error of 5% with respect to the net costs
per job.

First, we evaluate the performance of using the policies VE0 and VEA in
combination with the policy adjustment NOC. The average relative savings as
a function of the number of learning periods can be found in Figure 7.16. The
average difference in end-values over the 5 replications can be found in Figure
7.17.
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For the original end-values (VE0 and VEA), we see increasing differences
between the regions (cf. Figure 7.5). The initial relative savings of these end-
values are relatively high. However, with an increasing number of learning
periods we see a decrease in relative savings. Both policies using the NOC
adjustment seem to converge to the same stable levels, both regarding the
difference between the nodes and the relative savings. However, the initial
fluctuations of the policy VE0-NOC are higher than those of the policy VEA-
NOC.

A remarkable result here is that after some learning periods, the policies
VE0-NOC and VEA-NOC yield approximately the same relative savings. We
explain this as follows. The end-values are used to calculate the opportunity
costs. The opportunity costs consist of two components: (1) a value dependent
on the decrease in length of the end-gap and (2) a value dependent on the
change in schedule destination. The second part will be almost the same with
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both policies because the difference in end-value between the regions is almost
the same (cf. Figure 7.7). The first component will certainly be different
because the absolute value of the end-values differs between these policies (cf.
Figure 7.6). However, because all vehicles include this value in their bids, the
ordering of bids remains approximately the same, and hence it is likely that
the new job will be allocated to the same vehicle under both policies. The
advantage of using VE0 is that (1) we do not have to estimate the average
time-to-go and (2) it requires less computation time (see Chapter 5, Section
5.9.6).

In the remainder of this chapter, we choose the policy VEA-NOC as de-
fault opportunity valuation policy. We abbreviate this policy by OV. Next, we
evaluate the performance of using combinations of the policy OV, the dynamic
threshold policy (RES), and the decommitment policy (DEC). The results can
be found in Figure 7.18.
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Figure 7.18: Relative savings as a function of the number of learning periods

From this figure we see that the individual policies OV and DEC do not
need many learning periods, i.e., one period seems to be enough. The major
advantage of this is that they are suitable for nonstationary environments (e.g.
the industrial bakery mentioned in Chapter 4). For the policy RES we see
that it takes some time to come up with reasonable relative savings; with one
learning period we even see that the net costs per job increase compared to the
naive policy.

In the Appendix (Table 7.3) we show the results in terms of percentage
of driving loaded (percentage of the total driving distance that is traveled
loaded) and the service level (percentage of the jobs that are picked up before
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the latest pickup time). We see that the policies OV and DEC always yield a
better performance than the naive policy NA, with respect to both performance
indicators. However, the policy RES always results in a lower service level. This
corresponds with our conclusion in Chapter 6 (Section 6.8.3) that the dynamic
threshold policy has a negative effect on the service levels.

7.8 Simulation study on the combination of strate-
gies

The goal of this simulation study is to evaluate the impact of various combi-
nations of shipper’s and vehicles’ strategies on the system-wide logistical costs,
measured by average net costs per job. For this purpose we consider the exper-
imental factors as shown in Table 7.2. As mentioned in the previous section,
we use the abbreviation OV to denote the policy VEA-NOC.

Factor Values
Policies NA, OV, DEC, RES, OV+DEC, OV+RES
Degree of balance balanced, slightly unbalanced,

unbalanced, highly unbalanced
Time-window length (min) 300, 400, 500, 600
Time between jobs (seconds) 700, 800, 900, 1000
Network 4N, 4R, 9N,9R

Table 7.2: Experimental factors

A full factorial experiment with respect to these factors would require
6x4x4x4x4=1536 experiments. For clarity of exposition, and to reduce compu-
tation time, we consider the following combinations:

1. All combinations of the factors Policies, Degree of balance, and Time-
window length; with as fixed settings the 4R network and a time between
jobs of 800 seconds.

2. All combinations of the factors Policies, Degree of balance, and Time
between jobs; with as fixed settings the 4R network and a time-window
length of 600 minutes.

3. All combinations of the factors Policies, Time-window length, and Net-
work; with as fixed settings the unbalanced network and a time between
jobs of 800 seconds.

4. All combinations of the factors Policies, Time between jobs, and Network;
with as fixed settings the unbalanced network and a time-window length
of 600 minutes.
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As a consequence, we consider 4x6x4x4=384 experiments. For all experi-
ments we perform 5 replications, which is again sufficient for a confidence level
of 95% with a relative error of 5% with respect to the net costs per job. Here we
always use a warm-up period consisting of 5 learning periods. From the results
in the previous section (see Figure 7.18) we see that this number is sufficient
for most policies to converge to a relatively stable performance. The results
can be found in Figure 7.19.

From these figures we draw the following conclusions:

• The combination of shipper and carrier intelligence never reduces the
performance compared to one of the individual policies. Moreover, the
highest savings are always achieved with a combination of two policies.
In almost all cases the best combination is OV+DEC. Only with fewer
jobs (large time between jobs) the combination OV+RES comes in favor.

• With respect to the individual policies, the policy OV performs best in
unbalanced networks. The policy DEC performs the best in balanced
networks. The policy RES works well with long time-window length or
long time between jobs.

• With increasing time-window lengths, we observe increasing relative sav-
ings for almost all methods. However, with the unbalanced networks (un-
balanced and highly unbalanced) we only observe an increase with the
policy RES. The reason for this is that the naive policy NA also performs
better with increasing time-window length. Because the policy RES re-
sults in relatively lower service levels (see Table 7.3 in the Appendix),
this policy benefits the most from an increase in time-window length. In
addition, an increasing time-window length also gives the opportunity to
use more auction rounds for a job.

If we look at the absolute values (see Figure 7.21 in the Appendix) we see
that for all policies, the average net costs per job decrease with increasing
time-window length. However, with the reserve price policies (RES and
OV+RES), these costs decrease relatively faster.

• With increasing time between jobs (fewer jobs), we observe that each
policy acts differently. The policy OV remains relatively stable. Only
in the case with many jobs in the highly unbalanced network we see
relatively large savings. These savings are caused by the fact that the
naive policy works very bad in this case. The policy DEC works best
with a large number of jobs in the balanced networks and in all other
cases with an average number of jobs. The performance of the policy
RES increases with increasing time between jobs.

If we look at the absolute values (see Figure 7.21 in the Appendix), we
see a rather stable behavior for all policies in the balanced networks
(balanced and slightly unbalanced). Only with the policy RES we see
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decreasing net costs with increasing time between jobs. The reason for
this is that the penalties (which are the highest with the policy RES)
are reduced. In unbalanced networks we see relatively high costs with
many jobs. However, we also see that with some of the policies, the costs
increase with fewer jobs. This is caused by the fact that there are fewer
possibilities for combining these jobs. This behavior is especially visible
with the policy DEC.

• With increasing imbalance we see increasing relative savings for most of
the policies. With increasing imbalance, the difference between RES and
OV+RES increases. In other words, the added value of combining these
policies increases. A remarkable result is that the differences between
the unbalanced network and the highly unbalanced network are small.
This is caused by the fact that within the highly unbalanced network,
the majority of transport takes place within one region. This region can
be regarded as balanced because the origin and destination coordinates
are drawn randomly within this region.

However, if we look at Figure 7.21 (see Appendix), we see that both
the absolute values, as well as the absolute savings (difference with the
naive policy) always increase with increasing imbalance, even in the highly
unbalanced networks.

Next, we evaluate the performance of the various policies in the unbalanced
network settings for the configurations 4N, 4R, 9N, and 9R. The results can be
found in Figure 7.20. We draw the following conclusions:

• The results with respect to the dependency of the time-window length
and time between jobs are similar to those given above. Again, the best
performance in achieved with a combination of vehicle and shipper strate-
gies.

• Going from a 4 node/region network to a 9 node/region network results
in higher absolute values (see Figure 7.22 in the Appendix) which is
simply caused by the fact that there are more empty moves required.
Although we can not simply compare the 4 node/region networks with
the 9 node/region networks (because the imbalance differs) we mention
some results. Going from 4N to 9N, we see an increase in relative sav-
ings, especially for the opportunity valuation policies (OV, OV+DEC,
OV+RES). The reason for this is that all policies, except the individual
policy DEC, suffer from estimation errors in the 4N network because a
continuous distribution is used to describe the lowest bid. Obviously, this
results in estimation errors in a network with few nodes because there are
only a limited number of possible bid prices. Going from 4R to 9R, we see
that the absolute savings remain more or less the same for all policies (see
Figure 7.22 in the Appendix) and therefore the relative savings decrease.
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• Going from a node network to a region network results in higher absolute
values (see Figure 7.22 in the Appendix) which is simply caused by the
fact that there are more empty moves required. For the policies RES
and DEC we see that the absolute savings compared to the naive policy
NA remain approximately the same. As a consequence, the relative sav-
ings are slightly lower. A remarkable result is that the relative savings
are much higher for all opportunity valuation policies (OV, OV+DEC,
OV+RES) in the 4R network compared to the 4N network. The reason
for this is that with the opportunity valuation policies, vehicles estimate
the lowest bid from their competitors using a continuous distribution
function. This results in estimation errors when there are only a limited
number of possible bids, which is the case in the 4N network (cf. Section
7.5.1). The relatively poor behavior of the opportunity valuation policies
can also be seen from (1) only in the 4N network the policy OV performs
worse than the policy DEC and (2) the added value of OV to the policy
RES is much higher in the 4R network than in the 4N network.

To summarize the results, we have seen that the combination of vehicle and
shipper strategies always improves the performance compared to one of the
individual policies. In almost all cases, the combination of the opportunity val-
uation policy and the decommitment policy works best. Only in settings with
long time-windows or few jobs, the combination of the opportunity valuation
policy and the dynamic threshold policy comes in favor. In almost all cases
the relative savings of these policies lie between 10% and 20%. Although these
results are promising, we also mentioned some problems in Section 7.5. In the
next section we propose a direction for future research that might overcome
some of these problems.

7.9 A promising research direction

In this chapter we mentioned several drawbacks of the proposed look-ahead
policies of Chapters 5 and 6. To overcome these difficulties, we propose a
direction for further research that consists of using approximate dynamic pro-
gramming with reinforcement learning techniques. A great advantage of this
is that we find the optimal value functions purely from experience without re-
quiring a detailed model of the environment’s dynamics, i.e., of its rewards and
transition probabilities. This enables us to combine both strategies without
the need of modeling the opponents’ behavior. In order to speed up the learn-
ing process and to reduce computation time, we propose to use value function
approximation.
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7.9.1 Value function approximation

In Chapters 5 and 6, we derived various value functions. These value functions
are represented by tables with one entry for each state. This approach may
become problematic when the state space becomes large. First, when using
dynamic programming, we have to calculate the value of an increasing number
of table entries. Second, when using reinforcement learning, we have to learn
the value of many states. This makes the learning problem difficult because it
is very unlikely that we experience exactly the same situation as we experienced
before.

In order to allow generalization across states and a more compact repre-
sentation of the value function, we use Value-Function Approximation (VFA).
Here the tabular representation is replaced by a function approximator. There
are many possible approximation architectures such as neural networks, de-
cision trees, multivariate regression, self-organizing maps, and instance-based
methods. A popular approximation in reinforcement learning relies on linear
function approximators (Tsitsiklis and Van Roy, 1997). Here the value V (s)
of state s, is expressed as a linear weighted combination of k basis functions
φj (s) (also called features):

V̂ (s) =
kX

j=1

φj (s)wj (7.5)

We used the notation V̂ to indicate that this function is an approximation.
The free parameters of this linear approximation - which have to be learned - are
the coefficients wj of the combination (also called weights). The basis functions
φj (s) are fixed, but arbitrary functions of s. Therefore, the characterization
“linear” refers to the way the free parameters enter into the architecture and
not to the approximation ability of the architecture.

Typical linear approximation architectures are polynomials of any degree
(each basis function is a polynomial term), radial functions (each basis function
is a Gaussian with fixed mean and variance), piece-wise linear functions (each
basis function is a linear function), and coarse coding (each basis function is an
indicator function). The choice for a particular approximation depends on the
characteristics of the value function. It especially depends on the parameters
for which we believe they are necessary to explain the value of a particular
state. We illustrate this using the end-values V e (i, σ, t), where i is a location
in the network, σ the time-to-go until arrival at the schedule destination, and
t a time period.

First, consider the approximate end-value Ṽ e (i, t). As shown in Section
7.5.1, the value Ṽ e (i, t) increases linearly in t for a given schedule destination
i. To describe this dependency, we may use (1) a set of indicator functions
φj (i) which equal one if j = i with schedule destination i and (2) a basis
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function t to describe the dependency on the planning period t. We propose
the following approximation:

V̂ e (i, t) = twt +
X
j∈N

φj (i)wj (7.6)

To derive a value function approximation for V e (i, σ, t) we have to include
the time-to-go σ. Luckily it is possible to use a separable approximation for the
dependency on the time-to-go σ, because the slope of the linear function does
not depend on it. Moreover, for given i and t, the value V e (i, σ, t) is concave
in σ: a larger time-to-go σ reduces the expected waiting time at location i,
however, the added value will decrease with increasing time-to-go. This concave
function can be described by a piecewise linear concave function (see Powell
et al., 2005). To be precise, we add a set of basis functions in the linear
approximation of (7.6) corresponding with each segment of the piecewise linear
concave function.

7.9.2 Reinforcement learning

By using VFA, we replace the tabular representation of our value functions
by a function approximator. A remaining task is to learn the weights of the
function approximator. We propose to do this by using reinforcement learning,
more specifically, by using temporal difference learning.

Temporal difference learning, originally proposed by Sutton and Barto (1998),
is a method which uses experiences to progressively learn the value function.
The basic idea is that we update a value function V (s) based on the differ-
ence between the existing value V (s) and the value V (s0) of a state s0 that
is encountered after state s. We denote subsequent states by (su, su+1, ...)
with corresponding rewards (ru, ru+1, ...). The simplest TD method, known as
TD(0), is given by:

V (su)← V (su) + α
£
R1u − V (su)

¤
(7.7)

where R1u denotes the so-called one-step return which is given by R
1
u = ru+1+

V (su+1). So the existing value of the state su is updated directly after the next
state su+1with a new observation R1u using an exponential smoothing factor α.
The n-step return is given by:

Rn
u = ru+1 + ru+2 + ..+ ru+n + Vu (su+n) (7.8)

For more on these and other return functions we refer to (Sutton and Barto,
1998). Now, let us return to the approximate end-value Ṽ e (i, t). Here a state
transition takes place each time a new job is won. The TD(0) method is less
appropriate for this case because (1) the profit/costs of an individual job is hard
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to calculate and (2) there are large fluctuations in bid prices. Therefore, we
propose the n-step return for n sufficiently large. After appending a job ending
at node i, we store an entry for this state. Next, we keep record of n jobs that
we won afterwards. After the nth job, we calculate the profit rn of all these
jobs and the total time tn that passed between the scheduled delivery time of
the nth job and the first job. The approximate end-values can be calculated as
follows:

Ṽ e (i, t) = Ṽ e (i, t) + α
h
rn + Ṽ e (j, t− tn)− Ṽ e (i, T )

i
(7.9)

It is natural to update the value function using gradient-descent methods.
The gradient of the linear function approximation with respect to the vector of
weights wi simply equals the vector φi (s) of basis functions. For the end-value

Ṽ e (i, t) this means that we add an amount α
h
rn + Ṽ e (j, T − tn)− Ṽ e (i, T )

i
to (1) the weight wi of node i and to (2) the weight wt of the time t. For more
details on gradient-descent methods we refer to (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998).

7.9.3 Advantages and disadvantages

In the previous chapters, we calculated the value functions using a dynamic
programming recursion. This results in large tables which describe the value of
all states. There are two problems with this: (1) it is a time-consuming process
and (2) in highly dynamic environments (i.e., opponents also use dynamic poli-
cies) we might use outdated or even the wrong value functions. When the value
functions do not match with reality (because we have made some assumptions
in order to calculate them) we never discover this discrepancy, let alone that
we update the value functions accordingly.

The advantage of temporal difference learning is that we find the optimal
value functions only from experience, without requiring a detailed model of
the environment’s dynamics, i.e., of its rewards and transition probabilities.
This enables us to combine both strategies without the need of modeling the
opponents’ behavior. Temporal difference learning with value function approx-
imation further offers the possibility to add additional explanatory variables
with relatively little effort. For example, in Chapter 5 we mentioned the dif-
ficulties of using the time-to-go σ in the dynamic programming recursions.
However, it is rather easy to include it in the linear approximation. Another
example is the transportation area. In the linear approximation of (7.6), we
used indicator functions for all nodes i ∈ N . For continuous networks, such an
approach would mean that we have to discretize the transportation area. For
example consider the region networks. An option here is to express the end-
value as a weighted combination of the value functions of the 4 corner points.
It is important to note that we also update the value functions according to
this weighted combination (instead of storing the value of the undiscretized ob-
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servation). Another option is to use a special form of coarse coding called tile
coding (CMAC). Tile coding is a method which involves multiple overlapping
grid-tilings (discretizations) that are slightly moved. Each particular state is
characterized by the tiles of each grid-tiling in which it appears. For each tile
we have a basis function which indicates if a state belongs to this tile. So this
can be regarded as a discretization in which an update of a certain state not
only affects the value of this state, but also of neighboring states. Such an
approach provides more flexibility.

Besides the advantages there are also some difficulties. We performed some
preliminary experiments of the proposed linear end-value approximations with
temporal difference learning. In these experiments we encountered some prob-
lems with this approach. First, we encounter the same difficulties as mentioned
in this section for the dynamic programming based policies: prices increase in
closed environments and we may get fluctuations. Second, observations in a
dynamic environment - like we study here - fluctuate enormously and as a con-
sequence the one-step backup results in unstable behavior. Therefore, we have
to be careful in our choice of learning periods and smoothing factor. Third,
the learned behavior affects our bid prices which in turn affect the future prof-
its. This effect, the future impact of current decisions, is not explicitly taken
into account. A possible solution is the use of Q-learning where we learn the
value of state-action pairs, i.e., the value of making a certain decision (e.g. bid
calculation) in a given state (e.g. location i and period t). Obviously, more
research is required into this topic.

7.10 Conclusions

In this chapter we studied a closed transportation market where shippers offer
full truckload pickup-and-delivery jobs with due times through sequential auc-
tions. A set of vehicles compete with each other to serve these jobs. For the
shipper agent we considered two auction strategies, namely a dynamic threshold
policy and a decommitment policy. For the vehicles we considered opportunity
valuation policies where not only the direct costs of jobs are taken into account,
but also the impact on future opportunities.

We used simulation to evaluate the benefits of the different strategies and
to study their interrelation. Our main conclusions are the following:

• The combination of vehicle and shipper strategies always performs better
than the individual policies. On average we observe a reduction of 10-20%
in the costs for tardiness and repositioning of the vehicles.

• The combination of the opportunity valuation policy and the decom-
mitment policy works best in almost all cases. The combination of the
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opportunity valuation policy with the dynamic threshold policy comes in
favor in settings with long time-windows or fewer jobs.

• The performance of the individual policies depends a lot on the network
structure and job characteristics. In other words, each policy has its
own characteristics. The opportunity valuation policies of the vehicles
benefit from the imbalance in the network where some regions are more
popular than others. These policies are therefore especially suitable for
unbalanced networks. The dynamic threshold policy and decommitment
policy of the shipper benefit from fluctuations in bid prices due to the
possibilities of combining jobs. The decommitment policy is especially
suitable for balanced networks. The dynamic threshold policy is espe-
cially suitable for settings with long time-windows or fewer jobs.

• In contrast to the results of open environments, now the relatively simple
policies work very well compared to the more computationally demand-
ing policies. For the opportunity valuation policy we showed that the
approximation based on a zero time-to-go yields approximately the same
performance as the more precise policy based on an average time-to-go.
For the shipper strategies we have seen that the decommitment policy
works best. This is remarkable because this policy is relatively simple
in the sense that we only have to estimate the lowest bid instead of us-
ing a time consuming recursion (as required for the other policies). In
most cases the performance of the decommitment policy is close to the
opportunity valuation policy (which in many cases is the best among the
individual policies).

We also investigated problems that might occur (1) when all jobs are auc-
tioned under a dynamic threshold policy or decommitment policy and (2) when
all vehicles use opportunity costs. The main problem for the opportunity valu-
ation policies appeared to be a continuous increase in bid prices. However, we
could easily correct this. Another problem is related to the fluctuations in the
parameter settings. However, it appeared that these fluctuations flatten out
relatively fast. The main problem for the dynamic threshold policy and decom-
mitment policy is that it takes quite some time to learn the right parameters.
As a consequence, these methods would be less applicable to fast changing
environments. To overcome these problems, we proposed a new research direc-
tion. This approach consists of using approximate dynamic programming in
combination with temporal difference learning. We mentioned the advantages
of such an approach, but also the difficulties in designing and implementing
such a method. We argue that more research is required on this topic.
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7.11 Appendix

Measuring the realized profits

We measure the realized profits within the planning horizon T in a given learn-
ing period as follows:

1. Each time t a vehicle v adds a new job to the end of its schedule, we
create an open entry evt.

2. Each time t0 a vehicle incurs costs or receives a payment for a job that
is auctioned at time t00, we add this value to all open entries evt of this
vehicle for which t < t00 (so this value is only added to the entries of jobs
that are auctioned before this job). For all open entries evt for which
t < t0 − T we only add a proportional fraction to the entry evt and
close this entry. We assume that costs are incurred directly after they
have been made (after each move, and load/unload action, penalties after
delivery, and prices directly after winning).

3. At the end of each learning period, we (1) calculate the realized profits
from the mean values of all closed entries and (2) delete all entries.

Simulation results

NA OV DEC RES OV+DEC OV+RES
67.8 / 97.9 69.7 / 98.6 69.5 / 99.4 69.4 / 94.9 70.9 / 99.6 70.6 / 96.0
67.8 / 97.9 69.4 / 98.4 69.6 / 99.2 69.5 / 95.6 70.8 / 99.5 70.8 / 96.1
67.8 / 97.9 69.7 / 98.6 69.5 / 99.2 69.3 / 96.2 71.1 / 99.4 70.9 / 96.6
67.8 / 97.9 69.6 / 98.5 69.6 / 99.1 69.2 / 96.1 70.9 / 99.6 70.8 / 96.8
67.8 / 97.9 69.6 / 98.5 69.6 / 99.3 69.1 / 96.1 71.0 / 99.6 71.0 / 96.6
67.8 / 97.9 69.7 / 98.6 69.6 / 99.3 69.2 / 96.3 70.9 / 99.6 70.9 / 96.5
67.8 / 97.9 69.6 / 98.6 69.6 / 99.3 69.2 / 96.3 70.8 / 99.5 70.9 / 96.6
67.8 / 97.9 69.6 / 98.6 69.7 / 99.2 69.3 / 95.8 70.9 / 99.6 70.9 / 96.6
67.8 / 97.9 69.6 / 98.6 69.6 / 99.2 69.4 / 96.0 70.9 / 99.6 70.9 / 96.5

Table 7.3: Simulation results for various policies with respect to the percentage
of driving loaded (value before the slash) and the service level (value after the
slash)
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Figure 7.21: Average net costs for different values of the factors degree of
balance, time-window length, and time between jobs
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Figure 7.22: Average net costs for different values of the factors network struc-
ture, time-window length, and time between jobs
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Chapter 8

Conclusions and further
research

In this chapter we summarize the results of this thesis taking into account the
research questions introduced in Chapter 1. Furthermore, we give directions
for further research.

8.1 Conclusions

The initial motivation for this research was to investigate the usefulness of the
multi-agent system (MAS) concept for real-time transportation planning and
scheduling. In this multi-agent concept, resources and/or tasks are represented
by intelligent and autonomous computational entities (agents), which coordi-
nate their capacities in order to achieve certain (local or global) goals. This
concept has turned out to be a promising solution for controlling complex net-
works, providing more flexibility, reliability, adaptability, and reconfigurability.
However, it raises three important questions. First, it is unclear whether the
system-wide performance of an agent-based approach will be similar or even
better than the performance of more centralized and hierarchically organized
planning systems. Second, it is unclear how different design choices affect the
logistical performance. Third, it is unclear how intelligent agents that repre-
sent different interested parties in transport (shippers and carriers) interact
and how this influences the system-wide logistical performance.

An important component in multi-agent systems is the auction mechanism
that is often used as a coordination mechanism among the agents. This raises
a new problem, namely how agents should price their resources and tasks.
This is especially hard if agents should anticipate on future tasks and resource
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utilization. We decided to study these strategies not only from the perspective
of a closed multi-agent system (a closed environment where we aim to minimize
the system-wide logistical costs), but also from the perspective of a single player
participating in an open auction setting (an open environment where we aim
to maximize the profitability of the individual agent for given behavior of the
other players). These problems have led us to the following research objective:

To analyze in which way and to what degree multi-agent systems can be
used for real-time operational planning and control of transportation networks.
Further, to develop strategies for players in sequential transportation procure-
ment auctions, and to analyze their performance in terms of both the individual
benefits for the players and the system-wide logistical costs.

To reach this goal, we posed five research questions in the introduction
(Chapter 1), which we answered in the subsequent chapters of this thesis. In
this section we present our conclusions concerning these research questions.

8.1.1 Research question 1

How does the performance of a multi-agent system compare to traditional OR-
based systems in terms of (1) effectiveness, i.e., the ability to handle jobs
according to specified targets, such as delivery time windows; (2) efficiency
in terms of the utilization of resources and logistic costs; and (3) robustness
against fluctuations in demand in terms of variation in system effectiveness
and efficiency?

In Chapter 3 we proposed a distributed agent-based solution to real-time,
dynamic transport scheduling problems. We compared this approach with two
hierarchical look-ahead heuristics (called LocalControl and SerialScheduling).
These methods were originally developed for a case study on a proposed un-
derground transportation system at Amsterdam Airport Schiphol, the Nether-
lands. We refer to this application as the OLS case, which is the Dutch abbre-
viation for underground logistic system. We used the simulation test environ-
ment that had been developed for the OLS case, to compare the performance
of our agent-based system with the two more traditional transportation plan-
ning heuristics. In addition, we simulated and compared the different control
methods in a more general transportation network.

From our simulation experiments, we concluded that our agent approach
yields a high performance in terms of vehicle utilization and delivery reliabil-
ity. With respect to vehicle utilization, we have seen that our agent-based
scheduling method always performs significantly better than the two hierarchi-
cal methods. With respect to delivery reliability, the agent approach performs
significantly better in most cases and never significantly worse. In addition, we
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have seen that the agent approach is more robust in the sense that its perfor-
mance is less sensitive to fluctuations in demand or available vehicles compared
to the more traditional transport planning heuristics.

We also proposed two extensions of the agent-based approach. First, we
proposed an extension called Trade, which allows vehicle agents to exchange
jobs. Second, we proposed a dynamic threshold policy which allows the shipper
agents to reject all bids and to start a new auction later on. These extensions
always improved the performance, but appear to be particularly valuable if
vehicle schedules contain many jobs on average. Our dynamic threshold policy
has been considered again and improved in Chapter 6 (research question 4).

8.1.2 Research question 2

How should a multi-agent system for material sourcing and scheduling of physi-
cal distribution be designed in terms of tasks, competences, responsibilities, and
goal-directed behavior?

In Chapter 4 we studied the effect of various MAS design choices on the
logistical performance. Designs may vary in the roles and responsibilities as-
signed to the agents, the level of intelligence of the agents (forecasting and
learning behavior), and the interaction protocols selected. We concluded that
current MAS methodologies lack a mechanism to evaluate such design-choices
and provide only limited support to the designer in selecting the preferred
design for implementation. Therefore, we proposed to extend current MAS
methodologies by multi-agent discrete event simulations.

To demonstrate and test this approach, we applied it to a real life project:
the design and development of a multi-agent system for the manufacturing
of biscuits at the industrial bakery Merba in the Netherlands. To illustrate
the design process, we considered a simplified part of the dough production
process at Merba bakeries. By using a stepwise approach, built upon existing
MAS development methodologies, we already derived eight alternative designs
for this part only. By using qualitative arguments, we were able to reduce
this to four alternative designs. In order to select the preferred design for
implementation, we used multi-agent discrete event simulation.

This simulation gave us insight into the effect of our MAS design choices
on the system performance in terms of delivery punctuality, product quality,
robustness, amount of communication, and computation time of the differ-
ent agents. Our simulation study showed that qualitative arguments are not
sufficient because each alternative design has merits of its own. The main
conclusion here is (1) to be aware that alternatives exist, moreover, that pos-
sibly there is no single best architecture and (2) that these alternative designs
should be simulated using different scenarios that might occur in the intended
implementation environment.



230 Chapter 8. Conclusions and further research

Although we illustrated our design approach by developing a multi-agent
system for the control of AGVs at an industrial bakery, our results are more gen-
erally applicable. In Chapter 4 we provided insight into the design choices and
improved current MAS development methodologies to offer enhanced support
in cases where multiple alternative decision and communication scenarios exist.
In a wide range of MAS application areas where different actors collaborate,
such method support will be beneficial. Also the proposed multi-agent system
itself provides insights that can be generalized to other situations, especially
regarding the way agents balance different delivery criteria in the scheduling of
jobs.

8.1.3 Research question 3

How can we use information on historic job patterns and auction data to im-
prove the pricing and scheduling of vehicles participating in transportation pro-
curement auctions?

In Chapter 5 we presented a real-time opportunity based bid pricing and
scheduling strategy for vehicle agents, where not only the direct costs of a new
job insertion are taken into account, but also its impact on future opportunities.
The decisions of a vehicle have an impact on its future profitability because
some regions within the transportation area are more attractive than others.
As an example, suppose a vehicle receives an announcement for a job going to
an unattractive location. The probability of receiving another job that leaves
from this unattractive location is low and hence it is likely that the vehicle
has to wait at this location or has to make an empty move towards another
location. This certainly results in a loss of future revenues and the vehicle
should include this loss in its bid price. If the vehicle, despite its high bid, still
wins the auction for this job, it also has to be careful how to schedule this job
because it has an impact on the probabilities for winning other jobs.

To deal with these issues, we include probabilistic knowledge about future
job arrivals in the current decisions. Information on job arrivals and on the
competitors’ bid prices can be acquired by participation in the auctions. We
use this information to value the opportunities of future job insertions within
a given schedule. Because we consider an insertion scheduling heuristic, future
job insertions can only take place between two jobs currently in the schedule
or after the last job in the schedule. By valuation of these periods we are able
(1) to choose the most appropriate insertion position and pickup time of the
new job and (2) to calculate the opportunity costs which are defined as the loss
in expected future revenues due to a new job insertion. Including this value
in our bid pricing and scheduling decisions, prevents less profitable moves, and
increases opportunities by anticipation of future transport demand by better
prepositioning of vehicles.
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We used simulation to evaluate the proposed approach. From these simu-
lation experiments we concluded that an individual player using opportunity
based bid pricing will perform significantly better than other players who use a
naive pricing strategy. For example, in an open environment with 10 vehicles,
we showed that the profit of the individual vehicle is in some cases higher than
the total profit of the 9 other vehicles. Besides the profitability of opportunity
based bid pricing and scheduling, we also see an increase in vehicle utilization
and service levels. For closed environments (internal use of our approach),
we showed that opportunity based bid-pricing and scheduling can reduce the
system-wide logistical costs (an average reduction of 10% in the costs for empty
moves and penalties on tardiness).

We explain the benefits of the proposed approach from the following behav-
ior. First, the vehicle agents tend to schedule unattractive jobs later in time
(at the end of their schedule), thereby increasing the probability that these
jobs can be combined with other jobs. Second, if vehicle agents have to agree
on the pickup times of jobs in advance, then they tend to schedule idle time
before the pickup times of unattractive jobs, thereby increasing the possibilities
of (partly) replacing the empty moves by one or more loaded moves. Third, if
the pickup times of jobs are not fixed in advance, then the vehicle agents tend
to have fewer empty moves in their schedule which results in shorter schedule
lengths (difference between the expected delivery time of the last job and the
current time). These shorter schedule lengths provide more flexibility for future
jobs insertions, i.e., increase the probability that these jobs can be scheduled
before their due time. Fourth, in case of open markets, an individual vehicle
using opportunity based bid pricing and scheduling tends to obtain the most
profitable jobs.

8.1.4 Research question 4

How can we use information on historic auction data to improve the auctioning
strategy of shippers to procure their transportation services?

In Chapter 6 we proposed two policies for shippers which may reduce their
costs for transportation. Both policies use the potential provided by probabilis-
tic information on the price evolution in time for various job characteristics.
The idea of the first policy, called dynamic threshold policy, is that shippers
postpone commitments - by setting a time dependent upper bound on the job
prices - for which they expect to make a better commitment in the future. So
if the shipper has plenty of time to auction a certain job, it will not agree with
a relatively high bid. When the time for dispatch gets closer, the price it is
willing to accept will rise. The idea of the second policy, called decommitment
policy, is that the shipper allows a carrier to decommit from an agreement
against a predefined time dependent penalty that is calculated by the shipper
itself. These penalties are chosen such, that whenever a carrier decommits a
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job, they cover the extra costs of the shipper for finding a new carrier. The
dynamic threshold prices and the decommitment penalties are calculated using
a dynamic programming recursion.

The benefits of both strategies have been evaluated with simulation. From
our simulation experiments, we conclude that in open environments, the costs
per job for a shipper using the dynamic threshold policy are significantly lower
than for shippers who did not use such a threshold policy (20-30% reduction in
the costs for empty moves and penalties on tardiness). However, the decommit-
ment policy - since we derived it without profit margins - results in relatively
higher costs per job for the individual shipper, compared to the other ship-
pers. We also considered closed environments where all jobs are auctioned by
using one of the two strategies. We found that both policies reduce the total
system-wide logistical costs; especially the decommitment policy which yields
savings of 13-16% in the costs for empty moves and penalties on tardiness.
We also considered the combination of the two policies; we found that this
results in a slightly better performance at the expense of a major increase in
computation time. Hence, our overall recommendation is to use the dynamic
threshold policy for open market settings where only a limited number of other
shippers are using such a policy, and to use the decommitment policy for closed
environments.

8.1.5 Research question 5

What is the impact of the different pricing and scheduling strategies for carriers
and shippers on the system-wide logistical performance?

In Chapter 7 we studied the interrelation between shipper and carrier strate-
gies in closed networks, where we measure the performance in terms of system-
wide logistical costs. Our main conclusions are the following:

• The combination of vehicle and shipper strategies always performs better
than the individual policies. On average we observe a reduction of 10-
20% in the costs for tardiness and repositioning of the vehicles. The
combination of the opportunity valuation policy and the decommitment
policy works best in almost all cases. The combination of the opportunity
valuation policy with the dynamic threshold policy is to be preferred in
settings with long time-windows or fewer jobs.

• The performance of the individual policies depends a lot on the network
structure and job characteristics. In other words, each policy has its
own characteristics. The opportunity valuation policies of the vehicles
benefit from the imbalance in the network where some regions are more
popular than others. These policies are therefore especially suitable for
unbalanced networks. The dynamic threshold policy and decommitment
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policy of the shipper benefit from fluctuations in bid prices due to the
possibilities of combining jobs. The decommitment policy is especially
suitable for balanced networks. The dynamic threshold policy is espe-
cially suitable for settings with long time-windows or fewer jobs.

• In contrast to open environments, now the relatively simple policies work
very well compared to the more computationally demanding policies.
For the opportunity valuation policy, we showed that the approximation
based on a zero time-to-go yields approximately the same performance as
the more precise policy based on an average time-to-go. For the shipper
strategies, we have seen that the decommitment policy works best. This
is remarkable because this policy is relatively simple in the sense that we
only have to estimate the lowest bid instead of using a time consuming
recursion (as required for the other policies). In most cases the perfor-
mance of the decommitment policy is close to the opportunity valuation
policy (which in many cases is the best among the individual policies).

We also investigated problems that might occur (1) when all jobs are auc-
tioned under a dynamic threshold policy or decommitment policy and (2) when
all vehicles use opportunity costs. The main problem for the opportunity val-
uation policies appeared to be a continuous increase in bid prices. However,
we could easily correct this. Another problem is related to the fluctuations in
the parameter settings. However, it appeared that these fluctuations flatten
out relatively fast. The main problem for the dynamic threshold policy and
decommitment policy is that it takes quite some time to learn the right pa-
rameters. As a consequence, these methods would be less applicable to fast
changing environments.

8.2 Further research

We distinguish three areas for further research: model improvements, model
extensions, and implementation aspects.

8.2.1 Model improvements

We subsequently present the following model improvements: (1) job exchange
by vehicles, (2) architecture adaptability, (3) geographic regulation of the ve-
hicles, and (4) learning in closed environments.

Job exchange by vehicles

In Chapter 3 we proposed an option, denoted by Trade, which allows the vehi-
cles to exchange jobs. Each time a vehicle has to travel empty towards another



234 Chapter 8. Conclusions and further research

location, its agent searches for another vehicle agent that has a job for which
it is most beneficial to exchange. This approach has some similarities with the
decommitment concept of Chapter 6 where vehicles are allowed to break an
agreement with a shipper. However, in a transportation market with multi-
ple carriers each having their own fleet of vehicles, it would be preferable that
vehicles within one fleet also can exchange jobs. In that case we have in fact
decommitment of vehicles towards an agreement with their carrier. Whenever a
vehicle decommits, the carrier starts a new auction where only its own vehicles
participate. Of course, this requires some modifications of the current decom-
mitment concept. In particular, the carrier should regulate the exchange of jobs
to limit the amount of communication and the computation time. Examples of
this regulation include: (1) setting the time-dependent internal decommitment
penalties, (2) decide about the time at which vehicles can decommit, and (3)
decide which subgroup of vehicles receive an announcement for the decommited
job (e.g. neighboring vehicles).

Architecture adaptability

In Chapter 4 we showed that the best multi-agent architecture depends on the
network characteristics such as the arrival intensity of jobs, the time-windows
of jobs, and the variability in handling times. As a consequence, if the net-
work characteristics change we also have to adjust the multi-agent architecture.
Therefore, we plan to investigate the adaptability of multi-agent systems to
change their design depending on the system status. For example, in the case
study presented in Chapter 4, AGVs may use a different scheduling technique
based on the system status (or the architecture itself may even be changed
dynamically). To be more concrete, we may use an architecture where all vehi-
cle agents maintain a detailed schedule of jobs (e.g. architecture LC5i) during
the night (when it is relatively quiet) and dynamically switch to a dispatching
architecture (e.g. architecture AC) whenever we observe increasing congestion
(normally during daytime).

Geographic regulation of vehicles

In Chapter 5 we proposed a pricing and scheduling strategy for carriers where
not only the direct costs of a new job insertion are taken into account, but also
its impact on future opportunities. Our approach decomposes the problem into
a multi-agent structure where vehicle agents are responsible for the routing and
scheduling decisions, and where the assignment of jobs to vehicles is done by
using a second-price auction. All vehicles act selfishly and do not take into
account the position of other vehicles within the network. As a consequence, it
might be the case that multiple vehicles decide to move to the same region at
the same time, thereby increasing their expected waiting times. A particularly
interesting model improvement is the regulation of the number of vehicles at
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different locations. Now suppose the vehicles have some knowledge about the
location of other vehicles at different points in time. For example, they have
information nit, which gives the number of vehicles having node i in their
schedule, arriving there within a ’certain time period’ t having ’some flexibility’
to add new jobs after it. Although this definition is still vague, it can be
imagined that the information nit can be used to improve the pricing and
scheduling decisions. To be precise, this number has an effect on the winning
probabilities, transition probabilities, and expected rewards in the dynamic
programming recursions that are used to calculate the opportunity costs.

Currently, the opportunity costs for a vehicle that is willing to do a new job
from k to l, directly after arrival at its schedule destination i, is given by the
decrease in end-values V e (i, T )−V e (l, T − τ ikl), where τ ikl is the time required
for an empty move from i to k and a loaded move from k to l. To illustrate
what happens when we include the number of vehicles nit in the opportunity
costs, we introduce the notation t1 to indicate the expected arrival time of the
vehicle at its schedule destination i and t2 to indicate the expected arrival time
at the destination l of the new job. Then the opportunity costs are given by
V e− (i, T, nit1) − V e+ (l, T − τ ikl, nlt2), where V e− (i, T, nit1) is the marginal
contribution of one less vehicle at node i at time t1 (nit1 − 1 instead of nit1)
and V e+ (l, T − τ ikl, nlt2) is the marginal contribution of an additional vehicle
at node l at time t2 (nlt2 + 1 instead of nlt2). Within a closed environment,
such as a shipper with a private fleet, one can imagine that this information
is made available by the shipper to its vehicles. However, it is also possible to
acquire probabilistic knowledge on the position of the other vehicles, by using
historical observations of the job characteristics (arrival rate of jobs on different
routes) and the lowest bid of the competitors.

Learning in closed environments

In Chapters 5 and 6, we proposed profit maximizing strategies for carriers and
shippers participating in open environments where we focused on strategies of
an individual agent and ignored the impact of the other agents. In Chapter 7
we applied the strategies to a closed environment where we are less interested
in the profitability of individual agents, but rather in the reduction of system-
wide logistical costs. The look-ahead strategies require the agents to estimate
the behavior of the other agents. As a consequence, it is assumed that the
behavior of other agents remains the same. Obviously, this no longer holds
when the other players also use strategic learning policies. We decided to
use the same dynamic programming recursions and we have seen that these
methods also perform well in closed environments. However, we have seen
that applying the strategies to all players in a closed environment results in
some problems. A topic for further research is to specifically redesign the
proposed methods of Chapters 5 and 6 for closed environments. There are
some extensions possible where players explicitly incorporate the behavior of
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others in their decision making. For example, in a closed environment, vehicles
can use historical information about job characteristics to estimate the location
of other vehicles.

Another way to overcome these problems is to use approximate dynamic pro-
gramming with reinforcement learning techniques as proposed in Section 7.9. A
great advantage of this is that we find the optimal value functions purely from
experience without requiring a detailed model of the environment’s dynamics.
This enables us to combine both strategies without the need of modeling the
opponents’ behavior. Temporal difference learning with value function approx-
imation further offers the possibility to add additional explanatory variables
with relatively little effort, as we illustrated in Section 7.9. However, there are
also some difficulties with this approach as mentioned in Section 7.9. Therefore,
more research is required into this topic.

8.2.2 Model extensions

We subsequently present the following model extensions: (1) less-than-truckload
routing, (2) other auction mechanisms, and (3) timing constraints.

Less-than-truckload routing

In this thesis we considered full truckload (FTL) transportation where one load
uses all available space in a tractor trailer. In contrast, less-than-truckload
(LTL) transportation involves the transportation of loads that are too small to
fill an entire truck. An LTL shipment is delivered with various other shipments
and is usually not delivered directly to a destination as full truckloads are. The
main advantage of using an LTL is that a shipment may be transported for a
fraction of the costs of hiring an entire truck.

The LTL extension mainly affects the carrier and vehicle strategies as pre-
sented in this thesis. The main difficulty of LTL is that routes are made up
by mixed pickups and deliveries for various jobs. This has an effect (1) on the
marginal costs calculation of vehicles as described in Chapters 3 and 4 and
(2) on the opportunity costs calculation described in Chapter 5. The marginal
costs of an LTL insertion are not straightforward to calculate. For example, if
an empty truck receives a long distance job, its fixed costs for doing this job are
relatively high, independent on the size of the load. If new jobs are offered to
this truck that lie along the route of this long distance job and there is enough
space in the truck to transport these jobs, then the marginal costs for doing
these jobs are close to zero.

One way to deal with LTL is to use approximate dynamic programming (see
Section 8.2.1, learning in closed environments). Here we may learn the value of
free capacity as a function of the time and spatial dimension of a vehicle. An-
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other way is the use of revenue (or yield) management, as proposed in (Douma
et al., 2006). As mentioned in Chapter 1, Revenue Management is an economic
technique to increase revenues by accurately matching the available capacity
(or product/service availability) with the market prices based on demand fore-
casting. There is a lot of literature on this topic with well-known applications
in air transport (see for an overview McGill and Van Ryzin, 1999; Talluri and
Van Ryzin, 2005). Revenue Management is of especially high relevance in cases
where (1) the fixed costs are relatively high compared to the variable costs, (2)
there is a fixed amount of perishable capacity, (3) demand can be predicted,
(4) advance reservation is possible, and (5) different customers are willing to
pay a different price for using the same amount of capacity. For example, in
the passenger airline case, capacity is regarded fixed because the route is fixed.
If the aircraft departs, the unsold seats cannot generate any revenue any more.
To maximize profits, the seats are sold at different prices depending on the
remaining time until departure and the number of available seats. In vehicle
routing we face a similar problem when a vehicle fixates a route by accepting
loads. Fixing a route results in fixed costs for the vehicle, because it now has
to travel that route for that load. To maximize profits, a vehicle aims to fill
its trucks with additional loads. If the vehicle sets the prices too high, then
there is a risk to lose customers and profits. However, setting the price too
low results in a lot of customers, possibly more than the vehicle can transport.
To support the pricing decisions we can not simply apply the airline revenue
management ideas because there is an important distinction: the flight sched-
ules are predetermined whereas the vehicle has to decide which route to travel.
Obviously, more research is required on this topic.

Other auction mechanisms

Throughout this thesis, we used a simple sealed-bid auction in which the auc-
tioneer (the shipper) announces a job (pickup and delivery route) and a group
of bidders (carriers or vehicles) submit their bids in sealed envelopes. The
auctioneer then reviews the bids and determines the winner. This process is
repeated separately for each job. This approach ignores the interdependencies
among jobs. To overcome this we introduced a decommitment policy and dy-
namic threshold policy in Chapter 6. Another approach is to use a continuous
double auction or the combinatorial auction.

In the continuous double auction (CDA), buyers and sellers continuously
place offers and a transaction occurs as soon as a buyer’s offer is smaller than
a seller’s offer (in reverse auction). The CDA is one of the most common ex-
change institutions, and is in fact the primary institution for trading of equities
and derivatives. The prevalence of this institution comes from its operational
simplicity (any trader may submit or accept an offer or a bid at any time)
and its high efficiency. Another advantage of the CDA is that we are able to
combine the different architectures as described in Chapter 4. Then the line
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agents continuously offer jobs and AGV agents offer their free capacity at cer-
tain points in time. This approach also fits nicely with the shipper strategies
of delaying and breaking commitments. Then the shipper is not restricted by
periodic auctions, but may use a continuous threshold function; we then have
in fact carriers’ and shippers’ take-it-or-leave-it prices.

In a combinatorial auction, bidders can place bids on combinations of items.
These auctions are becoming increasingly popular in truckload transportation
procurement and have been successfully used in several instances (e.g. see
Ledyard et al., 2002; Caplice and Sheffi, 2003). The combinatorial auction also
fits naturally in the transportation procurement since carriers have different
valuations of different combinations of jobs (pickup and delivery routes) given
that jobs can be complementary and substitutable (see Chapter 6). This par-
ticularly holds for LTL transportation because then the combination of jobs is
even more important compared to FTL transportation. Besides, combinatorial
issues already arise when we allow shippers to delay or break commitments;
then we may have multiple jobs that are known to the carriers but not allo-
cated yet. In Chapter 6 we ignored this by considering only one job at a time,
so carriers do not take into account the current set of open jobs, and the thresh-
old prices and decommitment penalties of the shippers are independent of the
current set of open jobs. Obviously, a combinatorial auction can be beneficial
here. The main task for the vehicles is to price the opportunities of acquiring
attractive job sets and to bid on bundles of jobs. The main task of the shipper
is to develop prespecified bundles of jobs and to select the best winner.

Timing constraints

Another aspect is related to practical timing constraints in vehicle routing.
Throughout this thesis, we assume that vehicles can drive indefinitely without
returning to a home base, or having lunch breaks, or other resting times (i.e.,
legal regulations on driving hours). Partly, we can take these decisions into
account by using the gap-values. For example if a vehicle should return to
the depot at the end of the day, it will start the working day with a large
gap with the home base as end-node. An important aspect here is that the
gap-values will gain importance, but also the computation time of these gap-
values can become an issue (for large gaps). Another implication of the timing
restrictions is that many decisions (e.g. calculation of opportunity costs and
threshold prices), are now dependent on the time of the day. As a consequence,
players should learn and estimate parameters as a function of the time of the
day. In addition, we also study other time-window restrictions such as a hard
restriction on the latest pickup time and an earliest pickup time that is not
equal to the announcement time.
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8.2.3 Implementation aspects

The different models in this thesis contain many simplifications that do not
hold in practice. Further research should focus on modification of the proposed
methods to make them more suitable for practical applications. Below we
subsequently present the following model extensions: (1) fair allocation of costs
and profits, (2) scalability, and (3) simulation.

Fair allocation of costs and profits

A first, and from our view the most important point of interest, is concerned
with profits. For clarity of presentation we often ignored the profits. Especially
in open environments (Chapters 5 and 6) this is a major issue. To account
for profits in some way, we introduced the second-price auction in Chapter
5. However, this still requires the carriers to bid their true cost estimate. In
reality this often does not hold, especially when there are more objectives than
only costs (e.g. if carriers aim to increase their market share). Also topics like
fixed costs of a carrier may influence the planning and scheduling decisions.
For example, fixed costs can be incorporated in the price for an empty move,
whereas they probably will be omitted in the costs for a pro-active move.

Also other undesirable system behavior or unfair cost allocation can be
expected if we ignore the profits:

• Insertion heuristic: some shippers will pay for others, especially when
jobs from one of the shippers can nicely be inserted in one of the vehicle
schedules. Obviously, jobs that are located on a frequently traveled route
are then the cheapest. However, in reality this may lead to strategic be-
havior, such as delaying the announcement times (like we did in Chapter
6).

• Decommitment: the decommitment penalties are set such that the ship-
pers expect to play even. In reality we may expect that shippers also
price the risk of receiving higher bid prices if decommitment is allowed.

• Opportunity costs: in closed environments the market prices are driven
up (although we can correct this). Suppose all nodes are equally attrac-
tive to the carriers. Then the end-value is the same for all nodes, but
the opportunity costs are always positive. So all vehicles simply increase
their bids for all nodes. Because their winning intensities remain the
same, all prices will continuously rise. In closed environments we can
simply correct this, for example, by scaling down the prices. However, in
open environments this is still an open issue.

To support a fair allocation of profits we may use game theory. Game
theory is a formal study of the strategic interactions between agents. The
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concepts of game theory provide a language to formulate, structure, analyze,
and understand strategic scenarios that occur whenever the actions of several
agents are interdependent. Economists have long used game theory to analyze
a wide array of economic phenomena, including auctions and fair division.

There are two main branches of game theory: cooperative and non-cooperative
game theory. Non-cooperative game theory deals largely with how intelligent
individuals interact with one another in an effort to achieve their own goals.
This branch can be used to describe the strategic interactions between agents
in open environments. In cooperative theory, the players are allowed to form
binding agreements and so there is strong incentive to work together to receive
the largest total payoff. This branch can be used for open environments such
as collaborative networks of carriers.

Scalability

A second aspect is related to the scalability of our methods to larger prob-
lems. For this case it is important to come up with faster solution methods.
A first example of scalability is the aggregation of continuous locations to re-
gions. Vehicles should be able to dynamically aggregate past observations into
certain regions. A second example is to use approximate dynamic program-
ming where parameterized value functions are updated by using reinforcement
learning techniques, as proposed in Chapter 7 (Section 7.9).

Simulation

A final aspect of further research is concerned with the evaluation of the combi-
nation of different policies in a whole range of network settings. To this end we
propose an extensive simulation experiment consisting of various settings, such
as network settings (e.g. size and shape of the transportation network), mar-
ket settings (e.g. open/closed first/second price auctions), company settings
(number of shippers, carriers, vehicles), and job settings (time-windows and
job arrival intensity). In addition, we may investigate the performance of our
proposed strategies in combination with individual objectives, such as special-
ization of carriers in certain job types or regions. Finally, we may investigate
the impact of MAS design choices on aspects regarding flexibility, scalability,
adaptability, and extendibility.

The research laid down in this thesis clearly reveals the wealth of opportuni-
ties offered by applying a multi-agent approach to complex transport planning
problems. Of course, the proof of the pudding will be given by a successful
implementation of our methods and techniques in the hectic daily practice of
transport logistics. Nonetheless, we are convinced that eventually this pudding
will be a treat for the logistic tongue.
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Glossary of symbols

Here we present an overview of the symbols that are used in Chapters 3 till
6 of this thesis. To speed up the search process, we present the symbols per
chapter, although we tried to be consistent in our notation.

Chapter 3:

Job characteristics:

a announcement time
i origin
j destination
r earliest pickup time
d latest delivery time

Times:

τeij empty travel time from i to j
τfij loaded travel time from i to j
R auction period, time between two successive auction rounds
∆Tn

vϕ expected additional travel- and handling time required for ve-
hicle v in schedule alternative n to transport the job ϕ

∆Dn
vϕ expected additional tardiness required for vehicle v in schedule

alternative n to transport ϕ
∆Wn

vϕ expected additional waiting time required for vehicle v in
schedule alternative n to transport ϕ

Prices, costs, and revenues:

cr (t) travel costs as a function of the travel- and handling time t
continued on next page
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continued from previous page

cp (t) penalty costs as a function of the tardiness t
cw (t) waiting costs as a function of the waiting time t
αn threshold price of auction round n
Pmin a minimum price for the threshold function
Pmax a maximum price for the threshold function
b (v, ϕ) bid price of vehicle v for job ϕ

Other variables:

ϕn nth job in a schedule
Ψv current schedule of vehicle v
Ψnv alternative schedule n of vehicle v
V set of all vehicles v

Chapter 4:

Job characteristics:

a announcement time
o origin
d destination
p production line
m mixer
bp best delivery time at the rising area
lp latest delivery time at the rising area
ed earliest delivery time at the production line
bd best delivery time at the production line
ld latest delivery time at the production line
rmin minimum rising time
rbest best rising time

Times:

τeij empty travel time from i to j
h (ϕ) handling time of job ϕ
θ current time
zvϕ expected earliest delivery time of job ϕ by AGV v
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Prices, costs, and revenues:

Wvϕ priority value for AGV v doing job ϕ
b (v, ϕ) bid price of AGV v for job ϕ
α penalty factor, costs of 1 time unit tardiness compared to 1

time unit deviation from best staying time
β value of AGV capacity per time unit

Other variables:

ϕm mth job in a schedule
ωm scheduled pickup time of the mth job
ρm scheduled delivery time of the mth job
Ψv current schedule of vehicle v
Ψnv alternative schedules n of vehicle v
γ learning rate
C (Ψv) total costs of schedule Ψv
Lp set of all preparation jobs
Ld set of all delivery jobs

Chapter 5:

Job characteristics:

a announcement time
o origin
d destination
e latest pickup time
z time-window length e− a

Times:

τeij empty travel time from i to j
τfij loaded travel time from i to j
τ ikl τ ikl = τ eik + τfkl
θ current time
T planning horizon
σ time-to-go
σ average time-to-go
η winning time

continued on next page
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continued from previous page

tn flexibility of the nth gap
sn time slack of the nth gap

Prices, costs, and revenues:

cr (t) travel costs as a function of the travel time t
cp (t) penalty costs as a function of the tardiness t
Cd (ϕ, ω) direct costs for a job ϕ with scheduled pickup time ω
ckl (σ) direct costs for a job from k to l with time-to-go σ
OCikl opportunity costs for a job from k to l given start-node i and

time-to-go σ
bikl (σ) bid price for a vehicle for a job from k to l with start-node i

and time-to-go σ
rikl (σ − η) expected revenue of a trip from k to l given this job is scheduled

after node i a time σ from now on, and the job is won at a
time η < σ from now on.

OC (ϕ, n, ω,Ψ) opportunity costs of inserting a new job ϕ at position n with
pickup time ω in the current schedule Ψ

b (ϕ,Ψ) bid price for a job ϕ in schedule Ψ
pϕ winning price of job ϕ

Probabilities and distribution functions:

fiσ (η) probability density function of the winning moment η given
location i and time-to-go σ; with Fiσ (η) the CDF.

qiσ (η) The discretized version of fiσ (η); with Qiσ (η) the discretized
version of Fiσ (η).

pikl (σ − η) the conditional probability that a vehicle ending in location i
will have trip from k to l as next job, given that the job is won
at the η from now on

xij sample mean of all observations of the winning price for all
jobs on route ij

s2ij sample variance of all observations of the winning price for all
jobs on route ij

Hi (x) distribution of the ith order statistic of the winning prices
Gi (x) Gumbel distribution of the ith order statistic of the winning

prices
βij location parameter of the Gumbel distribution
αij scale parameter of the Gumbel distribution

continued on next page



257

continued from previous page

Hmin
kl (x) distribution of the lowest bid x

ξikl (σ) mean number of winning jobs per time unit from k to l after
arrival at node i with time-to-go σ

pwinikl (σ) probability of winning a job from k to l with start-node i
and time-to-go σ

u (i) probability of not accepting a transition for a job won after
node i

Value functions:

V (Ψ, T ) expected profits during a period T (from now on) for a certain
vehicle given its schedule Ψ

V g (i, j, σ, t) expected profits during a period t after σ from now on given
i, j, σ

V e (i, σ, t) expected profits during a period t after σ from now on given
i, σ

V 0 (n,Ψ) the original value of a schedule Ψ that you lose due to the
insertion of a new job at position n

V − (ϕ, n, ω,Ψ) value of the new gap before the new job ϕ that is inserted at
position n and pickup time ω in the current schedule Ψ

V + (ϕ, n, ω,Ψ) value of the new gap after the new job ϕ that is inserted at
position n and pickup time ω in the current schedule Ψ

V p (i, σ, η, t) expected profits during a period t for a vehicle ending at lo-
cation i given it wins a job at time η during its time-to-go
σeV e (i, t) approximate end-value for all uncertain moves after the first
uncertain moveeV g (i, j, t) approximate gap-value for all uncertain moves after the first
uncertain moveeV p (i, σ, η, t) approximate partial value function

∆eV e (d, t) decrease in end-value if the remaining horizon of the end-gap
is decreased by t

∆eV g (n, t) decrease in value for all gaps after the nth gap given the sched-
uled pickup time of job n+ 1 is postponed a time tbV e (i, σ, t) approximation of V e (i, σ, t)bV g (i, j, σ, t) approximation of V g (i, j, σ, t)

Other variables:

ϕn nth job in a schedule
continued on next page
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continued from previous page

ωn scheduled pickup time of the nth job
ρn scheduled delivery time of the nth job
Ψ current schedule
Ψ ∪ ϕ current schedule combined with the new job
N number of jobs in a schedule
V set of all vehicles v
N set of all nodes
A set of all directed arcs
δ (i) decision to move to node δ (i) after arrival at node i
αikl (t) fraction of the total travel time τ ikl that falls within period t
δakl acceptance decision for a job from k to l
λkl job arrival intensity for jobs from k to l

Chapter 6:

Job characteristics:

a announcement time
i origin
j destination
l latest pickup time
σ time-window length of a job (l − a)
d distance between the origin and destination of a job

Times:

R auction period, time between two successive auction rounds
t time-to-go

Prices, costs, and revenues:

Z (τ) costs for auctioning a job a time τ after the latest pickup time
β constant costs of auctioning a job after the latest pickup time
bn bid in auction round n (with Bn the stochastic counterpart)
V (t) minimum expected price a shipper has to pay eventually given

a time-to-go t
Vn (bn) minimum expected price a shipper has to pay in one of the

auction rounds n..N given the current lowest bid bn
Ds,t decommitment penalty for a job committed at time s and de-

committed at time t
continued on next page
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continued from previous page

α (t) threshold price at time t
αn (bn) threshold price in auction round n given a lowest bid bn
c penalty costs per time unit tardiness

Probabilities and distribution functions:

λ rate of the exponential distribution for the time between lowest
bid updates

qu probability that the lowest bid is updated in the period R
Fn (b) distribution of the lowest bid in auction round n; sometimes n

is omitted or replaced by t
Pn (b) discretization of Fn (b)
μwtd, σ

w
td mean and stdev of Ft (b), with coefficients

αw, βw, γw, ασ, βσ, γσ for the linear trends
μptd mean penalty costs with coefficients αp, βp, γp for the linear

trend
qpt probability of having a bid with non-zero penalties given a

time-to-go t (or auction round n)

Other variables:

N maximum number of auction rounds
L number of bid classes
δn deviation from the expected lowest bid in auction round n
φ coefficient of the linear trend in deviations
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Samenvatting

Nieuwe methoden voor flexibele planning en besturing van transportnetwerken
zijn vereist om te kunnen inspelen op de huidige trends in de logistieke sector.
Een belangrijke trend is de toenemende belangstelling voor online planning en
besturing. In het bijzonder de ontwikkelingen in de informatie- en commu-
nicatietechnologie (Internet en Global Positioning Systems) bieden vrachtver-
voerders de mogelijkheid beter te plannen en online beslissingen te nemen. Ook
de opkomst van elektronische marktplaatsen voor het uitwisselen van vracht en
laadruimte biedt vervoerders en verladers nieuwe mogelijkheden.

In het licht van bovenstaande ontwikkelingen richten we ons in dit proef-
schrift op online planning en besturing van transportnetwerken. Beslissingen
omvatten het toewijzen van transportopdrachten aan voertuigen, de precieze
planning van deze opdrachten (in welke volgorde ze worden uitgevoerd) en
keuzes ten aanzien van lege voertuigen (wachten, hoe lang en waar). We richten
ons specifiek op het gebruik van online veilingmechanismen voor de toewijzing
van FTL ladingen (full truckload) aan voertuigen.

We maken een onderscheid tussen zogenaamde open en gesloten omge-
vingen. In een open omgeving hebben we te maken met meerdere spelers,
verladers en vervoerders. De verladers doen aanbestedingen voor transport
via een elektronische veiling en vervoerders bieden op deze aanbestedingen.
In een open omgeving zijn we voornamelijk geïnteresseerd in de winst van een
individuele speler. We bestuderen de winstgevendheid van verschillende strate-
gieën van een enkel voertuig en vergelijken deze met de gemiddelde winst van
de andere spelers. In een gesloten omgeving hebben we te maken met een
beperkt aantal spelers die op een bepaalde manier met elkaar verbonden zijn.
Voorbeelden van een gesloten omgeving zijn (1) een fabriek die interne trans-
portopdrachten toewijst aan AGVs (automatic guided vehicles), (2) verladers
met hun eigen wagenpark en (3) een samenwerkingsverband van verladers. In
een gesloten omgeving is het in principe mogelijk alle spelers centraal aan te
sturen. In dit proefschrift beargumenteren we echter dat ook een gesloten om-
geving baat kan hebben bij een op veilingmechanismen gebaseerde besturing.
We zijn dan niet langer primair geïnteresseerd in de opbrengsten van individu-
ele spelers, maar hebben juist het doel te komen tot een efficiënte toewijzing
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van orders aan voertuigen, ofwel de minimalisatie van de totale logistieke kosten
(zoals het leegrijden) en maximalisatie van de leverbetrouwbaarheid.

Voor de planning en besturing van gesloten omgevingen worden traditioneel
wiskundige optimalisatiemethoden gebruikt die centrale planningen opstellen
voor de activiteiten van alle spelers in het systeem. Deze methoden zijn echter
minder geschikt voor een dynamische en onzekere omgeving waarin de voor de
planning benodigde informatie geleidelijk bekend wordt. Ook kunnen centrale
methoden gevoelig zijn voor kleine veranderingen: een kleine verandering in
informatie kan een grote impact hebben op de planningen van alle voertui-
gen. Tenslotte, de rekentijden van dergelijke methoden kunnen een adequate
reactie bij onverwachte zaken als storingen in de weg staan. Een nieuwe ont-
wikkeling in de ICT die zeer geschikt lijkt voor dergelijke planningssituaties,
is het gebruik van een zogenaamd multi-agent systeem (MAS). Een dergelijk
systeem bestaat uit een groep intelligente en autonome softwareprogramma’s
(de agenten) die met elkaar onderhandelen om individuele en globale doelen te
behalen. Vaak worden er veilingmechanismen gebruikt voor de communicatie
tussen de agenten. Deze aanpak lijkt een veelbelovende oplossing voor de be-
sturing van complexe netwerken. De kracht ligt hierbij vooral in flexibiliteit,
betrouwbaarheid en aanpassingsvermogen. Echter, het is nog niet duidelijk of
deze aanpak ook tot lagere logistieke kosten leidt, vooral in vergelijking met
meer centrale besturingen.

Een belangrijk element van de transportproblemen die in dit proefschrift
aan de orde komen, is de dimensie tijd. Transportopdrachten komen sequentieel
binnen terwijl de voertuigen onderweg zijn. Gevolg hiervan is dat beslissingen
met betrekking tot de toewijzing en planning van opdrachten gebaseerd worden
op onvolledige informatie. Dit, in combinatie met het gebruik van een online
veiling, zorgt ervoor dat zowel de verladers als de vervoerders voor moeilijke
beslissingen staan met betrekking tot het beprijzen en de planning van trans-
port. Deze beslissingen hebben een direct effect op de winstgevendheid van
de spelers en de totale logistieke kosten. Het is dan ook belangrijk om in de
beslissingen rekening te houden met toekomstige gebeurtenissen, bijvoorbeeld
door gebruik van statistische methoden.

De potentie van multi-agent systemen, in combinatie met de complexe maar
veelbelovende mogelijkheden van het nemen van online beslissingen, hebben
geleid tot het volgende onderzoeksdoel:

Het analyseren van de mate waarin en de wijze waarop multi-agent systemen
gebruikt kunnen worden voor de operationele online planning en besturing van
transportnetwerken. Verder, het ontwikkelen van intelligente en anticiperende
strategieën voor spelers in sequentiële veilingen voor aanbesteding van transport-
opdrachten en het analyseren van de prestaties van deze strategieën in termen
van individuele opbrengsten als ook de totale logistieke kosten.
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Om dit doel te bereiken, hebben we een aantal meer specifieke doelen
opgesteld. Elk van deze doelen is uitgewerkt in een apart hoofdstuk. Hieronder
geven we een korte samenvatting van elk van deze hoofdstukken weer.

In hoofdstuk 3 maken we een vergelijking tussen een decentrale besturing
gebaseerd op een multi-agent systeem en meer traditionele centrale besturingen.
We gebruiken hiervoor een proefproject over een ondergronds logistiek systeem
(OLS) bij Luchthaven Schiphol. Voor dit project zijn eerder een aantal bestu-
ringsmethoden en een simulatieomgeving ontwikkeld. Het gaat hier om hiërar-
chische methoden die enigszins anticiperen op toekomstige gebeurtenissen. We
gebruiken de simulatieomgeving om onze multi-agent aanpak te vergelijken
met een tweetal hiërarchische besturingen. We concluderen dat de prestaties
van een goed ontworpen multi-agent systeem vergelijkbaar of soms zelfs beter
zijn dan die van de hiërarchische methoden. Specifiek leidt de multi-agent be-
nadering tot minder lege kilometers en is deze meer robuust in de zin dat de
leverbetrouwbaarheid minder gevoelig is voor fluctuaties in de vraag.

In hoofdstuk 4 geven we inzicht in de ontwerpbeslissingen van een multi-
agent systeem voor transportplanning. De belangrijkste beslissingen zijn: (1)
het benoemen van de agenten, (2) de taken en verantwoordelijkheden van elk
van deze agenten en (3) de manier waarop de agenten met elkaar communiceren.
Deze beslissingen worden ondersteund door MAS ontwerpmethodieken. We
laten zien dat kwalitatieve richtlijnen voor MAS ontwerp onvoldoende onder-
steuning bieden om te komen tot een weloverwogen keuze voor de beste MAS
architectuur. We stellen daarom voor om de bestaande MAS ontwerpmetho-
dieken uit te breiden met simulatie. We illustreren deze werkwijze aan de hand
van een case study in een industriële bakkerij. Hier bekijken we de besturing
van automatisch geleide voertuigen die worden gebruikt voor het transporteren
van ingrediënten in het deegbereidingsproces. We evalueren meerdere agent ar-
chitecturen met behulp van simulatie. We concluderen dat er geen eenduidige
beste architectuur bestaat: elke architectuur heeft zijn voors en tegens afhanke-
lijk van het aantal te produceren degen per uur. Een mogelijke aanpak is dan
ook om de architectuur dynamisch aan te passen aan veranderingen in de fa-
briek. We sluiten het hoofdstuk af met een beschouwing van de mogelijk bredere
toepassing van deze inzichten in de praktijk.

In hoofdstuk 5 bekijken we een online transportprobleem waarbij transport-
opdrachten in sequentiële veilingen aan meerdere concurrerende vervoerders
worden aangeboden. Doel van dit hoofdstuk is het ontwikkelen van metho-
den voor online planning en beprijzing van transport, waarbij rekening moet
worden gehouden met toekomstige opdrachten. We kiezen voor een decen-
trale aanpak waarbij voertuigagenten verantwoordelijk zijn voor de planning
en besturing van hun voertuig. Bij de beslissingen die voertuigen moeten ne-
men, wordt niet alleen rekening gehouden met de directe consequenties van het
uitvoeren van een nieuwe opdracht, maar ook met de mogelijke impact hiervan
op de toekomst. We gebruiken simulatie om de voordelen van een dergelijke
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strategie te vergelijken met meer eenvoudige strategieën. We tonen aan dat een
dergelijke benadering goed presteert in termen van winst, capaciteitsbenutting
en leverbetrouwbaarheid.

In hoofdstuk 6 bekijken we een online transportprobleem waarbij tijdsafhan-
kelijke transportopdrachten door concurrerende verladers worden aangeboden
in sequentiële veilingen. Doel van dit hoofdstuk is het ontwikkelen van veiling-
methoden voor de verladers. Hierbij dient rekening te worden gehouden met
toekomstige gebeurtenissen, zoals aanbiedingen van concurrerende verladers.
We bestuderen twee strategieën. Ten eerste bestuderen wij het gebruik van re-
serveprijzen. Het idee hiervan is dat wanneer alle biedingen hoger zijn dan de
reserveprijs, de verlader niet akkoord gaat en later een nieuwe veiling start. Ten
tweede bekijken we de situatie waarin een verlader de winnende vervoerder de
mogelijkheid biedt af te zien van de gewonnen opdracht tegen bepaalde kosten.
In dat geval zal de verlader een nieuwe veiling starten. In beide strategieën
gebruikt de verlader stochastische informatie over toekomstige gebeurtenissen.
Met behulp van simulatie laten we zien dat de strategieën de winstgevend-
heid van verladers kunnen vergroten, maar ook dat de totale logistieke kosten
hiermee gereduceerd kunnen worden.

In hoofdstuk 5 en 6 bekijken we strategieën voor vervoerders en verladers
onafhankelijk van elkaar. Precies gezegd, we bekijken de prestaties van een
strategie van een individuele speler waarbij we ervan uitgaan dat alle andere
spelers een gegeven eenvoudige strategie toepassen. In hoofdstuk 7 bekijken we
de wisselwerking tussen de verschillende strategieën. Doel van dit hoofdstuk
is inzicht te geven in de effecten van verschillende strategieën voor zowel de
vervoerders als de verladers in sequentiële veilingen. Hierbij richten we ons op
gesloten omgevingen. We streven naar minimalisatie van de totale logistieke
kosten onder voldoend hoge leverbetrouwbaarheid. Met behulp van simulatie
tonen we aan dat de eerder voorgestelde strategieën complementair zijn, dat
wil zeggen, door combinatie van deze strategieën kunnen de logistieke kosten
verder gereduceerd worden. De combinatie van strategieën stelt ons ook voor
nieuwe uitdadingen aangaande het leerproces van de individuele spelers. We
besluiten dan ook met een aanzet voor toekomstig onderzoek naar geavanceerde
leermethoden.

De in dit proefschrift besproken methoden en technieken vormen een solide
basis voor de ontwikkeling van intelligente en flexibele beslissingsondersteu-
nende systemen waarmee in de praktijk van alledag vervoerders en verladers
online kunnen plannen en besturen.
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